1
|
Chen H, Gong Y, Wu F, Wu M, Li S, Chen B, Wang J, Qiu M, Xu Y, Zhao W, Chen T. WWP1-SHARP1-C/EBPβ positive feedback loop modulates development of metabolic dysfunction-associated steatotic liver disease. Metabolism 2025; 169:156271. [PMID: 40280477 DOI: 10.1016/j.metabol.2025.156271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global health threat. The molecular mechanisms underlying regulation of MASLD remain largely unknown. This study aimed to investigate the role of the WW domain-containing ubiquitin E3 ligase 1 (WWP1)-enhancer-of-split and hairy-related protein 1 (SHARP1)-C/EBPβ signal loop in MASLD. METHODS In vivo and in vitro models of MASLD were established applying high-fat diet-fed (HFD) mice and free fatty acid (FFA)-treated hepatocytes. The relationships among SHARP1, WWP1, and C/EBPβ were examined using bioinformatics, immunoprecipitation, immunofluorescence, luciferase assays, chromatin immunoprecipitation. MASLD progression was evaluated based on food intake, energy expenditure, insulin resistance, hepatic steatosis, inflammation and white fat growth. RESULTS SHARP1 were significantly reduced in the MASLD livers of mouse and human and in FA-treated hepatocytes. Hepatocyte-specific SHARP1 overexpression significantly inhibited MASLD development in HFD-fed mice. Wild-type SHARP1, but not deficient SHARP1 (SHARP1-K/R and SHARP1-P/A), was ubiquitinated and degraded by the E3 ligase WWP1. Wild-type SHARP1 was not ubiquitinated when WWP1 was deficient (WWP1-C886A, WWP1-C890A, WWP1-ΔWW3). Deficient SHARP1 exhibited better inhibitory activity against MASLD than the wild-type SHARP1. WWP1 overexpression reversed the suppression of MASLD induced by wild-type SHARP1 but did not affect that induced by deficient SHARP1. Deficient WWP1 did not inhibit the wild-type SHARP1-induced MASLD amelioration. Furthermore, in FA-treated hepatocytes, the interaction between SHARP1 and C/EBPβ weakened, resulting in more C/EBPβ binding to the Wwp1 promoter and subsequent WWP1 upregulation. SHARP1 overexpression or WWP1 interference partially blocked the effects of C/EBPβ on MASLD. Hesperidin was identified as a novel WWP1 inhibitor, and it significantly blocked WWP1 overexpression-induced MASLD progression. CONCLUSION The WWP1-SHARP1-C/EBPβ signal loop accelerates MASLD progression. This study provides novel insights into novel biomarkers and treatment approaches for MASLD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China; The First Affiliated Hospital, Jinan University, Guangzhou, China; Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes With Drug Resistance, Youjiang Medical University for Nationalities, Baise, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fei Wu
- School of Clinical Medicine, Wannan Medical College, Wuhu, China; Department of Oncology, Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Man Wu
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Shu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China
| | - Bofeng Chen
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Jie Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- School of Clinical Medicine, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| | | |
Collapse
|
2
|
Zeng C, Wei M, Li H, Yu L, Wang C, Mu Z, Huang Z, Ke Y, Li LY, Xiao Y, Wu M, Chen MK. Identification of IL-34 and Slc7al as potential key regulators in MASLD progression through epigenomic profiling. Epigenomics 2025; 17:281-295. [PMID: 39956835 PMCID: PMC11970744 DOI: 10.1080/17501911.2025.2467028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE Epigenetic alterations are critical regulators in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the dynamic epigenomic landscapes are not well defined. Our previous study found that H3K27ac and H3K9me3 play important roles in regulating lipid metabolic pathways in the early stages of MASLD. However, the epigenomic status in the inflammation stages still needs to be determined. METHOD C57BL/6 male mice were fed with the methionine- and choline-deficient (MCD) or normal diet, and their serum and liver samples were collected after 6 weeks. Serum alanine aminotransferase (ALT), aspartate amino transferase (AST), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured. Chromatin immunoprecipitation sequencing (ChIP-Seq) for H3K27ac and H3K9me3 was performed together with RNA sequencing (RNA-seq) and key regulators were analyzed. RESULTS The target genes of enhancers with increased H3K27ac and decreased H3K9me3 signals are enriched in lipid metabolism and immuno-inflammatory pathways. Il-34 and Slc7al are identified as potential regulators in MASLD. CONCLUSION Our study reveals that active enhancers and heterochromatin associated with metabolic and inflammatory genes are extensively reprogrammed in MCD-diet mice, and Il-34 and Slc7al are potentially key genes regulating the progression of MASLD.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Mingliang Wei
