1
|
Bullard RL, Olsen EL, Cheslock MA, Embers ME. Evaluation of the available animal models for Bartonella infections. One Health 2024; 18:100665. [PMID: 38223332 PMCID: PMC10784307 DOI: 10.1016/j.onehlt.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
The diseases caused by the Bartonella genus of bacteria are clinically diverse, and can be challenging to cure. The study of bartonellosis has been hampered by the lack of a suitable animal model. Preclinical studies for novel therapeutics and a competent host for vector transmission studies are needed to fill critical knowledge gaps. The studies included here are a representation of in vivo Bartonella research and the corresponding challenges. This review examines the current state of available animal models by assessing the success of various model species and strains in Bartonella infection. With a focus on the strengths and weaknesses of current animal models, the importance of these models for improvement of human health and veterinary care is emphasized.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Emily L. Olsen
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Mercedes A. Cheslock
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| |
Collapse
|
2
|
Bullard RL, Cheslock M, Goud Gadila SK, Maggi RG, Breitschwerdt EB, Saied AA, Embers ME. A comparison of Bartonella henselae infection in immunocompetent and immunocompromised mice. PLoS One 2024; 19:e0297280. [PMID: 38346057 PMCID: PMC10861063 DOI: 10.1371/journal.pone.0297280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Bartonellosis refers to disease caused by the Bartonella genus of bacteria. The breadth of disease manifestations associated with Bartonella is currently expanding and includes regional lymphadenopathy, rheumatic, ocular, and neurological disorders. The dearth of knowledge regarding diagnosis, treatment and pathogenesis of this disease can be partially attributed to the lack of a reliable small animal model for the disease. For this study, Bartonella henselae, the most common species associated with human disease, was injected into Swiss Webster (SW) mice. When the outcome indicated that productive infection did not occur, SCID/Beige (immune compromised) mice were inoculated. While SW mice may potentially harbor an acute infection, less than 10 days in length, the SCID/Beige model provided a sustained infection lasting up to 30-days. These data indicate that SCID/Beige mice can provide a model to study Bartonella infection, therapeutics, and vector dynamics in the future.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Division of Immunology, Tulane University, Covington, Louisiana, United States of America
| | - Mercedes Cheslock
- Division of Immunology, Tulane University, Covington, Louisiana, United States of America
| | | | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ahmad A. Saied
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Monica E. Embers
- Division of Immunology, Tulane University, Covington, Louisiana, United States of America
| |
Collapse
|
3
|
Xu AL, Chen YF, Mu L, Liu PB, Wang J, Li RX, Li DM. Bartonella Prevalence and Genome Sequences in Rodents in Some Regions of Xinjiang, China. Appl Environ Microbiol 2023; 89:e0196422. [PMID: 36951592 PMCID: PMC10132096 DOI: 10.1128/aem.01964-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/02/2023] [Indexed: 03/24/2023] Open
Abstract
In this study, we investigated Bartonella infection and its genetic diversity in rodents in Beitun, Xinjiang Uygur Autonomous Region, China. Small mammals were captured using snap traps at four sampling sites in 2018. Spleen and liver tissues were collected and cultured to isolate Bartonella strains. Whole-genome sequencing was performed on the strains identified as Bartonella by gltA gene PCR, and the average nucleotide identity (ANI) of the genomes was calculated by using FastANI v1.33. Phylogenetic trees were constructed for the samples positive for Bartonella spp. by the gltA PCR assay based on 1,290-bp gltA genes, 2,903-bp rpoB genes, and core-genome single nucleotide polymorphisms (SNPs). Among 66 rodents, 11 were positive for Bartonella, with an infection rate of 16.67%. The rodent infection rates in different tissues (χ2 = 2.133; P = 0.242), species (χ2 = 9.631; P = 0.141), and habitats (χ2 = 4.309; P = 0.312) did not show statistical differences. Bartonella spp. isolated from the rodents were phylogenetically divided into six clades (two different Bartonella species were detected in two rodents). By comparing phylogenetic trees based on gltA genes, rpoB genes, and SNPs, we found that the topological structures of several evolutionary trees are different. However, the Bartonella strains isolated in this study were clustered into six clusters in different phylogenetic trees. Broad distributions and high genetic diversity of Bartonella strains were observed among rodents in Beitun, Xinjiang. IMPORTANCE Rodent-borne Bartonella species have been associated with zoonotic diseases. Bartonella species such as Bartonella elizabethae, Bartonella grahamii, and Bartonella tribocorum can cause disease in humans. Humans can be infected by blood-sucking arthropods through the scratches and bites of an infected reservoir host or via contact with infectious rodents. Xinjiang is one of the provinces with the most abundant species of Bartonella in China, but there are few reports about the prevalence of Bartonella in the Beitun area. This research aims to investigate the occurrence and prevalence of Bartonella infection in rodents at these sampling sites and provide a basis for the prevention and control of rodent Bartonella species in Beitun and the surrounding areas of Xinjiang.
