1
|
Lenga P, Scherer M, Peretzke R, Neher P, Jesser J, Unterberg AW, Krieg S, Becker D. Q-Ball high-resolution fiber tractography: Optimizing corticospinal tract delineation near gliomas and its role in the prediction of postoperative motor deficits- A proof of concept study. BRAIN & SPINE 2024; 4:104139. [PMID: 39634168 PMCID: PMC11615608 DOI: 10.1016/j.bas.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Introduction After resection of eloquent gliomas, impacting motor pathways, patients frequently harbour pronounced motor deficits (MD), predominantly attributed to damage to the corticospinal tract (CST). Research question This study compares the results of conventional DTI-FT and q-ball (QBI)-high resolution FT with patient's postoperative morbidity, relating postoperative MD with the nearest distance from the lesion to the CST (nD-LCST). Materials and methods In this ongoing prospective trial, we utilized probabilistic High-Resolution Fiber Tracking (HRFT) through q-ball imaging (QBI-FT) and conventional Diffusion Tensor Imaging Fiber Tracking (DTI-FT), based on equal and standard diffusion-weighted MRI. Our analysis focused on the normalized Distance from the lesion to the CST-FT (nD-LCST), compared with MD evaluated via standardized clinical examination. Results Post-surgery, 4 patients developed new MD or deteriorated respectively. Among these, one patient was diagnosed with glioblastoma, one with diffuse astrocytoma, one with anaplastic astrocytoma, and one with oligodendroglioma. QBI-FT analysis revealed that patients with MD had a significantly lower median nD-LCST (-0.4 IQR = 2.1), in contrast to those without MD (8.4 IQR = 3.9; p = 0.029). Median values of QBI-FT were located within the tumor outlines, when MD deteriorated. Patients with postoperatively impaired MD had larger tumor volumes compared to those without MD. Discussion and conclusion Our preliminary findings suggest that QBI-FT may offer advantages over DTI-FT in predicting postoperative motor deficits, potentially enhancing neurosurgical planning. However, due to the small sample size of our study, these results are exploratory, and further research with larger patient populations is necessary to confirm the benefits of QBI-FT. QBI-FT shows promise as a complementary tractography technique suitable for clinical purposes alongside standard DTI-FT.
Collapse
Affiliation(s)
- Pavlina Lenga
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Moritz Scherer
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Peter Neher
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, Germany
| | - Jessica Jesser
- Medical Faculty of Heidelberg University, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas W. Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Daniela Becker
- IU International University of Applied Sciences, Germany
- Department of Neurology, SRH Kurpfalzkrankenhaus, Heidelberg, Germany
| |
Collapse
|
2
|
Patel V, Chavda V. Intraoperative glioblastoma surgery-current challenges and clinical trials: An update. CANCER PATHOGENESIS AND THERAPY 2024; 2:256-267. [PMID: 39371095 PMCID: PMC11447313 DOI: 10.1016/j.cpt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 10/08/2024]
Abstract
Surgical excision is an important part of the multimodal therapy strategy for patients with glioblastoma, a very aggressive and invasive brain tumor. While major advances in surgical methods and technology have been accomplished, numerous hurdles remain in the field of glioblastoma surgery. The purpose of this literature review is to offer a thorough overview of the current challenges in glioblastoma surgery. We reviewed the difficulties associated with tumor identification and visualization, resection extent, neurological function preservation, tumor margin evaluation, and inclusion of sophisticated imaging and navigation technology. Understanding and resolving these challenges is critical in order to improve surgical results and, ultimately, patient survival.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat 388001, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Medicine, Multispecialty, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, Gujarat 382350, India
| |
Collapse
|
3
|
Zhang Y, Cheng Z, Peng H, Ma W, Zhang R, Ma J, Gao S, Li W, Xu Y. Factors influencing diffusion tensor imaging of knee cartilage in children ages 6-12 years: a prospective study. Pediatr Radiol 2024; 54:1284-1293. [PMID: 38910223 DOI: 10.1007/s00247-024-05965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Magnetic resonance diffusion tensor imaging (DTI) has recently been used to evaluate the developing cartilage of children, but the influencing factors have not been well studied. OBJECTIVE The objective of this study was to investigate the influence of the diffusion gradient strength (b value), diffusion gradient direction, age and sex on knee cartilage DTI in healthy children aged 6-12 years. MATERIALS AND METHODS A total of 30 healthy child volunteers, with an average age of 8.9 ± 1.6 (mean ± standard deviation) years, were enrolled in this study. They were categorized into three groups according to their age range: 6-8 years, 8-10 years and 10-12 years, ensuring equal sex distribution in each group (5 boys and 5 girls). These volunteers underwent routine left knee joint magnetic resonance imaging (MRI) and serial DTI scans. DTI parameters were altered as follows: when b value = 600 s/mm2, diffusion gradient direction was set to 6, 15, 25, 35 and 45; and when diffusion gradient direction = 25, b value was set to 300, 600, 900 and 1200 s/mm2. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were separately acquired using image post-processing techniques. The correlation between various b values, diffusion gradient directions, age and sex on the one hand and FA and ADC values on the other, was investigated. RESULTS (1) When diffusion gradient direction was fixed and the b value was varied, both FA and ADC exhibited a decreasing trend as the b value increased (P < 0.001). (2) When the b value was fixed and diffusion gradient direction was varied, the FA of knee cartilage showed a decreasing trend with increasing diffusion gradient direction (P < 0.001). (3) The FA value increased with age (P < 0.05). CONCLUSION The b value, diffusion gradient direction value and age exert a significant impact on both FA and ADC values in MR DTI of knee cartilage in children aged 6-12 years. In order to obtain a stable DTI, it is recommended to select a b value ≥ 600 s/mm2 and a diffusion gradient direction ≥ 25 during scanning.
