1
|
Hida M, Yasuda K, Toyokawa M, Asada-Utsugi M, Toda S, Yanagida N, Takahashi R, Kinoshita A, Maki T. Amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein processing in oligodendrocytes. Brain Res 2025; 1855:149601. [PMID: 40154861 DOI: 10.1016/j.brainres.2025.149601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Excessive accumulation of toxic amyloid-β (Aβ) species in the brain is a major pathological process triggering neurodegeneration in Alzheimer's disease (AD). Recent studies indicate that both neurons and glial cells, including oligodendrocyte lineages (OLs), contribute to brain homeostasis and affect AD pathology; however, the roles of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLGs) in AD remain to be fully elucidated. This study examined Aβ production and related protein expression in primary cultured OLs. Primary cultured OLs produced Aβ40 and Aβ42 and expressed amyloid precursor protein (APP), β-secretase (BACE1) and γ-secretase (PS1) as well as α-secretase (ADAM10). OLGs express APP770 in addition to APP695. Treatment with a γ-secretase inhibitor reduced Aβ40 and Aβ42 production levels derived from OPCs/OLGs and suppressed OPC differentiation. Additionally, conditioned media from OLGs improved neuronal cell viability under oxidative stress and contained higher levels of sAPPα compared to OPCs. The neuroprotective effect of OLG was diminished by a sAPPα inhibitor, suggesting that OLG-derived sAPPα protects neurons under oxidative stress. These findings revealed that OLs produce pathogenic Aβ40/42 via the amyloidogenic pathway and secrete neuroprotective sAPPα via the non-amyloidogenic pathway. Elucidating the pathological shift from beneficial non-amyloidogenic to harmful amyloidogenic processes in OLs during AD onset and progression would provide crucial insights into novel therapeutic approaches.
Collapse
Affiliation(s)
- Misaki Hida
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Masaru Toyokawa
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Megumi Asada-Utsugi
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan; Neurology of Department of Neuroscience Research Center, Shiga University of Medical Science, Japan
| | - Shintaro Toda
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Narufumi Yanagida
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ayae Kinoshita
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
2
|
Falangola MF, Granger B, Voltin J, Nietert PJ, Berto S, Jensen JH. Diffusion MRI in 2-Month-Old Mouse Brain Predicts Alzheimer's Pathology Genotype. NMR IN BIOMEDICINE 2025; 38:e70018. [PMID: 40037790 DOI: 10.1002/nbm.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Diffusion MRI (dMRI) is widely used as a non-invasive means of detecting changes in brain tissue microstructure. In our previous studies, we demonstrated the sensitivity of dMRI to capture brain microstructural alterations in the triple transgenic (3xTg-AD) mice, particularly brain morphological abnormalities in 2-month-old mice, where dMRI was sensitive to myelin abnormalities, to microglia proliferation/activation, and to the larger number of basal forebrain cholinergic neurons previously described in this model at this young age. In this study, we extend our prior work by establishing the dMRI profile of several brain regions relevant to AD pathology in 2-month-old 3xTg-AD and age-matched controls (NC) and by investigating the effectiveness of these dMRI metrics in predicting group genotype using elastic net (EN) logistic regression modeling. EN has been shown to be a high-performance and stable machine learning model for neuroimaging data. Our results demonstrated significant group differences in several ROIs, particularly in the corpus callosum (CC) where fractional anisotropy (FA) (p < 0.0001; d = -1.87), radial diffusivity (D┴) (p < 0.0001; d = -1.33), and radial kurtosis (K┴) (p < 0.0001; d = -1.34) were statistically significant and the most sensitive dMRI metrics to differentiate between the two groups, with large effect sizes (Cohen's d) values. Moreover, FA in the ventral hippocampus (VH) (p < 0.0001; d = 1.13) and fimbria (Fi) (p < 0.0001; d = -1.04) as well as mean diffusivity (MD) (p < 0.0001; d = 1.10) and D┴ in the subiculum (Sub) (p < 0.0001; d = 1.12) were also statistically significant and able to clearly distinguish the two groups. Additionally, our results from the trained EN model indicate that FA in the VH, CC, and cingulate cortex (Ctx-Cg) were the three best dMRI metrics to classify the 3xTg-AD mice with an accuracy of 0.95. Sensitivity and specificity were also calculated to assess the goodness of prediction, resulting in 0.96 and 0.94, respectively.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Bioinformatics Core, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
3
|
Schneeberger S, Kim SJ, Geesdorf MN, Friebel E, Eede P, Jendrach M, Boltengagen A, Braeuning C, Ruhwedel T, Hülsmeier AJ, Gimber N, Foerster M, Obst J, Andreadou M, Mundt S, Schmoranzer J, Prokop S, Kessler W, Kuhlmann T, Möbius W, Nave KA, Hornemann T, Becher B, Edgar JM, Karaiskos N, Kocks C, Rajewsky N, Heppner FL. Interleukin-12 signaling drives Alzheimer's disease pathology through disrupting neuronal and oligodendrocyte homeostasis. NATURE AGING 2025; 5:622-641. [PMID: 40082619 PMCID: PMC12003168 DOI: 10.1038/s43587-025-00816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025]
Abstract
Neuroinflammation including interleukin (IL)-12/IL-23-signaling is central to Alzheimer's disease (AD) pathology. Inhibition of p40, a subunit of IL-12/IL-23, attenuates pathology in AD-like mice; however, its signaling mechanism and expression pattern remained elusive. Here we show that IL-12 receptors are predominantly expressed in neurons and oligodendrocytes in AD-like APPPS1 mice and in patients with AD, whereas IL-23 receptor transcripts are barely detectable. Consistently, deletion of the IL-12 receptor in neuroectodermal cells ameliorated AD pathology in APPPS1 mice, whereas removal of IL-23 receptors had no effect. Genetic ablation of IL-12 signaling alone reverted the loss of mature oligodendrocytes, restored myelin homeostasis, rescued the amyloid-β-dependent reduction of parvalbumin-positive interneurons and restored phagocytosis-related changes in microglia of APPPS1 mice. Furthermore, IL-12 protein expression was increased in human AD brains compared to healthy age-matched controls, and human oligodendrocyte-like cells responded profoundly to IL-12 stimulation. We conclude that oligodendroglial and neuronal IL-12 signaling, but not IL-23 signaling, are key in orchestrating AD-related neuroimmune crosstalk and that IL-12 represents an attractive therapeutic target in AD.
Collapse
Affiliation(s)
- Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Seung Joon Kim
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maria N Geesdorf
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pascale Eede
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marina Jendrach
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Caroline Braeuning
- Genomics Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Electron Microscopy Unit City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Niclas Gimber
- AMBIO Advanced Medical Bioimaging Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marlene Foerster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juliane Obst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jan Schmoranzer
- AMBIO Advanced Medical Bioimaging Core Facility, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Prokop
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Wiebke Kessler
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Electron Microscopy Unit City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Nikos Karaiskos
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
- National Center for Tumor Diseases (NCT), Berlin, Germany.