Collapse
Affiliation(s)
- Ai-Ling Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan-Fang Chen
- Institute for Agricultural Sciences of 10th Division of Xinjiang Production and Construction Corps, Beitun City, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Long Mu
- Institute for Agricultural Sciences of 10th Division of Xinjiang Production and Construction Corps, Beitun City, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Peng-Bo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Rui-Xiao Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dong-Mei Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
4
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
5
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
6
|
Okaro U, Green R, Mohapatra S, Anderson B. The trimeric autotransporter adhesin BadA is required for in vitro biofilm formation by Bartonella henselae. NPJ Biofilms Microbiomes 2019; 5:10. [PMID: 30886729 PMCID: PMC6418236 DOI: 10.1038/s41522-019-0083-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/01/2019] [Indexed: 01/10/2023] Open
Abstract
Bartonella henselae (Bh) is a Gram-negative rod transmitted to humans by a scratch from the common house cat. Infection of humans with Bh can result in a range of clinical diseases including lymphadenopathy observed in cat-scratch disease and more serious disease from persistent bacteremia. It is a common cause of blood-culture negative endocarditis as the bacterium is capable of growing as aggregates, and forming biofilms on infected native and prosthetic heart valves. The aggregative growth requires a trimeric autotransporter adhesin (TAA) called Bartonella adhesin A (BadA). TAAs are found in all Bartonella species and many other Gram-negative bacteria. Using Bh Houston-1, Bh Houston-1 ∆badA and Bh Houston-1 ∆badA/pNS2PTrc badA (a partial complement of badA coding for a truncated protein of 741 amino acid residues), we analyze the role of BadA in adhesion and biofilm formation. We also investigate the role of environmental factors such as temperature on badA expression and biofilm formation. Real-time cell adhesion monitoring and electron microscopy show that Bh Houston-1 adheres and forms biofilm more efficiently than the Bh Houston-1 ∆badA. Deletion of the badA gene significantly decreases adhesion, the first step in biofilm formation in vitro, which is partially restored in Bh Houston-1 ∆badA/pNS2PTrc badA. The biofilm formed by Bh Houston-1 includes polysaccharides, proteins, and DNA components and is susceptible to enzymatic degradation of these components. Furthermore, both pH and temperature influence both badA expression and biofilm formation. We conclude that BadA is required for optimal adhesion, agglutination and biofilm formation.
