1
|
Lima JHCD, Robbs PCM, Tude EMO, De Aza PN, Costa EMD, Scarano A, Prados-Frutos JC, Fernandes GVO, Gehrke SA. Fibroblasts and osteoblasts behavior after contact with different titanium surfaces used as implant abutment: An in vitro experimental study. Heliyon 2024; 10:e25038. [PMID: 38322837 PMCID: PMC10844044 DOI: 10.1016/j.heliyon.2024.e25038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background The goal of this in vitro study was to compare three different surfaces: two types of implant surfaces commercially available ([a] smooth/machined and [b] acid-treated surface) versus (c) anodized surface. Discs were manufactured with commercially pure titanium (CP) grade IV, which were subsequently analyzed by scanning microscopy and fibroblastic and osteoblastic cell cultures. Methods Ninety-nine discs (5 × 2 mm) were manufactured in titanium grade IV and received different surface treatments: (i) Mach group: machined; (ii) AA group: double acid etch; and (iii) AN group: anodizing treatment. Three discs from each group were analyzed by Scanning Electron Microscopy (SEM) to obtain surface topography images and qualitatively analyzed by EDS. Balb/c 3T3 fibroblasts and pre-osteoblastic cells (MC3T3-E1 lineage) were used to investigate each group's biological response (n = 10/cellular type). The data were compared statistically using the ANOVA one-way test, considered as a statistically significant difference p < 0.05. Results The AA group had numerous micropores with diameters between 5 and 10 μm, while nanopores between 1 and 5 nm were measured in the AN group. The EDX spectrum showed a high titanium concentration in all the analyzed samples. The contact angle and wetting tension were higher in the AA, whereas similar results were observed for the other groups. A lower result was observed for base width in the AA, which was higher in the other two groups. The AN showed the best values in the fibroblast cells, followed by Mach and AA; whereas, in the culture of the MC3T3 cells, the result was precisely the opposite (AA > Mach > AN). There was similar behavior for cell adhesion for the test groups (Mach and AN), with greater adhesion of Balb/c 3T3 fibroblasts compared to MC3T3 cells; in the AA group, there was greater adherence for MC3T3 cells compared to Balb/c 3T3 fibroblasts. Conclusions The findings suggest that different surface characteristics can produce different biological responses, possibly cell-line dependent. These findings have important implications for the design of implantable medical devices, where the surface characteristics can significantly impact its biocompatibility.
Collapse
Affiliation(s)
| | | | | | - Piedad N. De Aza
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Eleani Maria da Costa
- Department of Materials Engineering, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Juan Carlos Prados-Frutos
- Department of Medicine and Surgery, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | - Sergio Alexandre Gehrke
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche, Alicante, Spain
- Department of Materials Engineering, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biotechnology, Universidad Católica de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
2
|
Campos-Bijit V, Inostroza NC, Orellana R, Rivera A, Von Marttens A, Cortez C, Covarrubias C. Influence of Topography and Composition of Commercial Titanium Dental Implants on Cell Adhesion of Human Gingiva-Derived Mesenchymal Stem Cells: An In Vitro Study. Int J Mol Sci 2023; 24:16686. [PMID: 38069008 PMCID: PMC10706644 DOI: 10.3390/ijms242316686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion.
Collapse
Affiliation(s)
- Vanessa Campos-Bijit
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Nicolás Cohn Inostroza
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Rocío Orellana
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Alejandro Rivera
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universidad de los Andes, Santiago 8150513, Chile;
| | - Alfredo Von Marttens
- Department of Prosthesis, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| |
Collapse
|
3
|
Finite Element Analysis of Zirconia Dental Implant. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Titanium dental implants have had new competitors in recent years, such as fixtures made of zirconia, which promise better aesthetics. The purpose of this study is to evaluate their mechanical performance in silico (Finite Element Analysis). The investigation was performed on a single tooth Patent™ Dental Implant (Zircon Medical®, Altendorf, Switzerland) in two configurations: without offset (Test I) and with offset (Test II, 1.5 mm within the cortical bone). The Patent Implant system consists of two components: the implant with integrated abutment and the fibreglass post. The components of the dental implants were tested using a compression load of 400 N along the implant axis. The results showed that the chewing load generates stress distribution on the bone, therefore, the offset configuration should be avoided.