- Charité - Universitätsmedizin, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
4
|
Balantzategi U, Gaminde-Blasco A, Kearns CA, Bayón-Cordero L, Sánchez-Gómez MV, Zugaza JL, Appel B, Alberdi E. Amyloid-β Dysregulates Oligodendroglial Lineage Cell Dynamics and Myelination via PKC in the Zebrafish Spinal Cord. Glia 2025. [PMID: 40087862 DOI: 10.1002/glia.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Soluble forms of amyloid-β (Aβ) peptide have been proposed as candidates to induce oligodendrocyte (OL) and myelin dysfunctions in the early stages of Alzheimer's disease (AD) pathology. Nevertheless, little is known about how Aβ affects OL differentiation and myelination in vivo, and the underlying molecular mechanisms. In this study, we explored the effects of a brain intraventricular injection of Aβ on OLs and myelin in the developing spinal cord of zebrafish larvae. Using quantitative fluorescent in situ RNA hybridization assays, we demonstrated that Aβ altered myrf and mbp mRNA levels and the regional distribution of mbp during larval development, suggesting an early differentiation of OLs. Through live imaging of Tg(myrf:mScarlet) and Tg(mbpa:tagRFP) zebrafish lines, both crossed with Tg(olig2:EGFP), we found that Aβ increased the number of myrf+ and mbp+ OLs in the dorsal spinal cord at 72 hpf and 5 dpf, respectively, without affecting total cell numbers. Furthermore, Aβ also increased the number of Sox10+cells, myelin sheaths per OL, and the number of myelinated axons in the dorsal spinal cord at 8 dpf compared to vehicle-injected control animals. Interestingly, the treatment of Aβ-injected zebrafish with the pan-PKC inhibitor Gö6983 restored the aforementioned alterations in OLs and myelin to control levels. Altogether, not only do we demonstrate that Aβ induces a precocious oligodendroglial differentiation leading to dysregulated myelination, but we also identified PKC as a key player in Aβ-induced pathology.
Collapse
Affiliation(s)
- Uxue Balantzategi
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adhara Gaminde-Blasco
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Christina A Kearns
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Bayón-Cordero
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena Alberdi
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
5
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Gutierre RC, Rocha PR, Graciani AL, Coppi AA, Arida RM. Tau, amyloid, iron, oligodendrocytes ferroptosis, and inflammaging in the hippocampal formation of aged rats submitted to an aerobic exercise program. Brain Res 2025; 1850:149419. [PMID: 39725376 DOI: 10.1016/j.brainres.2024.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease affecting memory, language, and thinking with no curative treatment. Symptoms appear gradually, and pathological brain changes may occur twenty years before the physical and psychological signs, pointing to the urgent development of preventive interventions. Physical activity has been investigated as a preventive tool to defeat the main biological features of AD: pathological amyloid protein plaques, tau tangles, myelin degeneration, and iron deposits in the brain. This work quantifies tau tangles, amyloid, iron, and ferroptosis in oligodendrocytes in the aged rat hippocampal formation and statistically correlates neuron-neuron, neuron-glia, and glia-glia crosstalk and the effect of physical exercise on it. Our results indicate that iron overload in the oligodendrocytes is an inducer of ferroptosis; physical exercise reduces inflammaging, and improves axon-myelin volume relations; tau, amyloid, iron, and hippocampal formation cells present statistical correlations. Our data suggest the beneficial effects of physical exercise in AD and a mathematical relationship between the hippocampal formation cells in sedentary and active individuals, which should be considered in human and animal studies as a guide to a better understanding of crosstalk physiology.
Collapse
Affiliation(s)
- R C Gutierre
- Almeria Institute of Integrative Science, São Paulo, Brazil.
| | - P R Rocha
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| | - A L Graciani
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| | - A A Coppi
- University of Bristol, Faculty of Health and Life Sciences, Bristol, United Kingdom
| | - R M Arida
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| |
Collapse
|
7
|
Jiang Z, Liu B, Lu T, Liu X, Lv R, Yuan K, Zhu M, Wang X, Li S, Xu S, Wang X, Wang Y, Gao Z, Zhao P, Zhang Z, Hao J, Lu L, Yin Q. SGK1 drives hippocampal demyelination and diabetes-associated cognitive dysfunction in mice. Nat Commun 2025; 16:1709. [PMID: 39962079 PMCID: PMC11833069 DOI: 10.1038/s41467-025-56854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes-associated cognitive dysfunction (DACD) is increasingly recognized as a critical complication of diabetes. The complex pathology of DACD remains unknown. Here, we performed single-nucleus RNA sequencing (snRNA-seq) to demonstrate unique cellular and molecular patterns of the hippocampus from a mouse model of diabetes. More in-depth analysis of oligodendrocytes (OLs) distinguished five subclusters, indicating different functional states of OLs and transcriptional changes in each subcluster. Based on the results of snRNA-seq and experiments in vivo, we observed demyelination and disharmony of oligodendroglial lineage cell composition in male diabetic mice. Serum/glucocorticoid regulated kinase 1 (SGK1) expression was significantly increased in the hippocampus OLs of male diabetic mice, and SGK1 knockdown in hippocampus reversed demyelination and DACD via N-myc downstream-regulated gene 1 (NDRG1)-mediated pathway. The findings illustrated a transcriptional landscape of hippocampal OLs and substantiated impaired myelination in DACD. Our results provided direct evidence that inhibition of SGK1 or the promotion of myelination might be a potential therapeutic strategy for DACD.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Renjun Lv
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mengna Zhu
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinning Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shangbin Li
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Song Xu
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yifei Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenfang Gao
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peiqing Zhao
- Department of Translational Medical Center, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, China.
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China.
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Zhang HX, Hamit D, Li Q, Hu X, Li SF, Xu F, Wang MY, Bao GQ, Li HY. Integrative bioinformatic approach reveals novel melatonin-related biomarkers for Alzheimer's disease. Sci Rep 2025; 15:4193. [PMID: 39905093 PMCID: PMC11794634 DOI: 10.1038/s41598-024-80755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/21/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Melatonin (MLT) can improve mitophagy, thereby ameliorating cognitive deficits in Alzheimer's disease (AD) patients. Hence, our research focused on the potential value of MLT-related genes (MRGs) in AD through bioinformatic analysis. METHODS First, the key cells in the single-cell dataset GSE138852 were screened out based on the proportion of annotated cells and Fisher's test between the AD and control groups. The differentially expressed genes (DEGs) in the key cell and GSE5281 datasets were identified, and the MRGs in GSE5281 were selected via weighted gene coexpression network analysis. After intersecting two sets of DEGs and MRGs, we performed Mendelian randomization analysis to identify the MRGs causally related to AD. Biomarkers were further ascertained through receiver operating characteristic curve (ROC) and expression analysis in GSE5281 and GSE48350. Furthermore, gene set enrichment analysis, immune infiltration analysis and correlation analysis with metabolic pathways were conducted, as well as construction of a regulator network and molecular docking. RESULTS According to the Fisher test, oligodendrocytes were regarded as key cells due to their excellent abundance in the GSE138852 dataset, in which there were 281 DEGs between the AD and control groups. After overlapping with 3,490 DEGs and 550 MRGs in GSE5281, four genes were found to be causally related to AD, namely, G protein-coupled receptor, family C, group 5, member B (GPRC5B), Methyltransferase-like protein 7 A (METTL7A), NF-κB inhibitor alpha (NFKBIA) and RAS association domain family 4(RASSF4). Moreover, GPRC5B, NFKBIA and RASSF4 were deemed biomarkers, except for METTL7A, because of their indistinctive expression between the AD and control groups. Biomarkers might be involved in oxidative phosphorylation, adipogenesis and heme metabolism. Moreover, T helper type 17 cells, natural killer cells and CD56dim natural killer cells were significantly correlated with biomarkers. Transcription factors (GATA2, POU2F2, NFKB1, etc.) can regulate the expression of biomarkers. Finally, we discovered that all biomarkers could bind to MLT with a strong binding energy. CONCLUSION Our study identified three novel biomarkers related to MLT for AD, namely, GPRC5B, NFKBIA and RASSF4, providing a novel approach for the investigation and treatment of AD patients.