Collapse
Affiliation(s)
- Udoka Okaro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burt Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
7
|
Brucella neotomae Recapitulates Attributes of Zoonotic Human Disease in a Murine Infection Model. Infect Immun 2018; 87:IAI.00255-18. [PMID: 30373892 DOI: 10.1128/iai.00255-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
Members of the genus Brucella are Gram-negative pathogens that cause chronic systemic infection in farm animals and zoonotic infection in humans. Study of the genus Brucella has been hindered by the need for biosafety level 3 select agent containment. Brucella neotomae, originally isolated from the desert pack rat, presented an opportunity to develop an alternative, non-select agent experimental model. Our prior in vitro work indicated that the cell biology and type IV secretion system (T4SS) dependence of B. neotomae intracellular replication were similar to observations for human-pathogenic select agent Brucella species. Therefore, here, we investigated the pathobiology of B. neotomae infection in the BALB/c mouse. During a sustained infectious course, B. neotomae replicated and persisted in reticuloendothelial organs. Bioluminescent imaging and histopathological and PCR-based analysis demonstrated that the T4SS contributed to efficient early infection of the liver, spleen, and lymph nodes; granuloma formation and hepatosplenomegaly; and early induction of Th1-associated cytokine gene expression. The infectious course and pathologies in the murine model showed similarity to prior observations of primate and native host infection with zoonotic Brucella species. Therefore, the B. neotomae BALB/c infection model offers a promising system to accelerate and complement experimental work in the genus Brucella.
Collapse
|
8
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
9
|
DallaPiazza M, Akiyama MJ. The First Report of Bartonella quintana Immune Reconstitution Inflammatory Syndrome Complicated by Jarisch-Herxheimer Reaction. J Int Assoc Provid AIDS Care 2017; 16:321-323. [PMID: 28393665 DOI: 10.1177/2325957417702484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillary angiomatosis (BA) is a rare complication of human immune deficiency virus (HIV) infection in the post-antiretroviral therapy (ART) era, and few cases of BA-associated immune reconstitution inflammatory syndrome (IRIS) have been described. We report the case of a 50-year-old man who presented with mass lesions involving the skin, subcutaneous tissues, muscle, and bone. The diagnosis of Bartonella quintana BA was confirmed by serum polymerase chain reaction. The patient's treatment course was complicated by both IRIS and Jarisch-Herxheimer reaction. The case had a favorable outcome with supportive care and continuation of ART and doxycycline.
Collapse
Affiliation(s)
- Michelle DallaPiazza
- 1 Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Matthew Jiro Akiyama
- 2 Divisions of General Internal Medicine and Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
10
|
Pagliuca C, Cicatiello AG, Colicchio R, Greco A, Cerciello R, Auletta L, Albanese S, Scaglione E, Pagliarulo C, Pastore G, Mansueto G, Brunetti A, Avallone B, Salvatore P. Novel Approach for Evaluation of Bacteroides fragilis Protective Role against Bartonella henselae Liver Damage in Immunocompromised Murine Model. Front Microbiol 2016; 7:1750. [PMID: 27872616 PMCID: PMC5097911 DOI: 10.3389/fmicb.2016.01750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Bartonella henselae is a gram-negative facultative intracellular bacterium and is the causative agent of cat-scratch disease. Our previous data have established that Bacteroides fragilis colonization is able to prevent B. henselae damages through the polysaccharide A (PSA) in an experimental murine model. In order to determine whether the PSA is essential for the protection against pathogenic effects of B. henselae in immunocompromised hosts, SCID mice were co-infected with B. fragilis wild type or its mutant B. fragilis ΔPSA and the effects of infection on murine tissues have been observed by High-Frequency Ultrasound (HFUS), histopathological examination, and Transmission Electron Microscopy (TEM). For the first time, echostructure, hepatic lobes length, vascular alterations, and indirect signs of hepatic dysfunctions, routinely used as signs of disease in humans, have been analyzed in an immunocompromised murine model. Our findings showed echostructural alterations in all infected mice compared with the Phosphate Buffer Solution (PBS) control group; further, those infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA presented the major echostructural alterations. Half of the mice infected with B. henselae and all those co-infected with B. henselae/B. fragilis ΔPSA have showed an altered hepatic echogenicity compared with the renal cortex. The echogenicity score of co-infected mice with B. henselae/B. fragilis ΔPSA differed significantly compared with the PBS control group (p < 0.05). Moreover the inflammation score of the histopathological evaluation was fairly concordant with ultrasound findings. Ultrastructural analysis performed by TEM revealed no significant alterations in liver samples of SCID mice infected with B. fragilis wild type while those infected with B. fragilis ΔPSA showed the presence of collagen around the main vessels compared with the PBS control group. The liver samples of mice infected with B. henselae showed macro-areas rich in collagen, stellate cells, and histiocytic cells. Interestingly, our data demonstrated that immunocompromised SCID mice infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA showed the most severe morpho-structural liver damage. In addition, these results suggests that the HFUS together with histopathological evaluation could be considered good imaging approach to evaluate hepatic alterations.
