1
|
Call SE, Goto L, Latimer G, Trujillo Rivera EA, Jepson A, Tate M, Stringfield SE, Gilmore G, Wai K, Jadhav S, Jaminet P, Margolis RH, Patel SJ, Dean T. Clinical correlations with unmet social needs in critically ill children with asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100466. [PMID: 40330539 PMCID: PMC12053703 DOI: 10.1016/j.jacig.2025.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 05/08/2025]
Abstract
Background Social drivers of health have been implicated as playing a major role in determining pediatric asthma outcomes. However, the impact of self-reported, family-level unmet social needs on asthma outcomes in critically ill pediatric patients is unknown. Objective Our aim was to determine whether the presence of unmet social needs at the time of intensive care unit (ICU) admission are associated with ICU-related and postadmission outcomes. Methods This was a 12-month (February 2022-January 2023) prospective cohort study at a single, urban pediatric health care system. Families of patients admitted to the pediatric ICU for asthma were screened for unmet social needs in multiple domains. Regression analyses were performed to correlate unmet needs with the following clinical outcomes: duration of bilevel positive airway pressure use; lengths of ICU and hospital stay; and rates of 6-month outpatient follow-up, ED visitation, and hospital readmission. Results Of 164 screened families, 57% reported at least 1 unmet social need. Unmet needs were significantly associated with longer hospitalizations (ie, a 3% increase per year of age (odds ratio =1.03 [95% CI = 1.00-1.07]) and a higher likelihood of returning for emergency care (adds ratio =2.6 [95% CI = 1.1-6.2]), even after accounting for race, insurance payer, and medical comorbidities. Additionally, patients provided with resources reported fewer needs when rescreened at outpatient follow-up (median = -1 need [P = .001]). Conclusion Families of critically ill pediatric patients with asthma reported a high rate of unmet social needs. Furthermore, those with needs were vulnerable to longer stays and repeat asthma exacerbations requiring emergency care. Identification of these families presents an opportunity to target a high-risk population with durable medical and social interventions.
Collapse
Affiliation(s)
- Scott E. Call
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Lisa Goto
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Gwynne Latimer
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
- Hassenfeld Children’s Hospital at NYU Langone, New York, NY
| | - Eduardo A. Trujillo Rivera
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
- Division of Biostatistics and Study Methodology, Children’s National Hospital, Washington, DC
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Amanda Jepson
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Mercedes Tate
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Shayla E. Stringfield
- Center for Translational Research, Children’s National Research Institute, Children's National Hospital, Washington, DC
| | - Gayle Gilmore
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Kitman Wai
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shamily Jadhav
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Paola Jaminet
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
| | - Rachel H.F. Margolis
- Center for Translational Research, Children’s National Research Institute, Children's National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shilpa J. Patel
- Division of Emergent Medicine, Children’s National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Terry Dean
- Department of Critical Care Medicine, Children’s National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
2
|
Zeng J, Usemann J, Singh KD, Jochmann A, Trachsel D, Frey U, Sinues P. Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness. iScience 2024; 27:111446. [PMID: 39697593 PMCID: PMC11652886 DOI: 10.1016/j.isci.2024.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Asthma is a widespread respiratory disease affecting millions of children. Salbutamol is a well-established bronchodilator available to treat asthma. However, response to bronchodilators is very heterogeneous, particularly in children. Pharmacometabolomics via exhaled breath analysis holds promise for patient stratification. Here, we integrate a real-time breath analysis platform in the workflow of an outpatient clinic to provide a detailed metabolic snapshot of patients with asthma undergoing standard clinical evaluations. We observed significant metabolic changes associated with salbutamol inhalation within ∼1 h. Our data supports the hypothesis that sphingolipid metabolism and arginine biosynthesis mediate the bronchodilator effect of salbutamol. Clustering analysis of 30 metabolites associated with these pathways revealed characteristic metabotypes related to clinical phenotypes of poor bronchodilator responsiveness. We propose that such a metabolic fingerprinting approach may be of utility in clinical practice to quantify response to inhaled medications or asthma outcomes.
Collapse
Affiliation(s)
- Jiafa Zeng
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Jakob Usemann
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Kapil Dev Singh
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Anja Jochmann
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Daniel Trachsel
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Urs Frey
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| | - Pablo Sinues
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- University Children’s Hospital Basel UKBB, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Rogerson C, Nelson Sanchez‐Pinto L, Gaston B, Wiehe S, Schleyer T, Tu W, Mendonca E. Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning. Pediatr Pulmonol 2024; 59:3313-3321. [PMID: 39073377 PMCID: PMC11601023 DOI: 10.1002/ppul.27197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
RATIONALE More targeted management of severe acute pediatric asthma could improve clinical outcomes. OBJECTIVES To identify distinct clinical phenotypes of severe acute pediatric asthma using variables obtained in the first 12 h of hospitalization. METHODS We conducted a retrospective cohort study in a quaternary care children's hospital from 2014 to 2022. Encounters for children ages 2-18 years admitted to the hospital for asthma were included. We used consensus k means clustering with patient demographics, vital signs, diagnostics, and laboratory data obtained in the first 12 h of hospitalization. MEASUREMENTS AND MAIN RESULTS The study population included 683 encounters divided into derivation (80%) and validation (20%) sets, and two distinct clusters were identified. Compared to Cluster 1 in the derivation set, Cluster 2 encounters (177 [32%]) were older (11 years [8; 14] vs. 5 years [3; 8]; p < .01) and more commonly males (63% vs. 53%; p = .03) of Black race (51% vs. 40%; p = .03) with non-Hispanic ethnicity (96% vs. 84%; p < .01). Cluster 2 encounters had smaller improvements in vital signs at 12-h including percent change in heart rate (-1.7 [-11.7; 12.7] vs. -7.8 [-18.5; 1.7]; p < .01), and respiratory rate (0.0 [-20.0; 22.2] vs. -11.4 [-27.3; 9.0]; p < .01). Encounters in Cluster 2 had lower percentages of neutrophils (70.0 [55.0; 83.0] vs. 85.0 [77.0; 90.0]; p < .01) and higher percentages of lymphocytes (17.0 [8.0; 32.0] vs. 9.0 [5.3; 14.0]; p < .01). Cluster 2 encounters had higher rates of invasive mechanical ventilation (23% vs. 5%; p < .01), longer hospital length of stay (4.5 [2.6; 8.8] vs. 2.9 [2.0; 4.3]; p < .01), and a higher mortality rate (7.3% vs. 0.0%; p < .01). The predicted cluster assignments in the validation set shared the same ratio (~2:1), and many of the same characteristics. CONCLUSIONS We identified two clinical phenotypes of severe acute pediatric asthma which exhibited distinct clinical features and outcomes.