Collapse
Affiliation(s)
- Yilu Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Zhuo Cheng
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Hailun Peng
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Wei Ma
- Department of Radiology, The People's Hospital of Yubei District of Chongqing City, Yubei District, Chongqing, China
| | - Rui Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Junya Ma
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Sijie Gao
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Wei Li
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Ye Xu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
4
|
Angileri FF, Raffa G, Curcio A, Granata F, Marzano G, Germanò A. Minimally Invasive Surgery of Deep-Seated Brain Lesions Using Tubular Retractors and Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging Tractography Guidance: The Minefield Paradigm. Oper Neurosurg (Hagerstown) 2023; 24:656-664. [PMID: 36805639 DOI: 10.1227/ons.0000000000000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/08/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Surgical treatment of deep-seated brain lesions is a major challenge for neurosurgeons. Recently, tubular retractors have been used to help neurosurgeons in achieving the targeting and resection of deep lesions. OBJECTIVE To describe a novel surgical approach based on the combination of tubular retractors and preoperative mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging (DTI) tractography for the safe resection of deep-seated lesions. METHODS Ten consecutive patients affected by deep-seated brain lesions close to eloquent motor/language/visual pathways underwent preoperative nTMS mapping of motor/language cortical areas and nTMS-based DTI tractography of adjacent eloquent white matter tracts, including optic radiations. The nTMS-based information was used to plan the optimal surgical trajectory and to guide the insertion of tubular retractors within the brain parenchyma without causing injury to the eloquent cortical and subcortical structures. After surgery, all patients underwent a new nTMS-based DTI tractography of fascicles close to the tumor to verify their structural integrity. RESULTS Gross total resection was achieved in 8 cases, subtotal resection in 1 case, and a biopsy in 1 case. No new postoperative deficits were observed, except in 1 case where a visual field defect due to injury to the optic radiations occurred. Postoperative nTMS-based DTI tractography showed the integrity of the subcortical fascicles crossed by tubular retractors trajectory in 9 cases. CONCLUSION The novel strategy combining tubular retractors with functional nTMS-based preoperative mapping enables a safe microsurgical resection of deep-seated lesions through the preservation of eloquent cortical areas and subcortical fascicles, thus reducing the risk of new permanent deficits.
Collapse
Affiliation(s)
- Filippo Flavio Angileri
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonello Curcio
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Francesca Granata
- Neuroradiology-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery-Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Broggi M, Zattra CM, Restelli F, Acerbi F, Seveso M, Devigili G, Schiariti M, Vetrano IG, Ferroli P, Broggi G. A Brief Explanation on Surgical Approaches for Treatment of Different Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:689-714. [PMID: 37452959 DOI: 10.1007/978-3-031-23705-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The main goal of brain tumor surgery is to achieve gross total tumor resection without postoperative complications and permanent new deficits. However, when the lesion is located close or within eloquent brain areas, cranial nerves, and/or major brain vessels, it is imperative to balance the extent of resection with the risk of harming the patient, by following a so-called maximal safe resection philosophy. This view implies a shift from an approach-guided attitude, in which few standard surgical approaches are used to treat almost all intracranial tumors, to a pathology-guided one, with surgical approaches actually tailored to the specific tumor that has to be treated with specific dedicated pre- and intraoperative tools and techniques. In this chapter, the basic principles of the most commonly used neurosurgical approaches in brain tumors surgery are presented and discussed along with an overview on all available modern tools able to improve intraoperative visualization, extent of resection, and postoperative clinical outcome.
Collapse
Affiliation(s)
- Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Costanza M Zattra
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mirella Seveso
- Neuroanesthesia and Neurointensive Care Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Grazia Devigili
- Neurological Unit 1, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
- Scientific Director, Fondazione I.E.N. Milano, Italy.
| |
Collapse
|
6
|
Huang Y, Ding H, Luo M, Li Z, Li S, Xie C, Zhong Y. A new approach to delineating clinical target volume for radiotherapy of glioblastoma: A phase II trial. Front Oncol 2022; 12:931436. [PMID: 36338715 PMCID: PMC9626993 DOI: 10.3389/fonc.2022.931436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose No consensus has currently been reached regarding the optimal radiation volume for radiotherapy of glioblastoma. Here, we have proposed a new delineation approach to delineating clinical target volume based on the relationship between the growth patterns of glioblastoma and neural pathways. Its safety and efficacy were evaluated in a phase II clinical trial. Methods A total of 69 patients with histologically confirmed glioblastoma were enrolled. All patients underwent tumor resection, followed by focal radiotherapy and concomitant temozolomide (TMZ), and then received six cycles of adjuvant TMZ. The gross tumor volume (GTV) was defined as the surgical resection cavity plus any residual enhancing tumor, on contrast enhanced T1-weighted MRI. The clinical target volume (CTV) was delineated through our new approach. Results The median recurrence-free survival (RFS) and overall survival (OS) were 11.4 months and 18.2 months, which were better than the previous reports. Relapse was found in 47 patients, of whom 41 patients (87.2%) failed in central, two patients (4.3%) failed in field, and four patients (8.5%) failed in distance. No marginal recurrence was found. Our regimen showed a trend of lower rates of marginal recurrence, and the brain volume of high-dose radiation fields in our regimen was similar to that of EORTC (p = 0.257). Conclusions We have proposed a novel method for the delineation of clinical target volume by referencing the nerve fiber bundles for radiotherapy of glioblastoma. The results of the present phase II clinical trial suggest that this approach may be feasible and effective.