Collapse
Affiliation(s)
- Hua-Xiong Zhang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Dilmurat Hamit
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Qing Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiao Hu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - San-Feng Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fu Xu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Ming-Yuan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guo-Qing Bao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Hong-Yan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
9
|
Liu X, Lv Z, Huang Q, Lei Y, Liu H, Xu P. The Role of Oligodendrocyte Lineage Cells in the Pathogenesis of Alzheimer's Disease. Neurochem Res 2025; 50:72. [PMID: 39751972 DOI: 10.1007/s11064-024-04325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD. OLGs function mainly by myelinating axons, transmitting electrical signals, and regulating neural development. In addition to myelin, OPCs and OLGs can also participate in AD pathogenesis in other ways. This review summarizes the mechanisms by which OPCs and OLGs affect myelin formation, oxidative stress, neuroinflammation, the blood-brain barrier, synaptic function, and amyloid-beta protein and further elucidates the mechanisms by which oligodendrocyte lineage cells participate in AD pathogenesis and treatment, which is highly important for clarifying the pathogenesis of AD, clinical treatment, and prevention.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Neurology, China Guihang Group 302 Hospital, Anshun, China
| | - Zhengxiang Lv
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Neurology, China Guihang Group 302 Hospital, Anshun, China
| | - Qin Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Ohnishi H, Matsuoka K, Takahashi M, Yoshikawa H, Minami A, Ueda K, Fujimoto Y, Kiuchi K, Ochi T, Miyasaka T, Tanaka T, Matsumoto R, Makinodan M, Okada T. Associations of demyelination in the right middle temporal gyrus and right praecuneus with visuospatial cognitive dysfunction in Alzheimer's disease. Psychogeriatrics 2025; 25:e13223. [PMID: 39581748 DOI: 10.1111/psyg.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with impairments in not only memory but also visuospatial cognitive function. Despite its adverse effects on the quality of life, patients with early-stage AD are often neglected. Emerging evidence suggests that patients with AD exhibit increased vulnerability of myelin, a crucial component for neuronal conduction and survival. To test our hypothesis that myelin damage was associated with cognitive deficits in AD, we examined correlations of myelin integrity, quantified by T1-weighted/T2-weighted (T1w/T2w) ratios, with visuospatial cognitive abilities and compared them between patients with AD and cognitively normal (CN) individuals. METHODS Fifty-seven patients with AD and 22 CN subjects were enrolled in this study. To assess subjects' visuo-constructive abilities, we employed the Rey-Osterrieth Complex Figure Copy Test (ROCFT-c) paired with analysis of T1- and T2-weighted magnetic resonance imaging brain images. Voxel-based associations between T1w/T2w ratios and ROCFT-c scores in the AD group were assessed, controlling for age and handedness (voxel threshold uncorrected P < 0.001, cluster threshold uncorrected P < 0.05). Additionally, we compared the T1w/T2w ratios of these identified brain regions between the AD and CN groups. RESULTS The voxel-based analysis demonstrated positive correlations between T1w/T2w ratios and ROCFT-c scores in the right middle temporal gyrus and right praecuneus in patients with AD who exhibited significantly lower T1w/T2w ratios in the right middle temporal gyrus (P = 0.038) and a trend toward lower T1w/T2w ratios in the right praecuneus (P = 0.055). CONCLUSIONS Our results demonstrated a strong association between reduced myelin integrity in the right middle temporal gyrus and right praecuneus and visuospatial cognitive dysfunction in patients with AD. These findings are believed to shed light on the neural basis of visuospatial processing in patients with AD, underlining the necessity for developing objective biomarkers for assessing patients' visuospatial cognitive function.
Collapse
Affiliation(s)
- Hiroki Ohnishi
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | | | | | - Akihiro Minami
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kazuya Ueda
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Yuka Fujimoto
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kuniaki Kiuchi
- Department of Psychiatry, Higashiosaka City Medical Centre, Osaka, Japan
| | - Tomoko Ochi
- Department of Radiology, Nara Medical University, Nara, Japan
| | | | | | - Ryohei Matsumoto
- Department of Psychiatry, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Takashi Okada
- Department of Psychiatry, Nara Medical University, Nara, Japan
| |
Collapse
|
11
|
Taghvaei M, Dolui S, Sadaghiani S, Shakibajahromi B, Brown C, Khandelwal P, Xie SX, Das S, Yushkevich PA, Wolk DA, Detre JA. Regional cerebral blood flow reflects both neurodegeneration and microvascular integrity across the Alzheimer's continuum. Alzheimers Dement 2025; 21:e14382. [PMID: 39625074 PMCID: PMC11772719 DOI: 10.1002/alz.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) typically involves both neurodegenerative and vascular pathologies, each associated with reductions in cerebral blood flow (CBF). However, it remains unclear whether vascular and neural contributions to regional CBF can be differentiated. METHODS Using 3D background-suppressed arterial spin labeled perfusion magnetic resonance imaging, we evaluated regional CBF in a cohort of 257 participants across the AD continuum and assessed the impact of risk factors for both AD and small vessel disease (SVD) on regional CBF. RESULTS Vascular risk factors (VRFs) were associated with reduced CBF in normal-appearing periventricular white matter, while amyloid positivity was associated with reduced CBF in the posterior cingulate cortex and precuneus. Putative SVD-sensitive regions in white matter exhibited diagnosis-related CBF changes comparable to those in typical AD cortical regions. DISCUSSION Spatial patterns of hypoperfusion may differentiate AD and VRF-related effects on regional CBF. Our findings also support the contribution of SVD in AD pathogenesis. HIGHLIGHTS We used 3D background-suppressed pCASL MRI to evaluate CBF across the AD continuum. Putative SVD-sensitive regions in white matter exhibited diagnosis-related CBF changes. AD and/or SVD risk correlated with reduced CBF in AD and/or SVD-related regions. VRFs were associated with more widespread CBF reductions than amyloid positivity. Spatial patterns of hypoperfusion may differentiate AD and VRF-related effects.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sudipto Dolui
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shokufeh Sadaghiani
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Christopher Brown
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Pulkit Khandelwal
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sharon X. Xie
- Department of BiostatisticsEpidemiology, and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu Das
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul A. Yushkevich
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John A. Detre
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Xu B, Tang C, Han R, Zhu C, Yang Y, Li H, Wu N, He D. Targeting the chemokine-microglia nexus: A novel strategy for modulating neuroinflammation in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823251326044. [PMID: 40321241 PMCID: PMC12049630 DOI: 10.1177/25424823251326044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 05/08/2025] Open
Abstract
An increasing body of evidence suggests neuroinflammation has a prominent role in the pathogenesis of Alzheimer's disease (AD). The amyloid-β-tau-neurodegeneration (ATN) classification system is now being expanded toward an amyloid-β-tau neurodegeneration-neuroinflammation (ATN(I)) system. Activated microglia and reactive astrocytes are the key hubs for neuroinflammation in AD, and chemokines are recognized as pivotal modulators of microglial innate immune functions. In this review, based on the chemokine-microglia regulatory axis, we elucidate the mechanisms through which chemokines influence microglial function, potentially modulating neurotoxicity or neuroprotection in AD. The key chemokines that significantly affect microglial polarization, such as CCL2, CCL3, and CXCL1, are summarized, and their role in disease progression are elaborated. Additionally, we explore prospective therapeutic interventions centered on the chemokine-microglia regulatory axis, offering valuable perspectives on pathobiology of AD and avenues for pharmacological advancements.