Collapse
|
4
|
Passant Connection Screw of Dental Implants: An In Vitro SEM Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9720488. [PMID: 35496044 PMCID: PMC9050316 DOI: 10.1155/2022/9720488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
The use of dental implants in oral rehabilitations has become increasingly common, thanks to the safety and predictability of these rehabilitations. Unfortunately, dental implants, being alloplastic devices, are not free from biomechanical complications, especially in the case in which the connections are complex and involve several components. The aim of the study is to highlight what could be surface alterations using different screwing torques, or by repeating the screwing process several times. In this study, 40 passant screws (Osstem®, South Korea Dental Implant Ebony Gold®) were examined under a Zeiss EVO LS 10 scanning electron microscope (SEM), operating with an accelerating voltage of 20 kV. Passant screws were subdivided into 4 groups: 30 Nmm tightening torque; maximum tightening torque; 2 times 30 Nmm tightening torque; no screwing, new ones (control group). There are no significant differences in the surfaces of the passant screws in SEM images, and the 100% of the passant screws is free of defects or fractures. Surely, further studies and investigations will certainly be needed to allow improvement of these devices.
Collapse
|
5
|
Fiorillo L, Cicciù M, Tozum TF, Saccucci M, Orlando C, Romano GL, D’Amico C, Cervino G. Endosseous Dental Implant Materials and Clinical Outcomes of Different Alloys: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1979. [PMID: 35269211 PMCID: PMC8911578 DOI: 10.3390/ma15051979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022]
Abstract
In recent years, implantology has made significant progress, as it has now become a safe and predictable practice. The development of new geometries, primary and secondary, of new surfaces and alloys, has made this possible. The purpose of this review is to analyze the different alloys present on the market, such as that in zirconia, and evaluate their clinical differences with those most commonly used, such as those in grade IV titanium. The review, conducted on major scientific databases such as Scopus, PubMed, Web of Science and MDPI yielded a startling number of 305 results. After the application of the filters and the evaluation of the results in the review, only 10 Randomized Clinical Trials (RCTs) were included. Multiple outcomes were considered, such as Marginal Bone Level (MBL), Bleeding on Probing (BoP), Survival Rate, Success Rate and parameters related to aesthetic and prosthetic factors. There are currently no statistically significant differences between the use of zirconia implants and titanium implants, neither for fixed prosthetic restorations nor for overdenture restorations. Only the cases reported complain about the rigidity and, therefore, the possibility of fracture of the zirconium. Certainly the continuous improvement in these materials will ensure that they could be used safely while maintaining their high aesthetic performance.
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98100 Messina, Italy; (L.F.); (C.D.); (G.C.)
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, 80100 Naples, Italy
- Department of Dentistry, University of Aldent, 1000 Tirana, Albania
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98100 Messina, Italy; (L.F.); (C.D.); (G.C.)
| | - Tolga Fikret Tozum
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 6007, USA;
| | - Matteo Saccucci
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Cristiano Orlando
- Behavioural Health Institute, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95124 Catania, Italy;
| | - Cesare D’Amico
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98100 Messina, Italy; (L.F.); (C.D.); (G.C.)
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98100 Messina, Italy; (L.F.); (C.D.); (G.C.)
| |
Collapse
|
6
|
He XT, Li X, Zhang M, Tian BM, Sun LJ, Bi CS, Deng DK, Zhou H, Qu HL, Wu C, Chen FM. Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation. Biomaterials 2022; 283:121439. [PMID: 35247634 DOI: 10.1016/j.biomaterials.2022.121439] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
7
|
Kaczmarek K, Leniart A, Lapinska B, Skrzypek S, Lukomska-Szymanska M. Selected Spectroscopic Techniques for Surface Analysis of Dental Materials: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2624. [PMID: 34067921 PMCID: PMC8156406 DOI: 10.3390/ma14102624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
The presented work focuses on the application of spectroscopic methods, such as Infrared Spectroscopy (IR), Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy, Ultraviolet and Visible Spectroscopy (UV-Vis), X-ray spectroscopy, and Mass Spectrometry (MS), which are widely employed in the investigation of the surface properties of dental materials. Examples of the research of materials used as tooth fillings, surface preparation in dental prosthetics, cavity preparation methods and fractographic studies of dental implants are also presented. The cited studies show that the above techniques can be valuable tools as they are expanding the research capabilities of materials used in dentistry.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Andrzej Leniart
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Slawomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland; (A.L.); (S.S.)