Collapse
Affiliation(s)
- Colin Rogerson
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Regenstrief Institute Center for Biomedical InformaticsIndianapolisIndianaUSA
| | - L. Nelson Sanchez‐Pinto
- Anne & Robert H. Lurie Children's Hospital of ChicagoNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Gaston
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sarah Wiehe
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Regenstrief Institute Center for Health Services ResearchIndianapolisIndianaUSA
| | - Titus Schleyer
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Regenstrief Institute Center for Biomedical InformaticsIndianapolisIndianaUSA
| | - Wanzhu Tu
- Department of BiostatisticsIndiana UniversityIndianapolisIndianaUSA
| | - Eneida Mendonca
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Cincinnati Children's Hospital and Medical CenterCincinnatiOhioUSA
| |
Collapse
|
4
|
Hillson K, Saglani S, Custovic A. Preschool wheeze and asthma endotypes- implications for future therapy. Expert Rev Respir Med 2024; 18:1025-1039. [PMID: 39655566 DOI: 10.1080/17476348.2024.2440468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Preschool wheeze and school-aged asthma present a large healthcare burden. Both conditions are now recognized to be heterogeneous, with similar symptom presentation but likely different underlying lung pathology. AREAS COVERED Current treatment options for preschool wheeze are constrained by extrapolations from the management of school-aged children with asthma. While most cases of asthma at school age are caused by classical atopic, eosinophilic, Type-2 driven asthma, only a quarter of preschool children with wheeze fall into this category. Targeting treatment to specific underlying mechanisms resulting in preschool wheeze may alter the progression to school age asthma. Novel biologics have revolutionized the management of severe, treatment-resistant school age asthma, but a limited evidence base limits their use in young children. There are several potential future non-steroid-based treatment options in development, of which bacterial lysates show the most promise. EXPERT OPINION Effective treatment of preschool wheeze may preserve lung function into later life, which may alter the progression trajectory toward school age asthma. Endotype-driven management will enable more effective treatment of both preschool wheeze and school age asthma.
Collapse
Affiliation(s)
- Kushalinii Hillson
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
5
|
Petat H, Marguet C. Three-year outcome of a very young severe uncontrolled preschool wheezers cohort, a real-life study. Respir Med 2024; 235:107875. [PMID: 39577748 DOI: 10.1016/j.rmed.2024.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Preschool wheeze is a public health issue. Disease control can be difficult to obtain in this population, in which no biologic therapy is indicated. We studied the evolution of severe preschool wheezers in real-life and identified the factors leading to no-control. We conducted a retrospective study at our tertiary asthma center. Each child under 3 years of age with severe, uncontrolled preschool wheeze was admitted to a pediatric day hospital for further investigations. We collected the results of clinical, biological and radiological exams, and follow-up data at 1 (Y+1), 2 (Y+2) and 3 years (Y+3). We included 135 patients; 63 (47 %) were still being followed at Y+3; 53 % were discontinued due to disease control. The median age at inclusion was 12 months. 29 % of patients followed up still had severe uncontrolled wheezing at Y+3. Eosinophils greater than 0.23G/L (p = 0.03) and a first case of bronchiolitis before the age of 2 months (p = 0.01) were factors in uncontrolled wheezing at Y1. Tobacco exposure was a factor associated with uncontrolled wheezing at Y+2 (p < 0.001). A first case of bronchiolitis before the age of 2 months (p = 0.007), male sex (p < 0.001) and a familial history of atopy (p = 0.05) were factors in uncontrolled disease at Y+3. We report a real-life study, with a very young population and very severe wheezing. Our therapeutic approach is original, enabling us to study the evolution of "therapeutic pressure" in the early years of this frequent disease, the pathophysiology of which is still poorly understood.
Collapse
Affiliation(s)
- Hortense Petat
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France.