Collapse
Affiliation(s)
- Bingyang Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Tang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongshou Han
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaomin Zhu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxuan Yang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Heyi Li
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
14
|
Russo ML, Ayala G, Neal D, Rogalsky AE, Ahmad S, Musial TF, Pearlman M, Bean LA, Farooqi AK, Ahmed A, Castaneda A, Patel A, Parduhn Z, Haddad LG, Gabriel A, Disterhoft JF, Nicholson DA. Alzheimer's-linked axonal changes accompany elevated antidromic action potential failure rate in aged mice. Brain Res 2024; 1841:149083. [PMID: 38866308 PMCID: PMC11323114 DOI: 10.1016/j.brainres.2024.149083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Alzheimer's disease (AD) affects both grey and white matter (WM), but considerably more is known about the former. Interestingly, WM disruption has been consistently observed and thoroughly described using imaging modalities, particularly MRI which has shown WM functional disconnections between the hippocampus and other brain regions during AD pathogenesis when early neurodegeneration and synapse loss are also evident. Nonetheless, high-resolution structural and functional analyses of WM during AD pathogenesis remain scarce. Given the importance of the myelinated axons in the WM for conveying information across brain regions, such studies will provide valuable information on the cellular drivers and consequences of WM disruption that contribute to the characteristic cognitive decline of AD. Here, we employed a multi-scale approach to investigate hippocampal WM disruption during AD pathogenesis and determine whether hippocampal WM changes accompany the well-documented grey matter losses. Our data indicate that ultrastructural myelin disruption is elevated in the alveus in human AD cases and increases with age in 5xFAD mice. Unreliable action potential propagation and changes to sodium channel expression at the node of Ranvier co-emerged with this deterioration. These findings provide important insight to the neurobiological substrates and functional consequences of decreased WM integrity and are consistent with the notion that hippocampal disconnection contributes to cognitive changes in AD.
Collapse
Affiliation(s)
- Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Gelique Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Demetria Neal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Suzan Ahmad
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Morgan Pearlman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aysha Ahmed
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Adrian Castaneda
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aneri Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zachary Parduhn
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Loreece G Haddad
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ashley Gabriel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - John F Disterhoft
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Rosas HD, Mercaldo ND, Hasimoglu Y, Petersen M, Lewis LR, Lai F, Powell D, Dhungana A, Demir A, Keater D, Yassa M, Brickman AM, O'Bryant S. Association of plasma neurofilament light chain with microstructural white matter changes in Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70023. [PMID: 39583646 PMCID: PMC11582681 DOI: 10.1002/dad2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Both micro- and macrostructural white matter (WM) abnormalities, particularly those related to axonal degeneration, are associated with cognitive decline in adults with Down syndrome (DS) prior to a diagnosis of Alzheimer disease. Neurofilament light chain (NfL) is a support protein within myelinated axons released into blood following axonal damage. In this study we investigated cross-sectional relationships between WM microstructural changes as measured by diffusion tensor imaging (DTI) and plasma NfL concentration in adults with DS without dementia. METHODS Thirty cognitively stable (CS) adults with DS underwent diffusion-weighted MRI scanning and plasma NfL measurement. DTI measures of select WM tracts were derived using automatic fiber tracking, and associations with plasma NfL were assessed using Spearman correlation coefficients. RESULTS Higher Plasma NfL was associated with greater altered diffusion measures of select tracts. DISCUSSION Early increases in plasma NfL may reflect early white matter microstructural changes prior to dementia in DS. Highlights The onset of such WM changes in DS has not yet been widely studied.WM microstructural properties correlated with plasma neurofilament light chain (NfL).NfL may reflect early, selective WM changes in adults with DS at high risk of developing AD.
Collapse
Affiliation(s)
- Herminia Diana Rosas
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nathaniel David Mercaldo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yasemin Hasimoglu
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Melissa Petersen
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Lydia R. Lewis
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David Powell
- Magnetic Resonance Imaging and Spectroscopy CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Asim Dhungana
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Ali Demir
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - David Keater
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michael Yassa
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's disease and the Aging Brain Department of NeurologyVagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUSA
| | - Sid O'Bryant
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
16
|
McCray TJ, Bedford LM, Bissel SJ, Lamb BT. Trem2-deficiency aggravates and accelerates age-related myelin degeneration. Acta Neuropathol Commun 2024; 12:154. [PMID: 39300502 PMCID: PMC11411802 DOI: 10.1186/s40478-024-01855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024] Open
Abstract
Aging is the greatest known risk factor for most neurodegenerative diseases. Myelin degeneration is an early pathological indicator of these diseases and a normal part of aging; albeit, to a lesser extent. Despite this, little is known about the contribution of age-related myelin degeneration on neurodegenerative disease. Microglia participate in modulating white matter events from demyelination to remyelination, including regulation of (de)myelination by the microglial innate immune receptor triggering receptor expressed on myeloid cells 2 (TREM2). Here, we demonstrate Trem2-deficiency aggravates and accelerates age-related myelin degeneration in the striatum. We show TREM2 is necessary for remyelination by recruiting reparative glia and mediating signaling that promotes OPC differentiation/maturation. In response to demyelination, TREM2 is required for phagocytosis of large volumes of myelin debris. In addition to lysosomal regulation, we show TREM2 can modify the ER stress response, even prior to overt myelin debris, that prevents lipid accumulation and microglial dysfunction. These data support a role for Trem2-dependent interactions in age-related myelin degeneration and suggest a basis for how early dysfunctional microglia could contribute to disease pathology through insufficent repair, defective phagocytosis, and the ER stress response.