Collapse
Affiliation(s)
- Yong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Haixia Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Min Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
- *Correspondence: Yahua Zhong,
| |
Collapse
|
7
|
Jing H, Yang F, Peng K, Qin D, He Y, Yang G, Zhang H. Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4667117. [PMID: 36246986 PMCID: PMC9553483 DOI: 10.1155/2022/4667117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the diagnostic value of multimodal MRI radiomics based on T2-weighted fluid attenuated inversion recovery imaging (T2WI-FLAIR) combined with T1-weighted contrast enhanced imaging (T1WI-CE) in the early differentiation of high-grade glioma recurrence from pseudoprogression. Methods A total of one hundred eighteen patients with brain gliomas who were diagnosed from March 2014 to April 2020 were retrospectively analyzed. According to the clinical characteristics, the patients were randomly split into a training group (n = 83) and a test group (n = 35) at a 7 : 3 ratio. The region of interest (ROI) was delineated, and 2632 radiomic features were extracted. We used multiple logistic regression to establish a classification model, including the T1 model, T2 model, and T1 + T2 model, to differentiate recurrence from pseudoprogression. The diagnostic efficiency of the model was evaluated by calculating the area under the receiver operating characteristic curve (AUC) and accuracy (ACC) and by analyzing the calibration curve of the nomogram and decision curve. Results There were 75 cases of recurrence and 43 cases of pseudoprogression. The diagnostic efficacies of the multimodal MRI-based radiomic model were relatively high. The AUC values and ACC of the training group were 0.831 and 77.11%, respectively, and the AUC values and ACC of the test group were 0.829 and 88.57%, respectively. The calibration curve of the nomogram showed that the discrimination probability was consistent with the actual occurrence in the training group, and the discrimination probability was roughly the same as the actual occurrence in the test group. In the decision curve analysis, the T1 + T2 model showed greater overall net efficiency. Conclusion The multimodal MRI radiomic model has relatively high efficiency in the early differentiation of recurrence from pseudoprogression, and it could be helpful for clinicians in devising correct treatment plans so that patients can be treated in a timely and accurate manner.
Collapse
Affiliation(s)
- Hui Jing
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fan Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kun Peng
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yexin He
- Department of Radiology, Shanxi Provincial People's Hospital, Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
8
|
Seider NA, Adeyemo B, Miller R, Newbold DJ, Hampton JM, Scheidter KM, Rutlin J, Laumann TO, Roland JL, Montez DF, Van AN, Zheng A, Marek S, Kay BP, Bretthorst GL, Schlaggar BL, Greene DJ, Wang Y, Petersen SE, Barch DM, Gordon EM, Snyder AZ, Shimony JS, Dosenbach NUF. Accuracy and reliability of diffusion imaging models. Neuroimage 2022; 254:119138. [PMID: 35339687 PMCID: PMC9841915 DOI: 10.1016/j.neuroimage.2022.119138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.
Collapse
Affiliation(s)
- Nicole A Seider
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Ryland Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, New York University Langone Medical Center, New York, NY 10016, United States of America
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Kristen M Scheidter
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jerrel Rutlin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jarod L Roland
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110 United States of America
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - G Larry Bretthorst
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Chemistry, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205, United States of America; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States of America
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America
| | - Steven E Petersen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, United States of America
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, United States of America
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO 63110, United States of America; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
9
|
Tamura M, Kurihara H, Saito T, Nitta M, Maruyama T, Tsuzuki S, Fukui A, Koriyama S, Kawamata T, Muragaki Y. Combining Pre-operative Diffusion Tensor Images and Intraoperative Magnetic Resonance Images in the Navigation Is Useful for Detecting White Matter Tracts During Glioma Surgery. Front Neurol 2022; 12:805952. [PMID: 35126299 PMCID: PMC8812689 DOI: 10.3389/fneur.2021.805952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose We developed a navigation system that superimposes the fractional anisotropy (FA) color map of pre-operative diffusion tensor imaging (DTI) and intraoperative magnetic resonance imaging (MRI). The current study aimed to investigate the usefulness of this system for neurophysiological monitoring and examination under awake craniotomy during tumor removal. Method A total of 10 glioma patients (4 patients with right-side tumors; 5 men and 5 women; average age, 34 years) were evaluated. Among them, the tumor was localized to the frontal lobe, insular cortex, and parietal lobe in 8, 1, and 1 patient, respectively. There were 3 patients who underwent surgery on general anesthesia, while 7 patients underwent awake craniotomy. The index of DTI anisotropy taken pre-operatively (magnetic field: 3 tesla, 6 motion probing gradient directions) was analyzed as a color map (FA color map) and concurrently co-registered in the intraoperative MRI within the navigation. In addition to localization of the bipolar coagulator and the cortical stimulator for brain mapping on intraoperative MRI, the pre-operative FA color map was also concurrently integrated and displayed on the navigation monitor. This white matter nerve functional information was confirmed directly by using neurological examination and referring to the electrophysiological monitoring. Results Intraoperative MRI, integrated pre-operative FA color map, and microscopic surgical view were displayed on one screen in all 10 patients, and white matter fibers including the pyramidal tract were displayed as a reference in blue. Regarding motor function, motor-evoked potential was monitored as appropriate in all cases, and removal was possible while directly confirming motor symptoms under awake craniotomy. Furthermore, the white matter fibers including the superior longitudinal fasciculus were displayed in green. Importantly, it was useful not only to localize the resection site, but to identify language-related, eye movement-related, and motor fibers at the electrical stimulation site. All motor and/or language white matter tracts were identified and visualized with the co-registration and then with an acceptable post-operative neurological outcome. Conclusion Co-registering an intraoperative MR images and a pre-operative FA color map is a practical and useful method to predict the localization of critical white matter nerve functions intraoperatively in glioma surgery.