| | - Christophe Marguet
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France
| |
Collapse
|
6
|
Papadopoulos NG, Bacharier LB, Jackson DJ, Deschildre A, Phipatanakul W, Szefler SJ, Gall R, Ledanois O, Jacob-Nara JA, Sacks H. Type 2 Inflammation and Asthma in Children: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2310-2324. [PMID: 38878861 DOI: 10.1016/j.jaip.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low to medium doses of inhaled corticosteroids. However, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, University of Athens, Athens, Greece; Lydia Becker Institute of Immunity and Inflammation, The University of Manchester, Manchester, United Kingdom.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Antoine Deschildre
- University Lille, CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Wanda Phipatanakul
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Stanley J Szefler
- Section of Pediatric Pulmonary and Sleep Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | |
Collapse
|
7
|
Celik E, Kocacik Uygun D, Kaya MA, Gungoren MS, Keven A, Bingol A. Aspergillus-sensitized asthma in children. Pediatr Allergy Immunol 2024; 35:e14212. [PMID: 39099328 DOI: 10.1111/pai.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Asthma is the most common chronic respiratory disease in childhood. Aspergillus fumigatus sensitivity may be involved in the pathogenesis of asthma by leading to different clinical presentations. OBJECTIVE To investigate the demographic, clinical, laboratory, and radiological characteristics of A. fumigatus sensitivity in childhood asthma and identify associated risk factors and diagnostic parameters. METHODS A total of 259 children with asthma were included in the study, 7 (2.7%) with allergic bronchopulmonary aspergillosis (ABPA), 84 (32.4%) with A. fumigatus-sensitized asthma (Af-SA), and 168 (64.9%) with A. fumigatus-unsensitized asthma (Af-UA). RESULTS Aspergillus sensitivity was associated with early asthma onset and longer asthma duration. Total IgE level and asthma severity are highest in ABPA and higher in Af-SA. Absolute eosinophil count was higher, and FEV1 was lower in Af-SA and ABPA. Aspergillus fumigatus was associated with greater odds of being male (odds ratio [OR], 2.45), having atopic dermatitis (OR, 3.159), Alternaria sensitivity (OR, 10.37), and longer asthma duration (OR, 1.266). The best cut-off values for detecting A. fumigatus positivity were 363.5 IU/mL for total IgE and 455 cells/μL for absolute eosinophil count. In Af-SA compared to Af-UA, centrilobular nodules and peribronchial thickening were more common, and the bronchoarterial ratio was higher. CONCLUSIONS Aspergillus sensitivity is a strong allergic stimulus in asthma, leading to laboratory, structural, clinical, and functional consequences. Af-SA is a distinct asthma endotype independent of ABPA that is characterized by increased risk of severe clinical presentations and impaired lung function.
Collapse
Affiliation(s)
- Enes Celik
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Dilara Kocacik Uygun
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mehmet Akif Kaya
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - Ayse Keven
- Department of Radiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aysen Bingol
- Department of Pediatric Allergy-Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Tan T, Yang F, Wang Z, Gao F, Sun L. Mediated Mendelian randomization analysis to determine the role of immune cells in regulating the effects of plasma metabolites on childhood asthma. Medicine (Baltimore) 2024; 103:e38957. [PMID: 39058829 PMCID: PMC11272359 DOI: 10.1097/md.0000000000038957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Childhood asthma is a chronic inflammatory disease of the airways, the pathogenesis of which involves multiple factors including genetic predisposition, environmental exposure, and immune system regulation. To date, the causal relationships between immune cells, plasma metabolites, and childhood asthma remain undetermined. Therefore, we aim to utilize the Mendelian randomization approach to assess the causal relationships among immune cells, plasma metabolites, and childhood asthma. This study employed the Mendelian randomization approach to investigate how immune cells influenced the risk of childhood asthma by modulating the levels of plasma metabolites. Five Mendelian randomization methods-inverse variance weighted, weighted median, Mendelian randomization-Egger, simple mode, and weighted mode-were utilized to explore the causal relationships among 731 types of immune cells, 1400 plasma metabolites, and childhood asthma. The instrumental variables for the 731 immune cells and 1400 plasma metabolites were derived from a genome-wide association study meta-analysis. Additionally, sensitivity analyses were conducted to examine the robustness of the results, potential heterogeneity, and pleiotropy. The inverse variance weighted results indicated that HLA DR on dendritic cells (DC) is a risk factor for childhood asthma (OR: 1.08, 95% CI: 1.02-1.14). In contrast, HLA DR on DC acts as a protective factor against elevated catechol glucuronide levels (OR: 0.94, 95% CI: 0.91-0.98), while catechol glucuronide levels themselves serve as a protective factor for childhood asthma (OR: 0.73, 95% CI: 0.60-0.89). Thus, HLA DR on DC can exert a detrimental effect on childhood asthma through the negative regulation of catechol glucuronide levels. The mediating effect was 0.018, accounting for a mediation effect proportion of 23.4%. This study found that HLA DR on DC can exert a risk effect on childhood asthma through the negative regulation of catechol glucuronide levels, providing new strategies for the prevention and treatment of childhood asthma and guiding future research and clinical practice.
Collapse
Affiliation(s)
- Tianhui Tan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fushuang Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Fa Gao
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liping Sun
- Center of Children’s Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
9
|
李 舒, 郭 广, 杨 月, 熊 晓, 郑 世, 谢 雪, 张 艳. [Diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide and conventional ventilatory lung function parameters for bronchial asthma in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:723-729. [PMID: 39014949 PMCID: PMC11562049 DOI: 10.7499/j.issn.1008-8830.2401058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To explore the diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide (FeNO) and conventional ventilatory lung function parameters in diagnosing bronchial asthma (referred to as "asthma") in children. METHODS A prospective study included 136 children initially diagnosed with asthma during an acute episode as the asthma group, and 85 healthy children undergoing routine health checks as the control group. The study compared the differences in serum 14-3-3β protein concentrations between the two groups, analyzed the correlation of serum 14-3-3β protein with clinical indices, and evaluated the diagnostic efficacy of combining 14-3-3β protein, FeNO, and conventional ventilatory lung function parameters for asthma in children. RESULTS The concentration of serum 14-3-3β protein was higher in the asthma group than in the control group (P<0.001). Serum 14-3-3β protein showed a positive correlation with the percentage of neutrophils and total serum immunoglobulin E, and a negative correlation with conventional ventilatory lung function parameters (P<0.05). Cross-validation of combined indices showed that the combination of 14-3-3β protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume had an area under the curve of 0.948 for predicting asthma, with a sensitivity and specificity of 88.9% and 93.7%, respectively, demonstrating good diagnostic efficacy (P<0.001). The model had the best extrapolation. CONCLUSIONS The combination of serum 14-3-3β protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume can significantly improve the diagnostic efficacy for asthma in children. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 723-729.