Collapse
Affiliation(s)
- Tyler J McCray
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Logan M Bedford
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
17
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
18
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
19
|
Ravichandar R, Gadelkarim F, Muthaiah R, Glynos N, Murlanova K, Rai NK, Saraswat D, Polanco JJ, Dutta R, Pal D, Sim FJ. Dysregulated Cholinergic Signaling Inhibits Oligodendrocyte Maturation Following Demyelination. J Neurosci 2024; 44:e0051242024. [PMID: 38749703 PMCID: PMC11236584 DOI: 10.1523/jneurosci.0051-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Collapse
Affiliation(s)
- Roopa Ravichandar
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Farah Gadelkarim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Rupadevi Muthaiah
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nicolas Glynos
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kateryna Murlanova
- Department of Physiology and Biophysics, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nagendra K Rai
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Jessie J Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fraser J Sim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
20
|
Zheng J, Zong X, Tang L, Guo H, Zhao P, Womer FY, Zhang X, Tang Y, Wang F. Characterizing the distinct imaging phenotypes, clinical behavior, and genetic vulnerability of brain maturational subtypes in mood disorders. Psychol Med 2024; 54:2774-2784. [PMID: 38804091 DOI: 10.1017/s0033291724000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Mood disorders are characterized by great heterogeneity in clinical manifestation. Uncovering such heterogeneity using neuroimaging-based individual biomarkers, clinical behaviors, and genetic risks, might contribute to elucidating the etiology of these diseases and support precision medicine. METHODS We recruited 174 drug-naïve and drug-free patients with major depressive disorder and bipolar disorder, as well as 404 healthy controls. T1 MRI imaging data, clinical symptoms, and neurocognitive assessments, and genetics were obtained and analyzed. We applied regional gray matter volumes (GMV) and quantile normative modeling to create maturation curves, and then calculated individual deviations to identify subtypes within the patients using hierarchical clustering. We compared the between-subtype differences in GMV deviations, clinical behaviors, cell-specific transcriptomic associations, and polygenic risk scores. We also validated the GMV deviations based subtyping analysis in a replication cohort. RESULTS Two subtypes emerged: subtype 1, characterized by increased GMV deviations in the frontal cortex, cognitive impairment, a higher genetic risk for Alzheimer's disease, and transcriptionally associated with Alzheimer's disease pathways, oligodendrocytes, and endothelial cells; and subtype 2, displaying globally decreased GMV deviations, more severe depressive symptoms, increased genetic vulnerability to major depressive disorder and transcriptionally related to microglia and inhibitory neurons. The distinct patterns of GMV deviations in the frontal, cingulate, and primary motor cortices between subtypes were shown to be replicable. CONCLUSIONS Our current results provide vital links between MRI-derived phenotypes, spatial transcriptome, genetic vulnerability, and clinical manifestation, and uncover the heterogeneity of mood disorders in biological and behavioral terms.
Collapse
Affiliation(s)
- Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Tranfa M, Lorenzini L, Collij LE, Vállez García D, Ingala S, Pontillo G, Pieperhoff L, Maranzano A, Wolz R, Haller S, Blennow K, Frisoni G, Sudre CH, Chételat G, Ewers M, Payoux P, Waldman A, Martinez‐Lage P, Schwarz AJ, Ritchie CW, Wardlaw JM, Gispert JD, Brunetti A, Mutsaerts HJMM, Wink AM, Barkhof F. Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure. Ann Clin Transl Neurol 2024; 11:1541-1556. [PMID: 38757392 PMCID: PMC11187968 DOI: 10.1002/acn3.52071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid β1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Clinical Memory Research Unit, Department of Clinical SciencesLund UniversityMalmöSweden
| | - David Vállez García
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Department of RadiologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Cerebriu A/SCopenhagenDenmark
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
| | - Leonard Pieperhoff
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Alessio Maranzano
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | | | - Sven Haller
- CIMC ‐ Centre d'Imagerie Médicale de CornavinGenevaSwitzerland
- Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Giovanni Frisoni
- Laboratory Alzheimer's Neuroimaging & EpidemiologyIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- University Hospitals and University of GenevaGenevaSwitzerland
| | - Carole H. Sudre
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College London (UCL)LondonUK
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Gael Chételat
- Normandie Univ, Unicaen, Inserm, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, institut Blood‐and‐Brain @ Caen‐Normandie, CyceronUniversité de NormandieCaenFrance
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Pierre Payoux
- Department of Nuclear MedicineToulouse University HospitalToulouseFrance
- ToNIC, Toulouse NeuroImaging CenterUniversity of Toulouse, Inserm, UPSToulouseFrance
| | - Adam Waldman
- Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Department of MedicineImperial College LondonLondonUK
| | - Pablo Martinez‐Lage
- Centro de Investigación y Terapias Avanzadas, Neurología, CITA‐Alzheimer FoundationSan SebastiánSpain
| | - Adam J. Schwarz
- Takeda Pharmaceuticals, Ltd.CambridgeMassachusettsUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Craig W. Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2, Western General HospitalUniversity of EdinburghEdinburghUK
- Brain Health ScotlandEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- UK Dementia Research Institute Centre at the University of EdinburghEdinburghUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Henk J. M. M. Mutsaerts
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI)Ghent UniversityGhentBelgium
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentreVrije UniversiteitAmsterdamThe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| |
Collapse
|
22
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
23
|
Huang Z, Jordan JD, Zhang Q. Myelin Pathology in Alzheimer's Disease: Potential Therapeutic Opportunities. Aging Dis 2024; 15:698-713. [PMID: 37548935 PMCID: PMC10917545 DOI: 10.14336/ad.2023.0628] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and cognitive decline. Despite significant efforts over several decades, our understanding of the pathophysiology of this disease is still incomplete. Myelin is a multi-layered membrane structure ensheathing neuronal axons, which is essential for the fast and effective propagation of action potentials along the axons. Recent studies highlight the critical involvement of myelin in memory consolidation and reveal its vulnerability in various pathological conditions. Notably, apart from the classic amyloid hypothesis, myelin degeneration has been proposed as another critical pathophysiological feature of AD, which could occur prior to the development of amyloid pathology. Here, we review recent works supporting the critical role of myelin in cognition and myelin pathology during AD progression, with a focus on the mechanisms underlying myelin degeneration in AD. We also discuss the complex intersections between myelin pathology and typical AD pathophysiology, as well as the therapeutic potential of pro-myelinating approaches for this disease. Overall, these findings implicate myelin degeneration as a critical contributor to AD-related cognitive deficits and support targeting myelin repair as a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
24
|
Zota I, Chanoumidou K, Charalampopoulos I, Gravanis A. Dynamics of myelin deficits in the 5xFAD mouse model for Alzheimer's disease and the protective role of BDNF. Glia 2024; 72:809-827. [PMID: 38205694 DOI: 10.1002/glia.24505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Recent findings highlight myelin breakdown as a decisive early event in Alzheimer's Disease (AD) acting as aggravating factor of its progression. However, it is still unclear whether myelin loss is attributed to increased oligodendrocyte vulnerability, reduced repairing capacity or toxic stimuli. In the present study, we sought to clarify the starting point of myelin disruption accompanied with Oligodendrocyte Progenitor Cell (OPC) elimination in the brain of the 5xFAD mouse model of AD at 6 months of age in Dentate Gyrus of the hippocampus in relation to neurotrophin system. Prominent inflammation presence was detected since the age of 6 months playing a key role in myelin disturbance and AD progression. Expression analysis of neurotrophin receptors in OPCs was performed to identify new targets that could increase myelination in health and disease. OPCs in both control and 5xFAD mice express TrkB, TrkC and p75 receptors but not TrkA. Brain-derived neurotrophic factor (BDNF) that binds to TrkB receptor is well-known about its pro-myelination effect, promoting oligodendrocytes proliferation and differentiation, so we focused our investigation on its effects in OPCs under neurodegenerative conditions. Our in vitro results showed that BDNF rescues OPCs from death and promotes their proliferation and differentiation in presence of the toxic Amyloid-β 1-42. Collectively, our results indicate that BDNF possess an additional neuroprotective role through its actions on oligodendrocytic component and its use could be proposed as a drug-based myelin-enhancing strategy, complementary to amyloid and tau centered therapies in AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| |
Collapse
|
25
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
26
|
Ahmed M, Lai AY, Hill ME, Ribeiro JA, Amiraslani A, McLaurin J. Obesity differentially effects the somatosensory cortex and striatum of TgF344-AD rats. Sci Rep 2024; 14:7235. [PMID: 38538727 PMCID: PMC10973391 DOI: 10.1038/s41598-024-57953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially affected. Our results offer a possible mechanistic explanation for the obesity paradox.