Collapse
Affiliation(s)
- Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Kurihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- *Correspondence: Yoshihiro Muragaki
| |
Collapse
|
10
|
Gómez Vecchio T, Neimantaite A, Corell A, Bartek J, Jensdottir M, Reinertsen I, Solheim O, Jakola AS. Lower-Grade Gliomas: An Epidemiological Voxel-Based Analysis of Location and Proximity to Eloquent Regions. Front Oncol 2021; 11:748229. [PMID: 34621684 PMCID: PMC8490663 DOI: 10.3389/fonc.2021.748229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background Glioma is the most common intra-axial tumor, and its location relative to critical areas of the brain is important for treatment decision-making. Studies often report tumor location based on anatomical taxonomy alone since the estimation of eloquent regions requires considerable knowledge of functional neuroanatomy and is, to some degree, a subjective measure. An unbiased and reproducible method to determine tumor location and eloquence is desirable, both for clinical use and for research purposes. Objective To report on a voxel-based method for assessing anatomical distribution and proximity to eloquent regions in diffuse lower-grade gliomas (World Health Organization grades 2 and 3). Methods A multi-institutional population-based dataset of adult patients (≥18 years) histologically diagnosed with lower-grade glioma was analyzed. Tumor segmentations were registered to a standardized space where two anatomical atlases were used to perform a voxel-based comparison of the proximity of segmentations to brain regions of traditional clinical interest. Results Exploring the differences between patients with oligodendrogliomas, isocitrate dehydrogenase (IDH) mutated astrocytomas, and patients with IDH wild-type astrocytomas, we found that the latter were older, more often had lower Karnofsky performance status, and that these tumors were more often found in the proximity of eloquent regions. Eloquent regions are found slightly more frequently in the proximity of IDH-mutated astrocytomas compared to oligodendrogliomas. The regions included in our voxel-based definition of eloquence showed a high degree of association with performing biopsy compared to resection. Conclusion We present a simple, robust, unbiased, and clinically relevant method for assessing tumor location and eloquence in lower-grade gliomas.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Margret Jensdottir
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
11
|
Li J, Li H, Ma Y, Cai X, Zhong Y, Song C. Value of Magnetic Resonance Diffusion Tensor Imaging Combined with Quantitative Electroencephalogram in Diagnosis of Neurocognitive Impairment in Patients with White Matter Demyelination. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2120130. [PMID: 34404985 PMCID: PMC8355994 DOI: 10.1155/2021/2120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
This paper aimed to explore the clinical value of combined adoption of magnetic resonance diffusion tensor imaging (DTI) and quantitative electroencephalogram (QEEG) in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination. 128 cases of white matter demyelination admitted to the hospital from October 2018 to October 2019 were rolled into the research group, and 100 healthy patients physically examined during the same period were rolled into the control (ctrl) group. QEEG and magnetic resonance DTI examinations were performed for all patients. The wave power of δ, θ, α, and β and the ratio of α/θ and (δ + θ)/(α + β) were recorded. The FA values of white matter fibers in different brain areas were measured, and the Montreal Cognitive Assessment (MoCA) and Addenbrooke Cognitive Evaluation rating (ACE-R) were adopted to assess the neurocognitive function of patients. It was found that the dominant frequency of each brain area in the research group was 8-9 Hz slow α wave. In contrast with the ctrl, the α wave and α/θ values in the research group were lower, while θ wave and δ + θ/α + β values were higher (P < 0.05); the scores of ACE-R and MoCA were lower (P < 0.01); the fractional anisotropy (FA) values of the right frontal lobe white matter (0.335 ± 0.068), the left temporal lobe white matter (0.391 ± 0.032), and the corpus callosum knee white matter (0.658 ± 0.053) were lower (P < 0.05). The FA values of these three areas were positively correlated with attention and calculation, memory, and memory of MoCA scale, respectively (P < 0.05). The FA value of the right frontal white matter was positively correlated with the attention and calculation score of the ACE-R scale (P < 0.05). In conclusion, magnetic resonance DTI combined with QEEG could reflect the microstructural changes of white matter, which may be associated with mild neurocognitive impairment. The primary objective of the study was to explore the clinical value of combined adoption of magnetic resonance DTI and QEEG in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination, expected to provide a theoretical basis for the treatment of white matter demyelination.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| | - Hongtao Li
- Department of Neurology, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| | - Yun Ma
- Department of Neurology, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| | - Xiaowei Cai
- Department of Imaging, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| | - Yinjie Zhong
- Department of Neurology, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| | - Chunjie Song
- Department of Neurology, Suqian First People's Hospital, Suqian 223800, Jiangsu, China
| |
Collapse
|
12
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Chen YW, Hanak BW, Yang TC, Wilson TA, Hsia JM, Walsh HE, Shih HC, Nagatomo KJ. Computer-assisted surgery in medical and dental applications. Expert Rev Med Devices 2021; 18:669-696. [PMID: 33539198 DOI: 10.1080/17434440.2021.1886075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Computer-assisted surgery (CAS) is a broad surgical methodology that utilizes computer technology to both plan and execute surgical intervention. CAS is widespread in both medicine and dentistry as it allows for minimally invasive and precise surgical procedures. Key innovations in volumetric imaging, virtual surgical planning software, instrument tracking, and robotics have assisted in facilitating the transfer of surgical plans to precise execution of surgical procedures. CAS has long been used in certain medical specialties including neurosurgery, cardiology, orthopedic surgery, otolaryngology, and interventional radiology, and has since expanded to oral and maxillofacial application, particularly for computer-assisted implant surgery. AREAS COVERED This review provides an updated overview of the most current research for CAS in medicine and dentistry, with a focus on neurosurgery and dental implant surgery. The MEDLINE electronic database was searched and relevant original and review articles from 2005 to 2020 were included. EXPERT OPINION Recent literature suggests that CAS performs favorably in both neurosurgical and dental implant applications. Computer-guided surgical navigation is well entrenched as standard of care in neurosurgery. Whereas static computer-assisted implant surgery has become established in dentistry, dynamic computer-assisted navigation is newly poised to trend upward in dental implant surgery.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Brian W Hanak