Collapse
Affiliation(s)
- Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical SchoolNaples, Italy; CEINGE-Advanced BiotechnologiesNaples, Italy
| | - Annunziata G Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Adelaide Greco
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy; Institute of Biostructure and Bioimaging, National Research CouncilNaples, Italy
| | | | | | - Sandra Albanese
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio Benevento, Italy
| | - Gabiria Pastore
- Department of Sciences and Technologies, University of Sannio Benevento, Italy
| | - Gelsomina Mansueto
- Department of Advanced Biomedical Science, Federico II University Medical School Naples, Italy
| | - Arturo Brunetti
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy; Institute of Biostructure and Bioimaging, National Research CouncilNaples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical SchoolNaples, Italy; CEINGE-Advanced BiotechnologiesNaples, Italy
| |
Collapse
|
11
|
High prevalence and genetic heterogeneity of rodent-borne Bartonella species on Heixiazi Island, China. Appl Environ Microbiol 2015; 81:7981-92. [PMID: 26362983 DOI: 10.1128/aem.02041-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
We performed genetic analysis of Bartonella isolates from rodent populations from Heixiazi Island in northeast China. Animals were captured at four sites representing grassland and brushwood habitats in 2011 and examined for the prevalence and genetic diversity of Bartonella species, their relationship to their hosts, and geographic distribution. A high prevalence (57.7%) and a high diversity (14 unique genotypes which belonged to 8 clades) of Bartonella spp. were detected from 71 rodents comprising 5 species and 4 genera from 3 rodent families. Forty-one Bartonella isolates were recovered and identified, including B. taylorii, B. japonica, B. coopersplainsensis, B. grahamii, B. washoensis subsp. cynomysii, B. doshiae, and two novel Bartonella species, by sequencing of four genes (gltA, the 16S rRNA gene, ftsZ, and rpoB). The isolates of B. taylorii and B. grahamii were the most prevalent and exhibited genetic difference from isolates identified elsewhere. Several isolates clustered with strains from Japan and far-eastern Russia; strains isolated from the same host typically were found within the same cluster. Species descriptions are provided for Bartonella heixiaziensis sp. nov. and B. fuyuanensis sp. nov.
Collapse
|
12
|
Salvatore P, Zullo A, Sommese L, Colicchio R, Picascia A, Schiano C, Mancini FP, Napoli C. Infections and cardiovascular disease: is Bartonella henselae contributing to this matter? J Med Microbiol 2015; 64:799-809. [PMID: 26066633 DOI: 10.1099/jmm.0.000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is still the major cause of death worldwide despite the remarkable progress in its prevention and treatment. Endothelial progenitor cells (EPCs) have recently emerged as key players of vascular repair and regenerative medicine applied to cardiovascular disease. A large amount of effort has been put into discovering the factors that could aid or impair the number and function of EPCs, and also into characterizing these cells at the molecular level in order to facilitate their therapeutic applications in vascular disease. Interestingly, the major cardiovascular risk factors have been associated with reduced number and function of EPCs. The bacterial contribution to cardiovascular disease represents a long-standing controversy. The discovery that Bartonella henselae can infect and damage EPCs revitalizes the enduring debate about the microbiological contribution to atherosclerosis, thus allowing the hypothesis that this infection could impair the cardiovascular regenerative potential and increase the risk for cardiovascular disease. In this review, we summarize the rationale suggesting that Bartonella henselae could favour atherogenesis by infecting and damaging EPCs, thus reducing their vascular repair potential. These mechanisms suggest a novel link between communicable and non-communicable human diseases, and put forward the possibility that Bartonella henselae could enhance the susceptibility and worsen the prognosis in cardiovascular disease.
