1
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
2
|
Chen RE, Diamond MS. Dengue mouse models for evaluating pathogenesis and countermeasures. Curr Opin Virol 2020; 43:50-58. [PMID: 32950933 PMCID: PMC7774505 DOI: 10.1016/j.coviro.2020.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) causes the most prevalent arbovirus illness worldwide and is responsible for many debilitating epidemics. The four circulating DENV serotypes infect humans and can cause asymptomatic, mild, moderate, or severe Dengue. Because of the global morbidity and mortality due to Dengue, deployment of a safe and effective tetravalent vaccine has been a high priority, and to date, a partially realized goal. The study of pathogenesis and development of DENV therapeutics and vaccines has been limited by few animal models that recapitulate key features of human disease. Over the past two decades, mouse models of DENV infection have evolved with increasing success. Here, we review the utilization and limitations of mice for studying DENV pathogenesis and evaluating countermeasures.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Wang R, Zhen Z, Turtle L, Hou B, Li Y, Wu N, Gao N, Fan D, Chen H, An J. T cell immunity rather than antibody mediates cross-protection against Zika virus infection conferred by a live attenuated Japanese encephalitis SA14-14-2 vaccine. Appl Microbiol Biotechnol 2020; 104:6779-6789. [PMID: 32556415 PMCID: PMC7347694 DOI: 10.1007/s00253-020-10710-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are closely related to mosquito-borne flaviviruses. Japanese encephalitis (JE) vaccine SA14-14-2 has been in the Chinese national Expanded Program on Immunization since 2007. The recent recognition of severe disease syndromes associated with ZIKV, and the identification of ZIKV from mosquitoes in China, prompts an urgent need to investigate the potential interaction between the two. In this study, we showed that SA14-14-2 is protective against ZIKV infection in mice. JE vaccine SA14-14-2 triggered both Th1 and Th2 cross-reactive immune responses to ZIKV; however, it was cellular immunity that predominantly mediated cross-protection against ZIKV infection. Passive transfer of immune sera did not result in significant cross-protection but did mediate antibody-dependent enhancement in vitro, though this did not have an adverse impact on survival. This study suggests that the SA14-14-2 vaccine can protect against ZIKV through a cross-reactive T cell response. This is vital information in terms of ZIKV prevention or precaution in those ZIKV-affected regions where JEV circulates or SA14-14-2 is in widespread use, and opens a promising avenue to develop a novel bivalent vaccine against both ZIKV and JEV. KEY POINTS: • JEV SA14-14-2 vaccine conferred cross-protection against ZIKV challenge in mice. • T cell immunity rather than antibody mediated the cross-protection. • It provides important information in terms of ZIKV prevention or precaution.
Collapse
Affiliation(s)
- Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zida Zhen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lance Turtle
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals Foundation Trust (Member of Liverpool Health Partners), Liverpool, L7 8XP, UK
| | - Baohua Hou
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yueqi Li
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Wu
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|