- Department of Neurosurgery, Loma Linda University Health Loma Linda, 92354, CA, USA
| | - Tzu-Chian Yang
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Taylor A Wilson
- Department of Neurosurgery, Loma Linda University Health Loma Linda, 92354, CA, USA
| | - Jenovie M Hsia
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Hollie E Walsh
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Huai-Che Shih
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Kanako J Nagatomo
- Department of Periodontics, University of Washington School of Dentistry Seattle,98195 WA,USA
| |
Collapse
|
14
|
Duffau H. Neural Connectivity: How to Reinforce the Bidirectional Synapse Between Basic Neuroscience and Routine Neurosurgical Practice? Front Neurol 2021; 12:705135. [PMID: 34354668 PMCID: PMC8336871 DOI: 10.3389/fneur.2021.705135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Abdelhameed E, Abdelghany MS, Abdelkhalek H, Elatrozy HIS. Awake surgery for lesions near eloquent brain under scalp block and clinical monitoring: experience of single center with limited resources. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:78. [PMID: 34149281 PMCID: PMC8205193 DOI: 10.1186/s41983-021-00333-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Surgery of the brain tumors near eloquent areas carries the risk of either disabling neurological deficit or inadequate resection with bad prognosis in both situations. Awake surgery is the gold standard procedure for such lesions. However, it requires certain anesthetic drugs, advanced techniques, and trained teams that are not available in every neurosurgical institute. This work aims to evaluate safety, feasibility, and outcome of operating on patients with space occupying lesions near eloquent areas under scalp block being continuously examined by a neurologist through retrospective study of 20 cases with supratentorial lesions related to language or sensorimotor cortex. Results There were 12 males and 8 females with mean age 36.8 years. Forty percent of patients were presented by motor weakness. Tumors were related to motor cortex in 11 patients and to language areas in 9 patients. Mean operative time was 210 min. Gross or near total resection was achieved in 15cases, four cases had subtotal resection and biopsy only was done in 1 case. Two patients suffered from intraoperative seizures and conversion to general anesthesia was required in one patient. Conclusion Operating on tumors near eloquent brain areas under scalp block and continuous neurological examination during tumor resection proved to be effective in early detection and prevention of permanent major deficits especially in the developing countries with limited resources.
Collapse
Affiliation(s)
- Esam Abdelhameed
- Department of Neurosurgery, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Shebl Abdelghany
- Department of Anaethesia and Surgical Intensive Care, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hazem Abdelkhalek
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hytham Ibrahim Shokry Elatrozy
- Department of Neurosurgery, Faculty of Medicine, Tanta University, Tanta, Egypt.,Neurosurgery Department, Tanta University Hospital, Elgeish Street, Tanta, 31257 Egypt
| |
Collapse
|
16
|
Rosenstock T, Tuncer MS, Münch MR, Vajkoczy P, Picht T, Faust K. Preoperative nTMS and Intraoperative Neurophysiology - A Comparative Analysis in Patients With Motor-Eloquent Glioma. Front Oncol 2021; 11:676626. [PMID: 34094981 PMCID: PMC8175894 DOI: 10.3389/fonc.2021.676626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
Background The resection of a motor-eloquent glioma should be guided by intraoperative neurophysiological monitoring (IOM) but its interpretation is often difficult and may (unnecessarily) lead to subtotal resection. Navigated transcranial magnetic stimulation (nTMS) combined with diffusion-tensor-imaging (DTI) is able to stratify patients with motor-eloquent lesion preoperatively into high- and low-risk cases with respect to a new motor deficit. Objective To analyze to what extent preoperative nTMS motor risk stratification can improve the interpretation of IOM phenomena. Methods In this monocentric observational study, nTMS motor mapping with DTI fiber tracking of the corticospinal tract was performed before IOM-guided surgery for motor-eloquent gliomas in a prospectively collected cohort from January 2017 to October 2020. Descriptive analyses were performed considering nTMS data (motor cortex infiltration, resting motor threshold (RMT), motor evoked potential (MEP) amplitude, latency) and IOM data (transcranial MEP monitoring, intensity of monopolar subcortical stimulation (SCS), somatosensory evoked potentials) to examine the association with the postoperative motor outcome (assessed at day of discharge and at 3 months). Results Thirty-seven (56.1%) of 66 patients (27 female) with a median age of 48 years had tumors located in the right hemisphere, with glioblastoma being the most common diagnosis with 39 cases (59.1%). Three patients (4.9%) had a new motor deficit that recovered partially within 3 months and 6 patients had a persistent deterioration (9.8%). The more risk factors of the nTMS risk stratification model (motor cortex infiltration, tumor-tract distance (TTD) ≤8mm, RMTratio <90%/>110%) were detected, the higher was the risk for developing a new postoperative motor deficit, whereas no patient with a TTD >8mm deteriorated. Irreversible MEP amplitude decrease >50% was associated with worse motor outcome in all patients, while a MEP amplitude decrease ≤50% or lower SCS intensities ≤4mA were particularly correlated with a postoperative worsened motor status in nTMS-stratified high-risk cases. No patient had postoperative deterioration of motor function (except one with partial recovery) when intraoperative MEPs remained stable or showed only reversible alterations. Conclusions The preoperative nTMS-based risk assessment can help to interpret ambiguous IOM phenomena (such as irreversible MEP amplitude decrease ≤50%) and adjustment of SCS stimulation intensity.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Biomedical Innovation Academy, Berlin, Germany
| | - Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Richard Münch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Rossi M, Sciortino T, Conti Nibali M, Gay L, Viganò L, Puglisi G, Leonetti A, Howells H, Fornia L, Cerri G, Riva M, Bello L. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery 2021; 88:457-467. [PMID: 33476393 PMCID: PMC7884143 DOI: 10.1093/neuros/nyaa359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.