Collapse
|
10
|
Srivastava C, Saroj AK, Kumar S, Rao SK. Assessment of Airway Inflammation by Induced Sputum in Children with Persistent Asthma. Indian J Pediatr 2024; 91:519. [PMID: 38194205 DOI: 10.1007/s12098-024-05020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Affiliation(s)
- Chandradeep Srivastava
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Anil Kumar Saroj
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Sandip Kumar
- Department of Pathology, IMS, BHU, Varanasi, UP, India
| | - Sunil Kumar Rao
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India.
| |
Collapse
|
11
|
Roberto G, Barberi S, Marseglia GL, Licari A. What's new in pediatric asthma and rhinitis phenotypes and endotypes? Curr Opin Allergy Clin Immunol 2024; 24:73-78. [PMID: 38295125 DOI: 10.1097/aci.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW This review explores the evolving landscape of pediatric asthma and rhinitis, focusing on identifying and characterizing different subtypes. RECENT FINDINGS Childhood asthma and rhinitis are prevalent respiratory conditions frequently occurring together. To address the need for a precise definition of these diseases, an unbiased and comprehensive phenotyping approach has been undertaken with hypothesis-free analysis of extensive datasets to uncover new relationships among clinical, environmental, and biological characteristics. On the other hand, the concept of endotype is elaborate and multifaceted, representing distinct pathophysiological mechanisms underlying the clinical presentation and requires the identification of reliable biomarkers. The recognition of multiple inflammatory endotypes underscores the need for in-depth characterization, which could revolutionize the treatment landscape. SUMMARY Comprehending phenotypes and endotypes is crucial for customizing effective and personalized management approaches for children with asthma and rhinitis. More precise and efficient care can be administered through recognition and detailed characterization, ultimately enhancing patients' quality of life.
Collapse
Affiliation(s)
- Giulia Roberto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Salvatore Barberi
- Pediatric Unit, Rho and Garbagnate Milanese Hospital, ASST-Rhodense, Milan, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia
| |
Collapse
|
12
|
Tosca MA, Naso M, Ciprandi G. The impact of allergic rhinitis on bronchial asthma: What therapy? GLOBAL PEDIATRICS 2024; 7:100125. [DOI: 10.1016/j.gpeds.2023.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
13
|
Lu Y, Jie X, Zou F, Wang D, Da H, Li H, Zhao H, He J, Liu J, Fan X, Liu Y. Investigation analysis of the acute asthma risk factor and phenotype based on relational analysis with outdoor air pollutants in Xi'an, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:75. [PMID: 38367077 DOI: 10.1007/s10653-023-01816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/08/2023] [Indexed: 02/19/2024]
Abstract
Asthma is a common chronic heterogeneous disease. Outdoor air pollutants are an important cause of acute asthma. Until now, the association between the risk of acute asthma and outdoor air pollutants is unclear. And the relationship between the different phenotypes of asthma and outdoor air pollutants has not been reported. Thus, an analysis of the association between outdoor air pollutants and daily acute asthma inpatient and outpatient visits in Xi'an, China, from January 1 to December 31, 2018, was conducted. A total of 3395 people were included in the study. The statistical analysis and relational analysis based on the logistic regression were used for illustrating the relatedness of the acute asthma risk factor and phenotype with outdoor air pollutants, while the age, gender, pollen peak and non-pollen peak periods, high type 2 (T2) asthma and non-high T2 asthma were also stratified. Results showed that particulate matter with particle size below 10 μm and 2.5 μm (PM10 and PM2.5), sulfur dioxide(SO2), nitrogen dioxide(NO2), and carbon monoxide(CO) increase the risk of acute asthma and that air pollutants have a lagged effect on asthma patients. PM10, NO2, CO, and Ozone (O3) are associated with an increased risk of acute attacks of high T2 asthma. PM10, PM2.5, SO2, NO2 and CO are associated with an increased risk of acute asthma in males of 0-16 years old. PM10 and PM2.5 are more harmful to asthma patients with abnormal lung function.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Department of Respiratory and Critical Care Medicine, Ganzhou Institute of Respiratory Diseases, Ganzhou Fifth People's Hospital, Ganzhou, 341007, Jiangxi Province, China
| | - Xueyan Jie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongju Da
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongxin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Hongyan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jin He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Jianghao Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
14
|
DEZZANI EO. Il fumo di sigarette e il tumore del polmone. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2024; 182. [DOI: 10.23736/s0393-3660.23.05425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Li J, Wang Z, Dong H, Hao Y, Gao P, Li W. Different expression levels of interleukin-36 in asthma phenotypes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:3. [PMID: 38218943 PMCID: PMC10787970 DOI: 10.1186/s13223-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/26/2023] [Indexed: 01/15/2024]
Abstract
Interleukin (IL)-36 family is closely associated with inflammation and consists of IL-36α, IL-36β, IL-36γ, and IL-36Ra. The role of IL-36 in the context of asthma and asthmatic phenotypes is not well characterized. We examined the sputum IL-36 levels in patients with different asthma phenotypes in order to unravel the mechanism of IL-36 in different asthma phenotypes. Our objective was to investigate the induced sputum IL-36α, IL-36β, IL-36γ, and IL-36Ra concentrations in patients with mild asthma, and to analyze the relationship of these markers with lung function and other cytokines in patients with different asthma phenotypes. Induced sputum samples were collected from patients with mild controlled asthma (n = 62, 27 males, age 54.77 ± 15.49) and healthy non-asthmatic controls (n = 16, 10 males, age 54.25 ± 14.60). Inflammatory cell counts in sputum were determined. The concentrations of IL-36 and other cytokines in the sputum supernatant were measured by ELISA and Cytometric Bead Array. This is the first study to report the differential expression of different isoforms of IL-36 in different asthma phenotypes. IL-36α and IL-36β concentrations were significantly higher in the asthma group (P = 0.003 and 0.031), while IL-36Ra concentrations were significantly lower (P < 0.001) compared to healthy non-asthmatic controls. Sputum IL-36α and IL-36β concentrations in the neutrophilic asthma group were significantly higher than those in paucigranulocytic asthma (n = 24) and eosinophilic asthma groups (n = 23). IL-36α and IL-36β showed positive correlation with sputum neutrophils and total cell count (R = 0.689, P < 0.01; R = 0.304, P = 0.008; R = 0.689, P < 0.042; R = 0.253, P = 0.026). In conclusion, IL-36α and IL-36β may contribute to asthma airway inflammation by promoting neutrophil recruitment in airways. Our study provides insights into the inflammatory pathways of neutrophilic asthma and identifies potential therapeutic target.