Collapse
Affiliation(s)
- Minhal Ahmed
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Aaron Y Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mary E Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Jessica A Ribeiro
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Ashley Amiraslani
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
27
|
Rubinski A, Dewenter A, Zheng L, Franzmeier N, Stephenson H, Deming Y, Duering M, Gesierich B, Denecke J, Pham AV, Bendlin B, Ewers M. Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner. Eur J Nucl Med Mol Imaging 2024; 51:1035-1049. [PMID: 38049659 PMCID: PMC10881623 DOI: 10.1007/s00259-023-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aβ) PET tracers bind to WM myelin. We assessed 43 Aβ-biomarker negative (Aβ-) cognitively normal participants and 108 Aβ+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aβ+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Henry Stephenson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jannis Denecke
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - An-Vi Pham
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Barbara Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
28
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
29
|
Ahmed M, Lai AY, Hill ME, Ribeiro JA, Amiraslani A, McLaurin J. Obesity differentially effects the somatosensory cortex and striatum of TgF344-AD rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576454. [PMID: 38545621 PMCID: PMC10970715 DOI: 10.1101/2024.01.22.576454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially effected. Our results offer a possible mechanistic explanation for the obesity paradox.
Collapse
|
30
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Nie Y, Chu C, Qin Q, Shen H, Wen L, Tang Y, Qu M. Lipid metabolism and oxidative stress in patients with Alzheimer's disease and amnestic mild cognitive impairment. Brain Pathol 2024; 34:e13202. [PMID: 37619589 PMCID: PMC10711261 DOI: 10.1111/bpa.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Lipid metabolism and oxidative stress are key mechanisms in Alzheimer's disease (AD). The link between plasma lipid metabolites and oxidative stress in AD patients is poorly understood. This study was to identify markers that distinguish AD and amnestic mild cognitive impairment (aMCI) from NC, and to reveal potential links between lipid metabolites and oxidative stress. We performed non-targeted lipid metabolism analysis of plasma from patients with AD, aMCI, and NC using LC-MS/MS. The plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels were assessed. We found significant differences in lipid metabolism between patients with AD and aMCI compared to those in NC. AD severity is associated with lipid metabolites, especially TG (18:0_16:0_18:0) + NH4, TG (18:0_16:0_16:0) + NH4, LPC(16:1e)-CH3, and PE (20:0_20:4)-H. SPH (d16:0) + H, SPH (d18:1) + H, and SPH (d18:0) + H were high-performance markers to distinguish AD and aMCI from NC. The AUC of three SPHs combined to predict AD was 0.990, with specificity and sensitivity as 0.949 and 1, respectively; the AUC of three SPHs combined to predict aMCI was 0.934, with specificity and sensitivity as 0.900, 0.981, respectively. Plasma MDA concentrations were higher in the AD group than in the NC group (p = 0.003), whereas plasma SOD levels were lower in the AD (p < 0.001) and aMCI (p = 0.045) groups than in NC, and GSH-Px activity were higher in the AD group than in the aMCI group (p = 0.007). In addition, lipid metabolites and oxidative stress are widely associated. In conclusion, this study distinguished serum lipid metabolism in AD, aMCI, and NC subjects, highlighting that the three SPHs can distinguish AD and aMCI from NC. Additionally, AD patients showed elevated oxidative stress, and there are complex interactions between lipid metabolites and oxidative stress.
Collapse
Affiliation(s)
- Yuting Nie
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Changbiao Chu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Qi Qin
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Huixin Shen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lulu Wen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yi Tang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Miao Qu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
32
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips JL, Iturbe A, Erqiuzi A, Moore BD, Ryu D, Natu A, Dillon KD, Torrellas J, Moran C, Ladd TB, Afroz KF, Islam T, Jagirdar J, Funk CC, Robinson M, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson EC, McFarland K, Levey AL, Prokop S, Seyfried NT, Golde TE. Aβ Amyloid Scaffolds the Accumulation of Matrisome and Additional Proteins in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.568318. [PMID: 38076912 PMCID: PMC10705437 DOI: 10.1101/2023.11.29.568318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A β ; in plaques and in CAA; further, recombinant MDK and PTN enhance A β ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A β 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A β ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.
Collapse
|
33
|
Rodriguez-Jimenez FJ, Ureña-Peralta J, Jendelova P, Erceg S. Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells? J Adv Res 2023; 54:105-118. [PMID: 36646419 DOI: 10.1016/j.jare.2023.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Synaptic dysfunction is a major contributor to Alzheimeŕs disease (AD) pathogenesis in addition to the formation of neuritic β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau protein. However, how these features contribute to synaptic dysfunction and axonal loss remains unclear. While years of considerable effort have been devoted to gaining an improved understanding of this devastating disease, the unavailability of patient-derived tissues, considerable genetic heterogeneity, and lack of animal models that faithfully recapitulate human AD have hampered the development of effective treatment options. Ongoing progress in human induced pluripotent stem cell (hiPSC) technology has permitted the derivation of patient- and disease-specific stem cells with unlimited self-renewal capacity. These cells can differentiate into AD-affected cell types, which support studies of disease mechanisms, drug discovery, and the development of cell replacement therapies in traditional and advanced cell culture models. AIM OF REVIEW To summarize current hiPSC-based AD models, highlighting the associated achievements and challenges with a primary focus on neuron and synapse loss. KEY SCIENTIFIC CONCEPTS OF REVIEW We aim to identify how hiPSC models can contribute to understanding AD-associated synaptic dysfunction and axonal loss. hiPSC-derived neural cells, astrocytes, and microglia, as well as more sophisticated cellular organoids, may represent reliable models to investigate AD and identify early markers of AD-associated neural degeneration.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Juan Ureña-Peralta
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic.