Collapse
Affiliation(s)
- Marco Rossi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Marco Conti Nibali
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gay
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Antonella Leonetti
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Luca Fornia
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Marco Riva
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
18
|
Latini F, Axelson H, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Ryttlefors M. Role of Preoperative Assessment in Predicting Tumor-Induced Plasticity in Patients with Diffuse Gliomas. J Clin Med 2021; 10:jcm10051108. [PMID: 33799925 PMCID: PMC7961995 DOI: 10.3390/jcm10051108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023] Open
Abstract
When diffuse gliomas (DG) affect the brain’s potential to reorganize functional networks, patients can exhibit seizures and/or language/cognitive impairment. The tumor–brain interaction and the individual connectomic organization cannot be predicted preoperatively. We aimed to, first, investigate the relationship between preoperative assessment and intraoperative findings of eloquent tumors in 36 DG operated with awake surgery. Second, we also studied possible mechanisms of tumor-induced brain reorganization in these patients. FLAIR-MRI sequences were used for tumor volume segmentation and the Brain-Grid system (BG) was used as an overlay for infiltration analysis. Neuropsychological (NPS) and/or language assessments were performed in all patients. The distance between eloquent spots and tumor margins was measured. All variables were used for correlation and logistic regression analyses. Eloquent tumors were detected in 75% of the patients with no single variable able to predict this finding. Impaired NPS functions correlated with invasive tumors, crucial location (A4C2S2/A3C2S2-voxels, left opercular-insular/sub-insular region) and higher risk of eloquent tumors. Epilepsy was correlated with larger tumor volumes and infiltrated A4C2S2/A3C2S2 voxels. Language impairment was correlated with infiltrated A3C2S2 voxel. Peritumoral cortical eloquent spots reflected an early compensative mechanism with age as possible influencing factor. Preoperative NPS impairment is linked with high risk of eloquent tumors. A systematic integration of extensive cognitive assessment and advanced neuroimaging can improve our comprehension of the connectomic brain organization at the individual scale and lead to a better oncological/functional balance.
Collapse
Affiliation(s)
- Francesco Latini
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
- Correspondence: ; Tel.: +46-764-244-653
| | - Hans Axelson
- Section of Clinical Neurophysiology, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden;
| | - Markus Fahlström
- Section of Radiology, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden;
| | - Malin Jemstedt
- Department of Neuroscience, Speech-Language Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | | | - Maria Zetterling
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
| | - Mats Ryttlefors
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 75185 Uppsala, Sweden; (M.Z.); (M.R.)
| |
Collapse
|
19
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
20
|
Tordjman M, Madelin G, Gupta PK, Cordova C, Kurz SC, Orringer D, Golfinos J, Kondziolka D, Ge Y, Wang RL, Lazar M, Jain R. Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients. J Neurooncol 2021; 152:347-355. [PMID: 33528739 DOI: 10.1007/s11060-021-03706-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Resting state functional magnetic resonance imaging (rsfMRI) is an emerging tool to explore the functional connectivity of different brain regions. We aimed to assess the disruption of functional connectivity of the Default Mode Network (DMN), Dorsal Attention Network(DAN) and Fronto-Parietal Network (FPN) in patients with glial tumors. METHODS rsfMRI data acquired on 3T-MR of treatment-naive glioma patients prospectively recruited (2015-2019) and matched controls from the 1000 functional-connectomes-project were analyzed using the CONN functional toolbox. Seed-Based Connectivity Analysis (SBCA) and Independent Component Analysis (ICA, with 10 to 100 components) were performed to study reliably the three networks of interest. RESULTS 35 patients with gliomas (17 WHO grade I-II, 18 grade III-IV) and 70 controls were included. Global increased DMN connectivity was consistently found with SBCA and ICA in patients compared to controls (Cluster1: Precuneus, height: p < 10-6; Cluster2: subcallosum; height: p < 10-5). However, an area of decreased connectivity was found in the posterior corpus callosum, particularly in high-grade gliomas (height: p < 10-5). The DAN demonstrated small areas of increased connectivity in frontal and occipital regions (height: p < 10-6). For the FPN, increased connectivity was noted in the precuneus, posterior cingulate gyrus, and frontal cortex. No difference in the connectivity of the networks of interest was demonstrated between low- and high-grade gliomas, as well as when stratified by their IDH1-R132H (isocitrate dehydrogenase) mutation status. CONCLUSION Altered functional connectivity is reliably found with SBCA and ICA in the DMN, DAN, and FPN in glioma patients, possibly explained by decreased connectivity between the cerebral hemispheres across the corpus callosum due to disruption of the connections.
Collapse
Affiliation(s)
- Mickael Tordjman
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA.
| | - Guillaume Madelin
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Pradeep Kumar Gupta
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Christine Cordova
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E 38th Street, New York, NY, 10016, USA
| | - Sylvia C Kurz
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E 38th Street, New York, NY, 10016, USA
| | - Daniel Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - John Golfinos
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Yulin Ge
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Ruoyu Luie Wang
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Mariana Lazar
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA.,Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| |
Collapse
|
21
|
Unexpected hubness: a proof-of-concept study of the human connectome using pagerank centrality and implications for intracerebral neurosurgery. J Neurooncol 2020; 151:249-256. [PMID: 33170473 DOI: 10.1007/s11060-020-03659-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Understanding the human connectome by parcellations allows neurosurgeons to foretell the potential effects of lesioning parts of the brain during intracerebral surgery. However, it is unclear whether there exist variations among individuals such that brain regions that are thought to be dispensable may serve as important networking hubs. METHODS We obtained diffusion neuroimaging data from two healthy cohorts (OpenNeuro and SchizConnect) and applied a parcellation scheme to them. We ranked the parcellations on average using PageRank centrality in each cohort. Using the OpenNeuro cohort, we focused on parcellations in the lower 50% ranking that displayed top quartile ranking at the individual level. We then queried whether these select parcellations with over 3% prevalence would be reproducible in the same manner in the SchizConnect cohort. RESULTS In the OpenNeuro (n = 68) and SchizConnect cohort (n = 195), there were 27.9% and 43.1% of parcellations, respectively, in the lower half of all ranks that displayed top quartile ranks. We noted three outstanding parcellations (L_V6, L_a10p, and L_7PL) in the OpenNeuro cohort that also appeared in the SchizConnect cohort. In the larger Schizconnect cohort, L_V6, L_a10p, and L_7PL had unexpected hubness in 3.08%, 5.13%, and 8.21% of subjects, respectively. CONCLUSIONS We demonstrated that lowly-ranked parcellations may serve as important hubs in a subset of individuals, highlighting the importance of studying parcellation ranks at the personalized level in planning supratentorial neurosurgery.