Collapse
Affiliation(s)
- Jinyan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengda Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Grinevica A, Udre A, Balodis A, Strumfa I. Tic Cough in an Adolescent with Organic Brain Pathology-A Case Report and Literature Review. Brain Sci 2024; 14:79. [PMID: 38248294 PMCID: PMC10813544 DOI: 10.3390/brainsci14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic cough in children and adolescents can be troublesome both to the patient and the whole family. The most common causes of chronic cough in children are protracted bacterial bronchitis and bronchial asthma. However, differential diagnostic workup and treatment can become complicated when a cough of different etiology is encountered, especially in a child having a complex medical history for an unrelated pathology. A cough lacking any identified somatic cause and response to medical treatment in combination with core clinical features of tics that include suppressibility, distractibility, suggestibility, variability, and the presence of a premonitory sensation is labeled tic cough. Here we discuss a case of an adolescent who had atrophy of the corpus callosum and a history of ventriculoperitoneal shunting due to hydrocephalus caused by stenosis of the sylvian aqueduct, but now presented with a debilitating dry cough lasting for several months. After physical causes of cough were ruled out, the diagnosis of tic cough was reached, and multidisciplinary treatment ensured complete recovery. To the best of our knowledge, this is the first reported case showing coincidence of tic cough and hydrocephalus. The co-occurrence of non-syndromic corpus callosum atrophy and tic cough might hypothetically suggest a predisposing pathogenetic link via reduced signaling through cortical inhibitory neurons; further studies are needed. The importance of careful assessment of medical history, clinical picture, and features of the cough itself are emphasized in order to reach the correct diagnosis. Increased awareness of medical society is mandatory to recognize tic cough and to distinguish it from the neurologic manifestations of organic brain pathology.
Collapse
Affiliation(s)
- Agnese Grinevica
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Agnese Udre
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Arturs Balodis
- Department of Radiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Institute of Diagnostic Radiology, Paula Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
17
|
Kliem CV, Schaub B. The role of regulatory B cells in immune regulation and childhood allergic asthma. Mol Cell Pediatr 2024; 11:1. [PMID: 38172451 PMCID: PMC10764675 DOI: 10.1186/s40348-023-00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND As the most common chronic disease in childhood, asthma displays a major public health problem worldwide with the incidence of those affected rising. As there is currently no cure for allergic asthma, it is mandatory to get a better understanding of the underlying molecular mechanism. MAIN BODY By producing IgE antibodies upon allergen contact, B cells play a pivotal role in allergic asthma. Besides that, IL-10-secreting B cell subsets, namely regulatory B cells (Bregs), are reported in mice and humans to play a role in allergic asthma. In humans, several Breg subsets with distinct phenotypic and functional properties are identified among B cells at different maturational and differentiation stages that exert anti-inflammatory functions by expressing several suppressor molecules. Emerging research has focused on the role of Bregs in allergic asthma as well as their role for future diagnostic and preventive strategies. CONCLUSION Knowledge about the exact function of human Bregs in allergic asthma is still very limited. This review aims to summarize the current knowledge on Bregs. We discuss different human Breg subsets, several ways of Breg induction as well as the mechanisms through which they exert immunoregulatory functions, and their role in (childhood) allergic asthma.
Collapse
Affiliation(s)
- Caroline Vanessa Kliem
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. Von Hauner Children´S Hospital, University Hospital, Lindwurmstraße 4, 80337, LMU, Munich, Germany.
- Member of German Center for Lung Research - DZL, LMU, Munich, Germany.
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany.
| |
Collapse
|
18
|
Dezzani EO. Pneumological problems in surgical practice. Minerva Surg 2023; 78:469-480. [PMID: 37870534 DOI: 10.23736/s2724-5691.23.10122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
|
19
|
Qian K, Xu H, Chen Z, Zheng Y. Advances in pulmonary rehabilitation for children with bronchial asthma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:518-525. [PMID: 37643985 PMCID: PMC10495252 DOI: 10.3724/zdxbyxb-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Bronchial asthma is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. With the development of the whole-life-cycle health concept, the focus of treatment for bronchial asthma in children has gradually shifted from pharmacological control to an integrated management model of functional rehabilitation and pharmacological assistance. As a non-pharmacological integrated approach, pulmonary rehabilitation plays an equally important role in the management of childhood asthma as pharmacological treatments. Breathing techniques such as Buteyko breathing, pursed lip breathing, diaphragmatic breathing training, threshold-pressure inspiratory muscle training and yoga breathing can improve lung function indicators such as forced expiratory volume in first second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF) and maximal voluntary ventilation (MVV) in children. Comprehensive pre-exercise assessment, development of exercise prescriptions, and implementation and evaluation of exercise effects can improve physical fitness, neuromuscular coordination, and self-confidence of children with asthma. The comprehensive interventions of health education, psychological support and nutritional intervention can improve the compliance and effectiveness of rehabilitation training. This article reviews the research progress on respiratory training, physical exercise, and comprehensive interventions in the pulmonary rehabilitation of asthmatic children, to provide theoretical basis and practical guidance for the scientific and rational management of pulmonary rehabilitation of asthmatic children in clinical settings.