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic; National Stem Cell Bank-Valencia Node, Centro de Investigacion Principe Felipe, c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
34
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Flores-Aguilar L, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease drives Alzheimer plasma biomarker concentrations in adults with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23298693. [PMID: 38076904 PMCID: PMC10705616 DOI: 10.1101/2023.11.28.23298693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Importance By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aβ42/Aβ40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures We examined the bivariate relationships of WMH, Aβ42/Aβ40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.
Collapse
Affiliation(s)
- Natalie C. Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Department of Neuroscience, Columbia University, New York City, NY, USA
| | - Patrick J. Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mohamad J. Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia M. Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
| | | | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | - Joseph H. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Center for Neuroimaging of Aging and neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ira T. Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Michael A. Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| |
Collapse
|
35
|
Falangola MF, Dhiman S, Voltin J, Jensen JH. Quantitative microglia morphological features correlate with diffusion MRI in 2-month-old 3xTg-AD mice. Magn Reson Imaging 2023; 103:8-17. [PMID: 37392805 PMCID: PMC10528126 DOI: 10.1016/j.mri.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Microglia (MØ) morphologies are closely related to their functional state and have a central role in the maintenance of brain homeostasis. It is well known that inflammation contributes to neurodegeneration at later stages of Alzheimer's Disease, but it is not clear which role MØ-mediated inflammation may play earlier in the disease pathogenesis. We have previously reported that diffusion MRI (dMRI) is able to detect early myelin abnormalities present in 2-month-old 3xTg-AD (TG) mice; since MØ actively participate in regulating myelination, the goal of this study was to assess quantitatively MØ morphological characteristics and its association with dMRI metrics patterns in 2-month-old 3xTg-AD mice. Our results show that, even at this young age (2-month-old), TG mice have statistically significantly more MØ cells, which are overall smaller and more complex, compared with age-matched normal control mice (NC). Our results also confirm that myelin basic protein is reduced in TG mice, particularly in fimbria (Fi) and cortex. Additionally, MØ morphological characteristics, in both groups, correlate with several dMRI metrics, depending on the brain region examined. For example, the increase in MØ number correlated with higher radial diffusivity (r = 0.59, p = 0.008), lower fractional anisotropy (FA) (r = -0.47, p = 0.03), and lower kurtosis fractional anisotropy (KFA) (r = -0.55, p = 0.01) in the CC. Furthermore, smaller MØ cells correlate with higher axial diffusivity) in the HV (r = 0.49, p = 0.03) and Sub (r = 0.57, p = 0.01). Our findings demonstrate, for the first time, that MØ proliferation/activation are a common and widespread feature in 2-month-old 3xTg-AD mice and suggest that dMRI measures are sensitive to these MØ alterations, which are associated in this model with myelin dysfunction and microstructural integrity abnormalities.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
36
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Patel T, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563970. [PMID: 37961594 PMCID: PMC10634844 DOI: 10.1101/2023.10.26.563970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tark Patel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
37
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. RESEARCH SQUARE 2023:rs.3.rs-3454358. [PMID: 37961627 PMCID: PMC10635319 DOI: 10.21203/rs.3.rs-3454358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
38
|
Qiu D, Zhou S, Donnelly J, Xia D, Zhao L. Aerobic exercise attenuates abnormal myelination and oligodendrocyte differentiation in 3xTg-AD mice. Exp Gerontol 2023; 182:112293. [PMID: 37730187 DOI: 10.1016/j.exger.2023.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Pathological features of Alzheimer's Disease (AD) include alterations in the structure and function of neurons as well as of myelin sheaths. Accumulated evidence shows that aerobic type of exercise can enhance neuroplasticity in mouse models of AD. However, whether and how aerobic exercise can affect myelin sheath repair and neuroprotection in the AD models remains unclear. In this study we tested the hypotheses that 1) myelin structural alterations in 3xTg-AD mice would be related to abnormalities in oligodendrocyte lineage cells, resulting in impaired learning and memory, and 2) a 6-month aerobic exercise intervention would have beneficial effects on such alterations. Two-month-old male 3xTg-AD mice were randomly assigned to a control (AC) or an exercise (AE) group, and age-matched male C57BL/6;129 mice were also randomly assigned to a normal control (NC) or an exercise (NE) group, with n = 12 in each group. Mice in the exercise groups were trained on a motor-drive treadmill, 60 min per day, 5 days per week for 6 months. Cognitive function was assessed at the end of the intervention period. Then, brain specimens were obtained for assessments of morphological and oligodendrocyte lineage cell changes. The results of electron microscopy showed that myelin ultrastructure demonstrated a higher percentage of loose and granulated myelin sheath around axons in the temporal lobe in the AC, as compared with the NC group, along with greater cognitive dysfunction at 8-months of age. These differences were accompanied by significantly greater myelin basic protein (MBP) expression and less neuron-glial antigen-2 (NG2) protein and mRNA levels in the AC, compared to the NC. However, there were no significant between-group differences in the G-ratio (the ratio of axon diameter to axon plus myelin sheath diameter) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) protein and mRNA levels. The aerobic exercise ameliorated cognitive deterioration and appeared to keep components of myelin sheath and oligodendrocyte precursor cells stabilized, resulting in a decrease in the percentage of loose and granulated myelin sheath and MBP protein, and an increase in NG2 protein and mRNA levels in the AE group. Therefore, the 6-month exercise intervention demonstrated beneficial effects on myelin lesions, abnormal differentiation of oligodendrocytes and general brain function in the 3xTg-AD mice, providing further insights into the role of aerobic exercise in management of neurodegeneration in AD by maintaining intact myelination.
Collapse
Affiliation(s)
- Dan Qiu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou 014030, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China; Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia
| | - Shi Zhou
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia.
| | | | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
39
|
Buchanan J, da Costa NM, Cheadle L. Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling. Trends Neurosci 2023; 46:628-639. [PMID: 37286422 PMCID: PMC10524797 DOI: 10.1016/j.tins.2023.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are non-neuronal brain cells that give rise to oligodendrocytes, glia that myelinate the axons of neurons in the brain. Classically known for their contributions to myelination via oligodendrogenesis, OPCs are increasingly appreciated to play diverse roles in the nervous system, ranging from blood vessel formation to antigen presentation. Here, we review emerging literature suggesting that OPCs may be essential for the establishment and remodeling of neural circuits in the developing and adult brain via mechanisms that are distinct from the production of oligodendrocytes. We discuss the specialized features of OPCs that position these cells to integrate activity-dependent and molecular cues to shape brain wiring. Finally, we place OPCs within the context of a growing field focused on understanding the importance of communication between neurons and glia in the contexts of both health and disease.