Collapse
|
22
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
23
|
Liu D, Liu Y, Hu X, Hu G, Yang K, Xiao C, Hu J, Li Z, Zou Y, Chen J, Liu H. Alterations of white matter integrity associated with cognitive deficits in patients with glioma. Brain Behav 2020; 10:e01639. [PMID: 32415731 PMCID: PMC7375068 DOI: 10.1002/brb3.1639] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the characteristic of brain structural connections in glioma patients and further evaluate the relationship between changes in the white matter tracts and cognitive decline. METHODS This retrospective study included a total of 35 subjects with glioma and 14 demographically matched healthy controls, who underwent diffusion tensor imaging scans and formal neuropsychological assessment tests. Fractional anisotropy (FA) values of white matter tracts were derived from atlas-based analysis to compare group differences. Furthermore, subgroup-level analysis was performed to differentiate the effects of tumor location on white matter tracts. Partial correlation analysis was used to examine the associations between neurocognitive assessments and the integrity of tracts. Region of interest-based network analysis was performed to validate the alteration of structural brain network in subjects with glioma. RESULTS Compared with controls, subjects with glioma exhibited reduced FA values in the right uncinate fasciculus. Besides, subjects with glioma exhibited worse performance in several cognitive assessments. Partial correlation analysis indicated that the FA value in the right superior longitudinal fasciculus temporal part was significantly positively correlated with scores of visual-spatial abilities in subjects with glioma in the right temporal lobe (r = .932, p = .002). Region of interest-based network analysis revealed that subjects with glioma exhibited reduced FA, fiber length (FL), and fiber number (FN) between specific brain regions compared with controls. CONCLUSION The present study demonstrated the reduced integrity of white matter tracts and altered structural connectivity in brain networks in patients with glioma. Notably, white matter tracts in the right hemisphere might be vulnerable to the effects of a frontal or temporal lesion and might be associated with deficient cognitive function.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sci 2020; 10:brainsci10070412. [PMID: 32630166 PMCID: PMC7408085 DOI: 10.3390/brainsci10070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
To date, the structural characteristics that distinguish language-involved from non-involved cortical areas are largely unclear. Particularly in patients suffering from language-eloquent brain tumors, reliable mapping of the cortico-subcortical language network is of high clinical importance to prepare and guide safe tumor resection. To investigate differences in structural characteristics between language-positive and language-negative areas, 20 patients (mean age: 63.2 ± 12.9 years, 16 males) diagnosed with language-eloquent left-hemispheric glioblastoma multiforme (GBM) underwent preoperative language mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT). The number of language-positive and language-negative points as well as the gray matter intensity (GMI), normalized volumes of U-fibers, interhemispheric fibers, and fibers projecting to the cerebellum were assessed and compared between language-positive and language-negative nTMS mappings and set in correlation with aphasia grades. We found significantly lower GMI for language-positive nTMS points (5.7 ± 1.7 versus 7.1 ± 1.6, p = 0.0121). Furthermore, language-positive nTMS points were characterized by an enhanced connectivity profile, i.e., these points showed a significantly higher ratio in volumes for U-fibers (p ≤ 0.0056), interhemispheric fibers (p = 0.0494), and fibers projecting to the cerebellum (p = 0.0094). The number of language-positive nTMS points (R ≥ 0.4854, p ≤ 0.0300) as well as the ratio in volumes for U-fibers (R ≤ -0.4899, p ≤ 0.0283) were significantly associated with aphasia grades, as assessed pre- or postoperatively and during follow-up examinations. In conclusion, this study provides evidence for structural differences on cortical and subcortical levels between language-positive and language-negative areas, as detected by nTMS language mapping. The results may further increase confidence in the technique of nTMS language mapping and nTMS-based tractography in the direct clinical setting. Future studies may confirm our results in larger cohorts and may expand the findings to patients with other tumor entities than GBM.