Collapse
Affiliation(s)
- Kongjia Qian
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Hongzhen Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Zhimin Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying Zheng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
20
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Andrenacci B, De Filippo M, Votto M, Prevedoni Gorone MS, De Amici M, La Grutta S, Marseglia GL, Licari A. Severe pediatric asthma endotypes: current limits and future perspectives. Expert Rev Respir Med 2023; 17:675-690. [PMID: 37647343 DOI: 10.1080/17476348.2023.2254234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Although rare, pediatric severe therapy-resistant asthma (STRA) is a highly heterogeneous, resource-demanding disease that differs significantly from severe adult asthma and whose pathogenesis is still poorly understood. AREAS COVERED This review summarizes the latest 10 years of English-written studies defining pediatric STRA endotypes using lung-specific techniques such as bronchoalveolar lavage and endobronchial biopsy. Results of the studies and limits on the field are discussed, together with some future perspectives. EXPERT OPINION Over the years, it has become increasingly clear that 'one size does not fit all" in asthma. However, "Does an extremely tailored size fit more than one?'. Only using multicentric, longitudinal pediatric studies, will we be able to answer. Three issues could be particularly critical for future research. First, to provide, if existing, a distinction between prepuberal STRA and puberal STRA endotypes to understand the transition from pediatric to adult STRA and to design effective, tailored therapies in adolescents, usually suffering from poorer asthma control. Second, design early treatments for pediatric airway remodeling to preserve lifelong good lung function. Finally, to better characterize inflammation before and during biological therapies, to provide clues on whether to stop or change treatments.
Collapse
Affiliation(s)
- Beatrice Andrenacci
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria De Filippo
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Sole Prevedoni Gorone
- Pediatric Radiology Unit, Department of Diagnostic and Interventional Radiology and Neuroradiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mara De Amici
- Immuno-Allergology Laboratory, Clinical Chemistry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| |
Collapse
|
22
|
Leija-Martínez JJ, Guzmán-Martín CA, González-Ramírez J, Giacoman-Martínez A, Del-Río-Navarro BE, Romero-Nava R, Villafaña S, Flores-Saenz JL, Sánchez-Muñoz F, Huang F. Whole Blood Expression Levels of Long Noncoding RNAs: HOTAIRM1, GAS5, MZF1-AS1, and OIP5-AS1 as Biomarkers in Adolescents with Obesity-Related Asthma. Int J Mol Sci 2023; 24:ijms24076481. [PMID: 37047453 PMCID: PMC10095005 DOI: 10.3390/ijms24076481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Asthma is a heterogeneous entity encompassing distinct endotypes and varying phenotypes, characterized by common clinical manifestations, such as shortness of breath, wheezing, and variable airflow obstruction. Two major asthma endotypes based on molecular patterns are described: type 2 endotype (allergic-asthma) and T2 low endotype (obesity-related asthma). Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides in length, currently involved in many diverse biological functions, such as chromatin remodeling, gene transcription, protein transport, and microRNA processing. Despite the efforts to accurately classify and discriminate all the asthma endotypes and phenotypes, if long noncoding RNAs could play a role as biomarkers in allergic asthmatic and adolescent obesity-related asthma, adolescents remain unknown. To compare expression levels of lncRNAs: HOTAIRM1, OIP5-AS1, MZF1-AS1, and GAS5 from whole blood of Healthy Adolescents (HA), Obese adolescents (O), allergic asthmatic adolescents (AA) and Obesity-related asthma adolescents (OA). We measured and compared expression levels from the whole blood of the groups mentioned above through RT-q-PCR. We found differentially expressed levels of these lncRNAs between the groups of interest. In addition, we found a discriminative value of previously mentioned lncRNAs between studied groups. Finally, we generated an interaction network through bioinformatics. Expression levels of OIP5-AS1, MZF1-AS1, HOTAIRM1, and GAS5 in whole blood from the healthy adolescent population, obese adolescents, allergic asthma adolescents, and obesity-related asthma adolescents are differently expressed. Moreover, these lncRNAs could act as molecular biomarkers that help to discriminate between all studied groups, probably through molecular mechanisms with several genes and miRNAs implicated.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21280, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Blanca E. Del-Río-Navarro
- Departamento de Inmunología Clínica de Alergia Pediátrica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José Luis Flores-Saenz
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (J.J.L.-M.)
- Correspondence: (F.S.-M.); (F.H.); Tel.: +52-5523328417 (F.S.-M.); +52-5552289917 (ext. 4405 or 3308) (F.H.)
| |
Collapse
|
23
|
Eldosoky MA, Hammad R, Rushdi A, Ibrahim HF, Tawfeik AM, Mora A, Fahmy SF, El-Ashmawy H, Ali E, Hamed DH, Mohammed AR, Mashaal A, Mohsen H. MicroRNA-146a-5p and microRNA-210-3p Correlate with T Regulatory Cells Frequency and Predict Asthma Severity in Egyptian Pediatric Population. J Asthma Allergy 2023; 16:107-121. [PMID: 36714048 PMCID: PMC9880026 DOI: 10.2147/jaa.s398494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Background Severe bronchial asthma (BA) affects 5-10% of children, which imposes socioeconomic burden. Therefore, it is crucial to identify biomarkers for risk stratification in children with BA. T regulatory cells (Tregs) play a balancing role in allergic response regulation. We aimed to investigate the relationship between Treg, miR-210-3p, and miR-146a-5p in relation to asthma phenotypes in search of novel biomarkers of disease severity. Methods This study included 50 children with BA classified into Group 1 (n = 25) children with mild to moderate asthma and Group 2 (n = 25) children with severe asthma. In addition to 26 control subjects. Flow cytometry was used to detect Tregs. Plasma miR-210-3p and miR-146a levels were determined using quantitative real-time PCR. Patients' FEV1 (Forced Expiratory Volume in the first second) was measured. Results miR-210-3p level correlated negatively with Treg frequency (r = -0.828, P < 0.001) and FEV1 (r = -0.621, P < 0.001). The level of miR-146a-5p positively correlated positively with Treg% (r = 0.303, P = 0.032). ROC curve analysis revealed that miR-210-3p was the most sensitive biomarker of severity, with the area under curve (AUC) = 0.923, 96% sensitivity, and 60% specificity. According to multivariate analysis, miR-210-3p is an independent risk factor for BA severity [OR =3.119, P = 0.030], while miR-146a-5p is a protective factor [OR =0.811, P = 0.049]. Conclusion Treg frequency is linked to FEV1, miR-146a-5p and miR-210-3p in childhood BA. Upregulation of miR-210-3p is a sensitive biomarker and an independent risk factor for BA severity in Egyptian children.