Collapse
Affiliation(s)
- JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
40
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
41
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
42
|
Hu YY, Ding XS, Yang G, Liang XS, Feng L, Sun YY, Chen R, Ma QH. Analysis of the influences of social isolation on cognition and the therapeutic potential of deep brain stimulation in a mouse model. Front Psychiatry 2023; 14:1186073. [PMID: 37409161 PMCID: PMC10318365 DOI: 10.3389/fpsyt.2023.1186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
43
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
44
|
Tommasini D, Fox R, Ngo KJ, Hinman JD, Fogel BL. Alterations in oligodendrocyte transcriptional networks reveal region-specific vulnerabilities to neurological disease. iScience 2023; 26:106358. [PMID: 36994077 PMCID: PMC10040735 DOI: 10.1016/j.isci.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Neurological disease is characterized the by dysfunction of specific neuroanatomical regions. To determine whether region-specific vulnerabilities have a transcriptional basis at cell-type-specific resolution, we analyzed gene expression in mouse oligodendrocytes across various brain regions. Oligodendrocyte transcriptomes cluster in an anatomical arrangement along the rostrocaudal axis. Moreover, regional oligodendrocyte populations preferentially regulate genes implicated in diseases that target their region of origin. Systems-level analyses identify five region-specific co-expression networks representing distinct molecular pathways in oligodendrocytes. The cortical network exhibits alterations in mouse models of intellectual disability and epilepsy, the cerebellar network in ataxia, and the spinal network in multiple sclerosis. Bioinformatic analyses reveal potential molecular regulators of these networks, which were confirmed to modulate network expression in vitro in human oligodendroglioma cells, including reversal of the disease-associated transcriptional effects of a pathogenic Spinocerebellar ataxia type 1 allele. These findings identify targetable region-specific vulnerabilities to neurological disease mediated by oligodendrocytes.
Collapse
Affiliation(s)
- Dario Tommasini
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Fox
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathie J. Ngo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason D. Hinman
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent L. Fogel
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
45
|
Fernandez-Alvarez M, Atienza M, Cantero JL. Cortical amyloid-beta burden is associated with changes in intracortical myelin in cognitively normal older adults. Transl Psychiatry 2023; 13:115. [PMID: 37024484 PMCID: PMC10079650 DOI: 10.1038/s41398-023-02420-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Amyloid-beta (Aβ) aggregates and myelin breakdown are among the earliest detrimental effects of Alzheimer's disease (AD), likely inducing abnormal patterns of neuronal communication within cortical networks. However, human in vivo evidence linking Aβ burden, intracortical myelin, and cortical synchronization is lacking in cognitively normal older individuals. Here, we addressed this question combining 18F-Florbetaben-PET imaging, cortical T1-weigthed/T2-weighted (T1w/T2w) ratio maps, and resting-state functional connectivity (rs-FC) in cognitively unimpaired older adults. Results showed that global Aβ burden was both positively and negatively associated with the T1w/T2w ratio in different cortical territories. Affected cortical regions were further associated with abnormal patterns of rs-FC and with subclinical cognitive deficits. Finally, causal mediation analysis revealed that the negative impact of T1w/T2w ratio in left posterior cingulate cortex on processing speed was driven by Aβ burden. Collectively, these findings provide novel insights into the relationship between initial Aβ plaques and intracortical myelin before the onset of cognitive decline, which may contribute to monitor the efficacy of novel disease-modifying strategies in normal elderly individuals at risk for cognitive impairment.
Collapse
Affiliation(s)
- Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
46
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
47
|
Bergamino M, Nelson MR, Numani A, Scarpelli M, Healey D, Fuentes A, Turner G, Stokes AM. Assessment of complementary white matter microstructural changes and grey matter atrophy in a preclinical model of Alzheimer's disease. Magn Reson Imaging 2023; 101:57-66. [PMID: 37028608 DOI: 10.1016/j.mri.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Alzheimer's disease (AD) has been associated with amyloid and tau pathology, as well as neurodegeneration. Beyond these hallmark features, white matter microstructural abnormalities have been observed using MRI. The objective of this study was to assess grey matter atrophy and white matter microstructural changes in a preclinical mouse model of AD (3xTg-AD) using voxel-based morphometry (VBM) and free-water (FW) diffusion tensor imaging (FW-DTI). Compared to controls, lower grey matter density was observed in the 3xTg-AD model, corresponding to the small clusters in the caudate-putamen, hypothalamus, and cortex. DTI-based fractional anisotropy (FA) was decreased in the 3xTg model, while the FW index was increased. Notably, the largest clusters for both FW-FA and FW index were in the fimbria, with other regions including the anterior commissure, corpus callosum, forebrain septum, and internal capsule. Additionally, the presence of amyloid and tau in the 3xTg model was confirmed with histopathology, with significantly higher levels observed across many regions of the brain. Taken together, these results are consistent with subtle neurodegenerative and white matter microstructural changes in the 3xTg-AD model that manifest as increased FW, decreased FW-FA, and decreased grey matter density.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Megan R Nelson
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Asfia Numani
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Matthew Scarpelli
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Deborah Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Alberto Fuentes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Gregory Turner
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| |
Collapse
|
48
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
49
|
Donnaloja F, Limonta E, Mancosu C, Morandi F, Boeri L, Albani D, Raimondi MT. Unravelling the mechanotransduction pathways in Alzheimer's disease. J Biol Eng 2023; 17:22. [PMID: 36978103 PMCID: PMC10045049 DOI: 10.1186/s13036-023-00336-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) represents one of the most common and debilitating neurodegenerative disorders. By the end of 2040, AD patients might reach 11.2 million in the USA, around 70% higher than 2022, with severe consequences on the society. As now, we still need research to find effective methods to treat AD. Most studies focused on the tau and amyloid hypothesis, but many other factors are likely involved in the pathophysiology of AD. In this review, we summarize scientific evidence dealing with the mechanotransduction players in AD to highlight the most relevant mechano-responsive elements that play a role in AD pathophysiology. We focused on the AD-related role of extracellular matrix (ECM), nuclear lamina, nuclear transport and synaptic activity. The literature supports that ECM alteration causes the lamin A increment in the AD patients, leading to the formation of nuclear blebs and invaginations. Nuclear blebs have consequences on the nuclear pore complexes, impairing nucleo-cytoplasmic transport. This may result in tau hyperphosphorylation and its consequent self-aggregation in tangles, which impairs the neurotransmitters transport. It all exacerbates in synaptic transmission impairment, leading to the characteristic AD patient's memory loss. Here we related for the first time all the evidence associating the mechanotransduction pathway with neurons. In addition, we highlighted the entire pathway influencing neurodegenerative diseases, paving the way for new research perspectives in the context of AD and related pathologies.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Emma Limonta
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Mancosu
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Morandi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Lucia Boeri
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Teresa Raimondi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
50
|
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P. Neurodegeneration cell per cell. Neuron 2023; 111:767-786. [PMID: 36787752 DOI: 10.1016/j.neuron.2023.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aβ, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium; UK Dementia Research Institute, London, UK.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|