Collapse
|
25
|
Sollmann N, Zhang H, Fratini A, Wildschuetz N, Ille S, Schröder A, Zimmer C, Meyer B, Krieg SM. Risk Assessment by Presurgical Tractography Using Navigated TMS Maps in Patients with Highly Motor- or Language-Eloquent Brain Tumors. Cancers (Basel) 2020; 12:cancers12051264. [PMID: 32429502 PMCID: PMC7281396 DOI: 10.3390/cancers12051264] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
Abstract
Patients with functionally eloquent brain lesions are at risk of functional decline in the course of resection. Given tumor-related plastic reshaping and reallocation of function, individual data are needed for patient counseling and risk assessment prior to surgery. This study evaluates the utility of mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT) for individual risk evaluation of surgery-related decline of motor or language function in the clinical setting. In total, 250 preoperative nTMS mappings (100 language and 150 motor mappings) derived from 216 patients (mean age: 57.0 ± 15.5 years, 58.8% males; glioma World Health Organization (WHO) grade I & II: 4.2%, glioma WHO grade III & IV: 83.4%, arteriovenous malformations: 1.9%, cavernoma: 2.3%, metastasis: 8.2%) were included. Deterministic tractography based on nTMS motor or language maps as seed regions was performed with 25%, 50%, and 75% of the individual fractional anisotropy threshold (FAT). Lesion-to-tract distances (LTDs) were measured between the tumor mass and the corticospinal tract (CST), arcuate fascicle (AF), or other closest language-related tracts. LTDs were compared between patients and correlated to the functional status (no/transient/permanent surgery-related paresis or aphasia). Significant differences were found between patients with no or transient surgery-related deficits and patients with permanent surgery-related deficits regarding LTDs in relation to the CST (p < 0.0001), AF (p ≤ 0.0491), or other closest language-related tracts (p ≤ 0.0435). The cut-off values for surgery-related paresis or aphasia were ≤12 mm (LTD—CST) and ≤16 mm (LTD—AF) or ≤25 mm (LTD—other closest language-related tract), respectively. Moreover, there were significant associations between the status of surgery-related deficits and the LTD when considering the CST (range r: −0.3994 to −0.3910, p < 0.0001) or AF (range r: −0.2918 to −0.2592, p = 0.0135 and p = 0.0473 for 25% and 50% FAT). In conclusion, this is the largest study evaluating the application of both preoperative functional mapping and function-based tractography for motor and language function for risk stratification in patients with functionally eloquent tumors. The LTD may qualify as a viable marker that can be seamlessly assessed in the clinical neurooncological setup.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Alessia Fratini
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Noémie Wildschuetz
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (H.Z.); (A.F.); (N.W.); (S.I.); (A.S.); (B.M.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
26
|
Kiesel B, Thomé CM, Weiss T, Jakola AS, Darlix A, Pellerino A, Furtner J, Kerschbaumer J, Freyschlag CF, Wick W, Preusser M, Widhalm G, Berghoff AS. Perioperative imaging in patients treated with resection of brain metastases: a survey by the European Association of Neuro-Oncology (EANO) Youngsters committee. BMC Cancer 2020; 20:410. [PMID: 32398144 PMCID: PMC7216695 DOI: 10.1186/s12885-020-06897-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Neurosurgical resection represents an important treatment option in the modern, multimodal therapy approach of brain metastases (BM). Guidelines for perioperative imaging exist for primary brain tumors to guide postsurgical treatment. Optimal perioperative imaging of BM patients is so far a matter of debate as no structured guidelines exist. METHODS A comprehensive questionnaire about perioperative imaging was designed by the European Association of Neuro-Oncology (EANO) Youngsters Committee. The survey was distributed to physicians via the EANO network to perform a descriptive overview on the current habits and their variability on perioperative imaging. Chi square test was used for dichotomous variables. RESULTS One hundred twenty physicians worldwide responded to the survey. MRI was the preferred preoperative imaging method (93.3%). Overall 106/120 (88.3%) physicians performed postsurgical imaging routinely including MRI alone (62/120 [51.7%]), postoperative CT (29/120 [24.2%]) and MRI + CT (15/120 [12.5%]). No correlation of postsurgical MRI utilization in academic vs. non-academic hospitals (58/89 [65.2%] vs. 19/31 [61.3%], p = 0.698) was found. Early postoperative MRI within ≤72 h after resection is obtained by 60.8% of the participants. The most frequent reason for postsurgical imaging was to evaluate the extent of tumor resection (73/120 [60.8%]). In case of residual tumor, 32/120 (26.7%) participants indicated to adjust radiotherapy, 34/120 (28.3%) to consider re-surgery to achieve complete resection and 8/120 (6.7%) to evaluate both. CONCLUSIONS MRI was the preferred imaging method in the preoperative setting. In the postoperative course, imaging modalities and timing showed high variability. International guidelines for perioperative imaging with special focus on postoperative MRI to assess residual tumor are warranted to optimize standardized management and adjuvant treatment decisions for BM patients.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carina M Thomé
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amélie Darlix
- Department of Medical Oncology, Institut Régional Du Cancer Montpellier, University of Montpellier, Montpellier, France
| | - Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital of Turin, Turin, Italy
| | - Julia Furtner
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | | | | | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic & National Center for Tumor Disease, University of Heidelberg, Heidelberg, Germany
| | - Matthias Preusser
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria. .,Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Azad TD, Duffau H. Limitations of functional neuroimaging for patient selection and surgical planning in glioma surgery. Neurosurg Focus 2020; 48:E12. [DOI: 10.3171/2019.11.focus19769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/01/2019] [Indexed: 11/06/2022]
Abstract
The optimal surgical management of gliomas requires a balance between surgical cytoreduction and preservation of neurological function. Preoperative functional neuroimaging, such as functional MRI (fMRI) and diffusion tensor imaging (DTI), has emerged as a possible tool to inform patient selection and surgical planning. However, evidence that preoperative fMRI or DTI improves extent of resection, limits neurological morbidity, and broadens surgical indications in classically eloquent areas is lacking. In this review, the authors describe facets of functional neuroimaging techniques that may limit their impact on neurosurgical oncology and critically evaluate the evidence supporting fMRI and DTI for patient selection and operative planning in glioma surgery. The authors also propose alternative applications for functional neuroimaging in the care of glioma patients.
Collapse
Affiliation(s)
- Tej D. Azad
- 1Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland; and
| | - Hugues Duffau
- 2Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
| |
Collapse
|
28
|
Javadi SA, Khan ZH. An overview on the management of cerebral glioma of highly eloquent areas. J Neurosurg Sci 2019; 63:103-105. [PMID: 30816682 DOI: 10.23736/s0390-5616.18.04640-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seyed A Javadi
- Department of Neurosurgery, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran -
| | - Zahid H Khan
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|