Collapse
Affiliation(s)
- Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Areej Rushdi
- Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hanan F Ibrahim
- Microbiology and Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Amany M Tawfeik
- Microbiology and Immunology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ahmed Mora
- Chemistry Department, Faculty of Science (for Boys), Al-Azhar University, Cairo, Egypt
| | - Sarah F Fahmy
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hossam El-Ashmawy
- Clinical Pathology Department, Faculty of Medicine (for Boys), Al-Azhar University, Assuit, Egypt
| | - Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (For Girls), Al-Azhar University, Cairo, Egypt
| | - Dina H Hamed
- Pediatric Department, Pediatric Allergy and Pulmonology Unit, Children’s Hospital, Cairo University, Cairo, Egypt,Correspondence: Dina H Hamed, Email
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (For Girls), Al-Azhar University, Cairo, Egypt
| | - Hanan Mohsen
- Pediatric Department, Pediatric Allergy and Pulmonology Unit, Children’s Hospital, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Wang Z, He Y, Li Q, Zhao Y, Zhang G, Luo Z. Network analyses of upper and lower airway transcriptomes identify shared mechanisms among children with recurrent wheezing and school-age asthma. Front Immunol 2023; 14:1087551. [PMID: 36776870 PMCID: PMC9911682 DOI: 10.3389/fimmu.2023.1087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Background Predicting which preschool children with recurrent wheezing (RW) will develop school-age asthma (SA) is difficult, highlighting the critical need to clarify the pathogenesis of RW and the mechanistic relationship between RW and SA. Despite shared environmental exposures and genetic determinants, RW and SA are usually studied in isolation. Based on network analysis of nasal and tracheal transcriptomes, we aimed to identify convergent transcriptomic mechanisms in RW and SA. Methods RNA-sequencing data from nasal and tracheal brushing samples were acquired from the Gene Expression Omnibus. Combined with single-cell transcriptome data, cell deconvolution was used to infer the composition of 18 cellular components within the airway. Consensus weighted gene co-expression network analysis was performed to identify consensus modules closely related to both RW and SA. Shared pathways underlying consensus modules between RW and SA were explored by enrichment analysis. Hub genes between RW and SA were identified using machine learning strategies and validated using external datasets and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential value of hub genes in defining RW subsets was determined using nasal and tracheal transcriptome data. Results Co-expression network analysis revealed similarities in the transcriptional networks of RW and SA in the upper and lower airways. Cell deconvolution analysis revealed an increase in mast cell fraction but decrease in club cell fraction in both RW and SA airways compared to controls. Consensus network analysis identified two consensus modules highly associated with both RW and SA. Enrichment analysis of the two consensus modules indicated that fatty acid metabolism-related pathways were shared key signals between RW and SA. Furthermore, machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4, POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated using three independent external datasets and qRT-PCR. The gene signatures of the five hub genes could potentially be used to determine type 2 (T2)-high and T2-low subsets in preschoolers with RW. Conclusions These findings improve our understanding of the molecular pathogenesis of RW and provide a rationale for future exploration of the mechanistic relationship between RW and SA.
Collapse
Affiliation(s)
- Zhili Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu He
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Wang Z, He Y, Cun Y, Li Q, Zhao Y, Luo Z. Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma. Front Cell Dev Biol 2023; 11:1164544. [PMID: 37123407 PMCID: PMC10133523 DOI: 10.3389/fcell.2023.1164544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Asthma is the most common chronic condition in children, with allergic asthma being the most common phenotype, accounting for approximately 80% of cases. Growing evidence suggests that disruption of iron homeostasis and iron regulatory molecules may be associated with childhood allergic asthma. However, the underlying molecular mechanism remains unclear. Methods: Three childhood asthma gene expression datasets were analyzed to detect aberrant expression profiles of iron metabolism-related genes in the airways of children with allergic asthma. Common iron metabolism-related differentially expressed genes (DEGs) across the three datasets were identified and were subjected to functional enrichment analysis. Possible correlations between key iron metabolism-related DEGs and type 2 airway inflammatory genes were investigated. Single-cell transcriptome analysis further identified major airway cell subpopulations driving key gene expression. Key iron metabolism-related gene SLC40A1 was validated in bronchoalveolar lavage (BAL) cells from childhood asthmatics with control individuals by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence. The intracellular iron content in BAL cells was assessed by Perls iron staining and the iron levels in BAL supernatant was measured by iron assay to assess airway iron metabolism status in childhood asthmatics. Results: Five common iron metabolism-related DEGs were identified, which were functionally related to iron homeostasis. Among these genes, downregulated SLC40A1 was strongly correlated with type 2 airway inflammatory markers and the gene signature of SLC40A1 could potentially be used to determine type 2-high and type 2-low subsets in childhood allergic asthmatics. Further single-cell transcriptomic analysis identified airway macrophages driving SLC40A1 expression. Immunofluorescence staining revealed colocalization of FPN (encoded by SLC40A1) and macrophage marker CD68. Down-regulation of SLC40A1 (FPN) was validated by qRT-PCR and immunofluorescence analysis. Results further indicated reduced iron levels in the BAL fluid, but increased iron accumulation in BAL cells in childhood allergic asthma patients. Furthermore, decreased expression of SLC40A1 was closely correlated with reduced iron levels in the airways of children with allergic asthma. Discussion: Overall, these findings reveal the potential role of the iron metabolism-related gene SLC40A1 in the pathogenesis of childhood allergic asthma.
