1
|
Park E, Yim HE, Son MH, Nam YJ, Lee YS, Jeong SH, Lee JH. Long-Term Alterations of Renal Microvasculature in Rats Following Maternal PM 2.5 Exposure: Vitamin D Effects. Biomedicines 2025; 13:1166. [PMID: 40426993 PMCID: PMC12109430 DOI: 10.3390/biomedicines13051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study aimed to investigate the long-term effects of maternal exposure to fine particulate matter (PM2.5) with or without vitamin D supplementation on the renal microvasculature in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were exposed to normal saline, PM2.5, and PM2.5 with vitamin D for one month during nephrogenesis. Male offspring kidneys were taken for analyses on postnatal day 56. Results: Adult offspring rats exposed to maternal PM2.5 exhibited lower body weights and greater glomerular and tubular injury scores compared to control rats. Semi-quantitative analysis revealed a significant reduction in glomerular and peritubular capillary endothelial cells, along with a decrease in the number of glomeruli in the PM2.5 group. Maternal vitamin D supplementation reduced these changes. In offspring rats exposed to maternal PM2.5, intrarenal expression of renin, angiotensin-converting enzyme (ACE), cytochrome P450 27B1, and vascular endothelial growth factor-A (VEGF-A) increased, while expression of the vitamin D receptor, Klotho, VEGF receptor 2, angiopoietin-1, and Tie-2 decreased. Maternal vitamin D supplementation restored VEGF receptor 2 and angiopoietin-1 activities and reduced ACE and VEGF-A protein expression in adult offspring kidneys. Conclusions: Early-life exposure to PM2.5 may lead to long-term alterations in renal microvasculature and nephron loss. Maternal vitamin D supplementation during renal development can ameliorate PM2.5-induced capillary rarefaction and nephron loss in the kidneys of adult offspring.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyung-Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| | - Min-Hwa Son
- Department of Pediatrics, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| | - Yoon-Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Yu-Seon Lee
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Sang-Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea; (Y.-J.N.); (Y.-S.L.); (S.-H.J.)
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea;
| |
Collapse
|
2
|
Yang S, Zhang G, Hong X, Li T, Liu Y, Hong H, Liu L, Wang H, Wu S, Wang Y, Wang P, Sun Q, Liu C. Effects of maternal PM 2.5 exposure during pregnancy on cardiovascular maldevelopment in rat offspring. Reprod Toxicol 2025; 135:108906. [PMID: 40220971 DOI: 10.1016/j.reprotox.2025.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Epidemiological studies suggest a link between maternal exposure to PM2.5 during pregnancy and a higher incidence of fetal cardiovascular abnormalities. However, experimental data on the underlying mechanisms remain scarce. OBJECTIVE This study aims to explore the effects of maternal PM2.5 exposure during pregnancy on fetal cardiovascular maldevelopment in a rat model. METHODS Twenty-eight pregnant rats were divided into control and PM2.5-exposed groups according the exposure doses (N = 7 per group). Rats were administered with PM2.5 suspensions corresponding to 0, 2.6, 5.5, and 11 μg/d, respectively, during gestation. On gestational day 21, neonatal hearts were collected, and levels of cardiac transcription factors (Tbx2, Tbx20, Hand2 and Gata6), MMP9, TN-C, VEGF-A, NF-κB, apoptotic markers (Bax/Bcl-2 ratio), catalase (CAT), and lipid metabolism indicators were measured. RESULTS In the 11 μg/d group, the mRNA levels of Tbx2, Tbx20, Hand2, Gata6, MMP9, TN-C and VEGF-A, the protein levels of Tbx2, Hand2, and TN-C, and blood CAT activity were significantly reduced (P < 0.05). Conversely, NF-κB, Bax/Bcl-2, and serum markers of dyslipidemia (TC, TG, LDH, LDL-C/HDL-C) were significantly elevated (P < 0.05). Additionally, TN-C and Hand2 mRNA levels were reduced in the 2.6 μg/d group, and LDH level was increased in the 5.5 μg/d group (P < 0.05). CONCLUSIONS Maternal PM2.5 exposure during pregnancy is associated with fetal cardiovascular maldevelopments, possibly through the changes of cardiac transcription factors, vascular dysfunction, oxidative stress, apoptosis, and abnormalities of lipid metabolism.