| | | |
Collapse
|
8
|
In Vivo and In Vitro Analyses of Titanium-Hydroxyapatite Functionally Graded Material for Dental Implants. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8859945. [PMID: 34036104 PMCID: PMC8121567 DOI: 10.1155/2021/8859945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022]
Abstract
Purpose The stress shielding effect caused due to the mechanical mismatch between the solid titanium and the surrounding bone tissue warrants the utilization of a mechanically and biologically compatible material such as the titanium-hydroxyapatite (Ti-HA) functionally graded material (FGM) for dental implants. This study is aimed at fabricating a Ti-HA FGM with superior mechanical and biological properties for dental implantation. Materials and Methods We fabricated a Ti-HA FGM with different Ti volume fractions (VFs) using HA and Ti powders. Ti-HA was characterized by studying its mechanical properties. Cytotoxicity was examined using a Cell Counting Kit-8 assay and an LDH cell cytotoxicity assay. Scanning electron microscopy was performed on an XL30 environmental scanning electron microscope (ESEM). Alkaline phosphatase (ALP) and transforming growth factor (TGF-β1) expressions were quantitatively monitored using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of TGF-β receptors and ALP genes were measured using real-time polymerase chain reaction. The Ti-HA FGM dental implants were placed in beagle dogs. Microcomputed tomography (CT) and hard tissue slices were performed to evaluate the bone-implant contact (BIC) and bone volume over total volume (BV/TV). Results The density and mechanical properties of the Ti-HA exhibited various graded distributions corresponding to VF. Based on the results of the Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, the difference in cytotoxicity between the two groups was statistically nonsignificant (P = 0.11). The ALP and TGF-β1 levels were slightly upregulated. The transcript levels of ALP and TGF-βRI were higher in the Ti-HA groups than in the Ti group at 7 days, whereas the transcript levels of TGF-βRII exhibited no obvious increase. The BIC did not exhibit significant differences between the Ti and Ti-HA FGM groups (P = 0.0504). BV/TV showed the Ti-HA FGM group had better osteogenesis (P = 0.04). Conclusion Ti-HA FGM contributes to the osteogenesis of dental implants in vivo and in vitro.
Collapse
|
9
|
Cervino G, Meto A, Fiorillo L, Odorici A, Meto A, D’Amico C, Oteri G, Cicciù M. Surface Treatment of the Dental Implant with Hyaluronic Acid: An Overview of Recent Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094670. [PMID: 33925742 PMCID: PMC8125310 DOI: 10.3390/ijerph18094670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022]
Abstract
Recently, interest has grown by focusing on the evaluation of a molecule already produced in the human body such as hyaluronic acid (HA), as an application to the surface of the titanium implant. Its osteo-conductive characteristics and positive interaction with the progenitor cells responsible for bone formation, consequently, make it responsible for secondary stability. The aim of this work was to analyze the various surface treatments in titanium implants, demonstrating that the topography and surface chemistry of biomaterials can correlate with the host response; also focusing on the addition of HA to the implant surface and assessing the biological implications during early stages of recovery. Used as a coating, HA acts on the migration, adhesion, proliferation and differentiation of cell precursors on titanium implants by improving the connection between implant and bone. Furthermore, the improvement of the bioactivity of the implant surfaces through HA could therefore facilitate the positioning of the dental prosthesis precisely in the early loading phase, thus satisfying the patients’ requests. It is important to note that all the findings should be supported by further experimental studies in animals as well as humans to evaluate and confirm the use of HA in any field of dentistry.
Collapse
Affiliation(s)
- Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Agron Meto
- Department of Implantology, Faculty of Dentistry, University of Aldent, 1000 Tirana, Albania;
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy
- Correspondence:
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Aida Meto
- Department of Dental Therapy, Faculty of Dental Medicine, University of Medicine, 1005 Tirana, Albania;
| | - Cesare D’Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy; (G.C.); (C.D.); (G.O.); (M.C.)
| |
Collapse
|