Collapse
Affiliation(s)
- Zhili Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yupeng Cun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyuan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengxiu Luo,
| |
Collapse
|
26
|
Licari A, Andrenacci B, Di Cicco ME, Leone M, Marseglia GL, Tosca M. Respiratory comorbidities in severe asthma: focus on the pediatric age. Expert Rev Respir Med 2023; 17:1-13. [PMID: 36631726 DOI: 10.1080/17476348.2023.2168261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Asthma comorbidities are a frequent cause of adverse outcomes, such as poor asthma control, frequent asthma attacks, reduced quality of life, and higher healthcare costs. Comorbidities are well-known treatable traits whose proper management can help achieve optimal asthma control. Although multimorbidity is frequent among asthmatics, comorbidities are still a potential cause of misdiagnosis and under or over treatments, and little is known about their impact on severe pediatric asthma. AREAS COVERED We provided a comprehensive, 5-year updated review focusing on the main respiratory comorbidities in severe asthma, particularly in epidemiology, pathogenesis, and current and future therapies. EXPERT OPINION Respiratory comorbidities have unique characteristics in childhood. Their management must be multidisciplinary, age-specific, and integrated. Further longitudinal studies are needed to understand better the mutual interrelation and synergistic effect between asthma and its respiratory comorbidities, the identification of common, treatable risk factors leading to potential asthma prevention, the effectiveness of actual and future target-therapies, and the correlation between long-lasting respiratory comorbidities and poor lung function trajectories.
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Beatrice Andrenacci
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria Elisa Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pavia, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mariangela Tosca
- Allergy Centre, IRCCS G. Gaslini Pediatric Hospital, Genova, Italy
| |
Collapse
|
27
|
Andrenacci B, Ferrante G, Roberto G, Piacentini G, La Grutta S, Marseglia GL, Licari A. Challenges in uncontrolled asthma in pediatrics: important considerations for the clinician. Expert Rev Clin Immunol 2022; 18:807-821. [PMID: 35730635 DOI: 10.1080/1744666x.2022.2093187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite symptoms control being the primary focus of asthma management according to guidelines, uncontrolled asthma is still an issue worldwide, leading to huge costs and asthma deaths at all ages. In childhood, poor asthma control can be even more harmful, as it can irreversibly compromise the children's lung function and the whole family's well-being. AREAS COVERED Given the problem extent, this review aims to discuss the leading modifiable causes of uncontrolled asthma in Pediatrics, giving some practical insights regarding the critical role of families and the main tools for monitoring control and drug adherence, even at a distance. The most recent GINA documents were used as the primary reference, along with the latest evidence regarding the management of asthma control and the impact of the COVID-19 pandemic on asthma. EXPERT OPINION In managing pediatric asthma, a multidisciplinary, multi-determinant, personalized approach is needed, actively involving families, schools, and other specialists. In addition to current strategies for implementing control, electronic health strategies, new validated asthma control tools, and the identification of novel inflammatory biomarkers could lead to increasingly tailored therapies with greater effectiveness in reaching asthma control.
Collapse
Affiliation(s)
- Beatrice Andrenacci
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giuliana Ferrante
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Giulia Roberto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Giorgio Piacentini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Pediatric Division, University of Verona, Verona, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology, National Research Council, Palermo, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
28
|
Fainardi V, Passadore L, Labate M, Pisi G, Esposito S. An Overview of the Obese-Asthma Phenotype in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020636. [PMID: 35055456 PMCID: PMC8775557 DOI: 10.3390/ijerph19020636] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
Asthma is the most common chronic disease in childhood. Overweight and obesity are included among the comorbidities considered in patients with difficult-to-treat asthma, suggesting a specific phenotype of the disease. Therefore, the constant increase in obesity prevalence in children and adolescents raises concerns about the parallel increase of obesity-associated asthma. The possible correlation between obesity and asthma has been investigated over the last decade by different authors, who suggest a complex multifactorial relationship. Although the particular non-eosinophilic endotype of obesity-related asthma supports the concept that high body weight precedes asthma development, there is ongoing debate about the direct causality of these two entities. A number of mechanisms may be involved in asthma in combination with obesity disease in children, including reduced physical activity, abnormal ventilation, chronic systemic inflammation, hormonal influences, genetics and additional comorbidities, such as gastroesophageal reflux and dysfunctional breathing. The identification of the obesity-related asthma phenotype is crucial to initiate specific therapeutic management. Besides the cornerstones of asthma treatment, lifestyle should be optimized, with interventions aiming to promote physical exercise, healthy diet, and comorbidities. Future studies should clarify the exact association between asthma and obesity and the mechanisms underlying the pathogenesis of these two related conditions with the aim to define personalized therapeutic strategies for asthma management in this population.
Collapse
|
29
|
Management of Children with Acute Asthma Attack: A RAND/UCLA Appropriateness Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312775. [PMID: 34886505 PMCID: PMC8657661 DOI: 10.3390/ijerph182312775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022]
Abstract
Bronchial asthma is the most frequent chronic disease in children and affects up to 20% of the pediatric population, depending on the geographical area. Asthma symptoms vary over time and in intensity, and acute asthma attack can resolve spontaneously or in response to therapy. The aim of this project was to define the care pathway for pediatric patients who come to the primary care pediatrician or Emergency Room with acute asthmatic access. The project was developed in the awareness that for the management of these patients, broad coordination of interventions in the pre-hospital phase and the promotion of timely and appropriate assistance modalities with the involvement of all health professionals involved are important. Through the application of the RAND method, which obliges to discuss the statements derived from the guidelines, there was a clear increase in the concordance in the behavior on the management of acute asthma between primary care pediatricians and hospital pediatricians. The RAND method was found to be useful for the selection of good practices forming the basis of an evidence-based approach, and the results obtained form the basis for further interventions that allow optimizing the care of the child with acute asthma attack at the family and pediatric level. An important point of union between the primary care pediatrician and the specialist hospital pediatrician was the need to share spirometric data, also including the use of new technologies such as teleconsultation. Monitoring the progress of asthma through spirometry could allow the pediatrician in the area to intervene early by modifying the maintenance therapy and help the patient to achieve good control of the disease.
Collapse
|
30
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|