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Linxin Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Chuang Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Mu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ming-Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wen Y, Li J, Mukama O, Huang R, Deng S, Li Z. New insights on mesenchymal stem cells therapy from the perspective of the pathogenesis of nonalcoholic fatty liver disease. Dig Liver Dis 2025:S1590-8658(25)00286-5. [PMID: 40158892 DOI: 10.1016/j.dld.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) manifests as chronic hepatic steatosis, occurring variably across people due to racial and genetic diversity. It represents a stage in the development of chronic liver disease, marked by fat accumulation, inflammatory responses, oxidative stress in the endoplasmic reticulum, and fibrosis as primary concerns. Understanding its underlying mechanisms remains a challenging and pivotal area of study. In the past, acute liver injury-related diseases were commonly treated with methods such as liver transplantation. However, the emergence of artificial liver has shifted focus to stem cell therapies. Unlike conventional drugs, stem cell therapies are continuously evolving. Despite being classified as drugs, stem cells demonstrated significant efficacy after multiple injections. Mesenchymal stem cells, unlike other types of stem cells, do not have the risk of tumor formation and low immunogenicity, reducing the hypersensitivity reactions associated with liver transplantation. Increasingly, studies suggest that mesenchymal stem cells hold promise in the treatment of chronic liver injury diseases. This review focuses on investigating the role of mesenchymal stem cells in chronic metabolic liver diseases, such as non-alcoholic fatty liver disease, and delves into their specific functions.
Collapse
Affiliation(s)
- Yanxuan Wen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jiaxing Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China.
| |
Collapse
|
4
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
5
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Jiang F, Li X, Lin L, Li M, Zheng J. NPRC promotes hepatic steatosis via USP30-mediated deubiquitination of C/EBPβ. Metabolism 2025; 162:156050. [PMID: 39433172 DOI: 10.1016/j.metabol.2024.156050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver condition characterised by dysregulated lipid metabolism. The role of Natriuretic Peptide Receptor C (NPRC), a receptor responsible for clearing natriuretic peptides, in MAFLD remains elusive. Therefore, the aim of the present study was to elucidate the role of NPRC in MAFLD progression. APPROACH AND RESULTS This study demonstrated that NPRC enhanced lipid metabolism reprogramming and accelerated MAFLD progression. Mechanistic investigations, including proteomic and ubiquitination analyses, revealed that elevated NPRC levels stabilized the C/EBPβ protein, leading to excessive lipid accumulation. The DNA-binding domain (DBD) of C/EBPβ interacted with the deubiquitinase USP30, a key regulator that inhibited K149-specific K48-linked polyubiquitination of C/EBPβ. Importantly, the ANPR region of NPRC bound to USP30, facilitating the deubiquitination of C/EBPβ. Furthermore, virtual screening identified punicalin, a natural compound, as a potential inhibitor of NPRC expression, which may reduce hepatic lipid accumulation, inflammation and fibrosis. CONCLUSIONS Our findings indicate that NPRC recruits USP30 to mediate the deubiquitination of C/EBPβ, driving lipid metabolism reprogramming. Targeting NPRC could represent a promising therapeutic approach for MAFLD.
Collapse
Affiliation(s)
- Feng Jiang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xinmiao Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Lifan Lin
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengyuan Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jianjian Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
7
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
8
|
Ling C, Liu SS, Wang YY, Huo GT, Yang YW, Xu N, Wang H, Wu Y, Miao YF, Fu R, Zhao YW, Fan CF. Overexpression of wild-type HRAS drives non-alcoholic steatohepatitis to hepatocellular carcinoma in mice. Zool Res 2024; 45:551-566. [PMID: 38757223 PMCID: PMC11188599 DOI: 10.24272/j.issn.2095-8137.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.
Collapse
Affiliation(s)
- Chen Ling
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Su-Su Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Ya Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Gui-Tao Huo
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Yan-Wei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Nan Xu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Products Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Hong Wang
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Fa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Rui Fu
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Wei Zhao
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China. E-mail:
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China. E-mail:
| |
Collapse
|