Collapse
Affiliation(s)
- Shengying Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan Province, China; Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
| | - Guiming Zhang
- The People's Hospital of Huili, Huili, Sichuan Province, China
| | - Xinru Hong
- Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan Province, China
| | - Huangfeng Hong
- Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
| | - Lina Liu
- Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
| | - Hailong Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Shuiping Wu
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian Province, China
| | - Yulan Wang
- Fuzhou Changle District Hospital, Fuzhou, Fujian Province, China
| | - Ping Wang
- Department of Pediatrics, the Military Hospital of 92435 Unit of PLA, Ningde, Fujian Province, China
| | - Qinghua Sun
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Chaobin Liu
- The Fourth Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, China International Science & Technology Cooperation Base for Environmental Factors on Early Development, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Wan T, Chen Z, Li J, Yuan X, Zheng M, Qin L, Zhang L, Hou T, Liu C, Li R. AMPK agonist AICAR ameliorates maternal hepatic lipid metabolism disorder, inflammation, and fibrosis caused by PM 2.5 exposure during pregnancy. Sci Rep 2025; 15:8689. [PMID: 40082541 PMCID: PMC11906884 DOI: 10.1038/s41598-025-93395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Liver is an important target organ of ambient fine particulate matter (PM2.5). Numerous studies have shown that PM2.5 exposure can cause liver lipid metabolism disorders and other liver damage in mammals. However, the impact of PM2.5 on liver health during pregnancy, a sensitive life stage, remains understudied, and the underlying mechanisms are also unknown. Given the critical role of adenosine 5'-monophosphate activated protein kinase (AMPK) in regulating lipid metabolism and inflammation, we hypothesize that AMPK activation may mitigate maternal hepatic lipid metabolism disorders, reduce inflammation, and attenuate fibrosis induced by PM2.5 exposure during pregnancy. To test this hypothesis, pregnant C57BL/6 mice were randomly assigned to 4 groups: filtered air (FA) + NS (normal saline), PM2.5+NS, FA + AICAR (acadesine, an AMPK activator), and PM2.5+AICAR. PM2.5+NS and PM2.5+AICAR groups were continuously exposed to PM2.5 with a whole-body PM2.5 exposure chamber, while the other two groups were exposed to filtered air in the FA chamber. Simultaneously, the FA + AICAR and PM2.5+AICAR groups received intraperitoneal injections of the AMPK agonist AICAR (200 mg/kg∙bw per day) from gestational day 13 (GD13) to GD17, while mice in the FA + NS and PM2.5+NS groups were administered normal saline injection. We found that gestational PM2.5 exposure induced dyslipidemia in pregnant mice, which was alleviated by AICAR treatment. Histopathological analysis showed that the exposure to PM2.5 during pregnancy induced hepatic lipid deposition and fibrosis in pregnant mice, and biochemical assays revealed that hepatic triglyceride and cholesterol levels were also significantly increased in pregnant mice after exposure to PM2.5, whereas the AICAR treatment ameliorated hepatic lipid deposition and fibrosis induced by the exposure to PM2.5 during pregnancy. Furthermore, PM2.5 exposure during pregnancy disrupted the expression of key genes and proteins associated with hepatic lipid synthesis, cholesterol synthesis, inflammation, and fibrosis, while treatment with AICAR mitigated these effects. These findings demonstrated that AMPK activation ameliorates hepatic lipid metabolism disorders, reduces inflammation, and attenuates fibrosis caused by PM2.5 exposure in mice during pregnancy. AMPK may be a target of action for maternal liver injury induced by PM2.5 exposure during pregnancy.
Collapse
Affiliation(s)
- Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyi Yuan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingmeng Zheng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|