Collapse
Affiliation(s)
- Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Alberto Zullo
- CEINGE-Advanced Biotechnologies, Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Experimental Medicine, Section of Microbiology, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Concetta Schiano
- Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| | | | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
13
|
Minnick MF, Anderson BE, Lima A, Battisti JM, Lawyer PG, Birtles RJ. Oroya fever and verruga peruana: bartonelloses unique to South America. PLoS Negl Trop Dis 2014; 8:e2919. [PMID: 25032975 PMCID: PMC4102455 DOI: 10.1371/journal.pntd.0002919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelial cell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control.
Collapse
Affiliation(s)
- Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Burt E. Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - James M. Battisti
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Phillip G. Lawyer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Birtles
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
14
|
Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol 2011; 2012:612809. [PMID: 22162717 PMCID: PMC3227422 DOI: 10.1155/2012/612809] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 01/07/2023]
Abstract
Most infections by genus Bartonella in immunocompromised patients are caused by B. henselae and B. quintana. Unlike immunocompetent hosts who usually develop milder diseases such as cat scratch disease and trench fever, immunocompromised patients, including those living with HIV/AIDS and posttransplant patients, are more likely to develop different and severe life-threatening disease. This paper will discuss Bartonella's manifestations in immunosuppressed patients and will examine Bartonella's interaction with the immune system including its mechanisms of establishing infection and immune escape. Gaps in current understanding of the immunology of Bartonella infection in immunocompromised hosts will be highlighted.
Collapse
|
15
|
Reis C, Cote M, Le Rhun D, Lecuelle B, Levin ML, Vayssier-Taussat M, Bonnet SI. Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii. PLoS Negl Trop Dis 2011; 5:e1186. [PMID: 21655306 PMCID: PMC3104967 DOI: 10.1371/journal.pntd.0001186] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
Bartonella spp. are facultative intracellular vector-borne bacteria associated with several emerging diseases in humans and animals all over the world. The potential for involvement of ticks in transmission of Bartonella spp. has been heartily debated for many years. However, most of the data supporting bartonellae transmission by ticks come from molecular and serological epidemiological surveys in humans and animals providing only indirect evidences without a direct proof of tick vector competence for transmission of bartonellae. We used a murine model to assess the vector competence of Ixodes ricinus for Bartonella birtlesii. Larval and nymphal I. ricinus were fed on a B. birtlesii-infected mouse. The nymphs successfully transmitted B. birtlesii to naïve mice as bacteria were recovered from both the mouse blood and liver at seven and 16 days after tick bites. The female adults successfully emitted the bacteria into uninfected blood after three or more days of tick attachment, when fed via membrane feeding system. Histochemical staining showed the presence of bacteria in salivary glands and muscle tissues of partially engorged adult ticks, which had molted from the infected nymphs. These results confirm the vector competence of I. ricinus for B. birtlesii and represent the first in vivo demonstration of a Bartonella sp. transmission by ticks. Consequently, bartonelloses should be now included in the differential diagnosis for patients exposed to tick bites.
Collapse
Affiliation(s)
- Caroline Reis
- Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France
| | - Martine Cote
- Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France
| | - Danielle Le Rhun
- Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France
| | - Benoit Lecuelle
- École Nationale Vétérinaire d'Alfort, Centre de Recherche Biomedicale, Maisons-Alfort, France
| | - Michael L. Levin
- Medical Entomology Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Muriel Vayssier-Taussat
- Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France
| | - Sarah I. Bonnet
- Institut National de la Recherche Agronomique, USC INRA Bartonella-Tiques, ANSES, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|