1
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules 2022; 27:molecules27144452. [PMID: 35889325 PMCID: PMC9324774 DOI: 10.3390/molecules27144452] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Collapse
|
3
|
Li Y, Zhang Y, Zhou X, Lei X, Li X, Wei L. Dynamic observation of 5-fluorouracil-induced myocardial injury and mitochondrial autophagy in aging rats. Exp Ther Med 2021; 22:1451. [PMID: 34721693 PMCID: PMC8549097 DOI: 10.3892/etm.2021.10886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Patients treated with 5-fluorouracil (5-FU) can develop rare but potentially severe cardiac effects, including cardiomyopathy, angina pectoris, heart failure and cardiogenic shock. The specific pathologies and underlying mechanisms are yet to be fully understood. The results of previous studies have indicated that mitochondrial autophagy is widely detected in many angiocardiopathies. In the present study, the dynamic changes in the homeostasis of mitochondrial injury and autophagy were observed in rats treated with 5-FU for different durations. A corresponding control group and a 5-FU model group were established in groups of Sprague-Dawley rats aged 2 and 18 months, and the myocardial enzyme levels were determined at different time points. At 2 weeks post-model establishment, cardiac ultrasound and myocardial histological staining were performed, cardiomyocyte apoptosis and myocardial mitochondrial function were assessed, and mitochondrial ultrastructure was examined. In addition, the expression levels of autophagy-related proteins were evaluated in the 18-month-old rats on days 7 and 14 of 5-FU administration. The experimental results demonstrated that 5-FU induced an elevation in the levels of myocardial enzymes, as well as changes in the cardiac structure and function, and that these changes were more prominent over longer drug durations. In addition, 5-FU decreased the levels of myocardial mitochondrial ATP and mitochondrial membrane potential, and aggravated myocardial fibrosis and cardiomyocyte apoptosis compared with those observed in the untreated control group, treated with the same volume of saline as 5-FU in the 5-FU group. These injuries were particularly evident in aging rats. Notably, 5-FU increased the expression levels of myocardial mitochondrial autophagy-related proteins, and electron microscopy revealed a more severe autophagic state in the model groups compared with that in the control groups. In conclusion, 5-FU induced myocardial mitochondrial damage, the degree of which was more severe in aging rats compared with that in young rats. The mitochondrial autophagy induced by 5-FU was excessive, and the degree of autophagy was aggravated with increased 5-FU administration time.
Collapse
Affiliation(s)
- Yuanyang Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 301677, P.R. China.,Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Yufan Zhang
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China.,School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiangzhong Zhou
- Department of Cardiology, Tianjin Da Gang Hospital, Tianjin 300270, P.R. China
| | - Xianghong Lei
- Department of Ultrasound, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Xinhang Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 301677, P.R. China.,Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| |
Collapse
|
4
|
Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka‐Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail 2021; 8:2397-2418. [PMID: 33955207 PMCID: PMC8318493 DOI: 10.1002/ehf2.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cancer diagnosis in female population is breast cancer, which affects every year about 2.0 million women worldwide. In recent years, significant progress has been made in oncological therapy, in systemic treatment, and in radiotherapy of breast cancer. Unfortunately, the improvement in the effectiveness of oncological treatment and prolonging patients' life span is associated with more frequent occurrence of organ complications, which are side effects of this treatment. Current recommendations suggest a periodic monitoring of the cardiovascular system in course of oncological treatment. The monitoring includes the assessment of occurrence of risk factors for cardiovascular diseases in combination with the evaluation of the left ventricular systolic function using echocardiography and electrocardiography as well as with the analysis of the concentration of cardiac biomarkers. The aim of this review was critical assessment of the breast cancer therapy cardiotoxicity and the analysis of methods its detections. The new cardio-specific biomarkers in serum, the development of modern imaging techniques (Global Longitudinal Strain and Three-Dimensional Left Ventricular Ejection Fraction) and genotyping, and especially their combined use, may become a useful tool for identifying patients at risk of developing cardiotoxicity, who require further cardiovascular monitoring or cardioprotective therapy.
Collapse
Affiliation(s)
- Agata Bikiewicz
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Maciej Banach
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology and German Center for Cardiovascular Research (DZHK), partner site GöttingenUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Marek Maciejewski
- Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Agata Bielecka‐Dabrowa
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| |
Collapse
|
5
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Cadeddu Dessalvi C, Deidda M, Giorgi M, Colonna P. Vascular Damage - Coronary Artery Disease. J Cardiovasc Echogr 2020; 30:S11-S16. [PMID: 32566461 PMCID: PMC7293870 DOI: 10.4103/jcecho.jcecho_3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications during chemotherapy and radiotherapy are becoming an increasing problem because many patients with cancer are treated with agents that exert significant vascular toxicity. Coronary heart disease in patients with cancer presents particular challenges, which directly impact the management of both the coronary disease and malignancy. Several chemotherapeutic agents have been shown to trigger ischemic heart disease, and as it has happened for myocardial cardiotoxicity, more attention should be dedicated to improving early recognition and prevention of cardiac vascular toxicity. Cardiac imaging could facilitate early detection of vascular toxicity, but a thorough risk stratification should always be performed to identify patients at higher risk of vascular impairment.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giorgi
- Department of Cardiology, University Hospital Città della Scienza e Salute, Molinette Hospital, Turin, Italy
| | - Paolo Colonna
- Department of Cardiology, Hospital Policlinico of Bari, Bari, Italy
| |
Collapse
|
7
|
Abstract
Purpose of Review Currently, cardiotoxicity is monitored through echocardiography or multigated acquisition scanning and is defined as 10% or higher LVEF reduction. The latter stage may represent irreversible myocardium injury and limits modification of therapeutic paradigms at earliest stages. To stratify patients for anthracycline-related heart failure, highly sensitive and molecularly specific probes capable of interrogating cardiac damage at the subcellular levels have been sought. Recent Findings PET tracers may provide noninvasive assessment of earliest changes within myocardium. These tracers are at nascent stages of development and belong primarily to (a) mitochondrial potential-targeted and (b) general ROS (reactive oxygen species)-targeted radiotracers. Given that electrochemical gradient changes at the mitochondrial membrane represent an upstream, and earliest event before triggering the production of the ROS and caspase activity in a biochemical cascade, the former category might offer interrogation of cardiotoxicity at earliest stages exemplified by PET imaging, using 18F-Mitophos and 68Ga-Galmydar in rodent models. Summary Both categories of radiotracers may provide tools for monitoring chemotherapy-induced cardiotoxicity and interrogating therapeutic efficacy of cardio-protectants.
Collapse
Affiliation(s)
- Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Monica Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA.,Departments of Medicine, Cardiology and Nuclear Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
8
|
Novo G, Nugara C, Fava A, Mantero A, Citro R. Early Detection of Myocardial Damage: A Multimodality Approach. J Cardiovasc Echogr 2020; 30:S4-S10. [PMID: 32566460 PMCID: PMC7293866 DOI: 10.4103/jcecho.jcecho_2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are possible complications of antineoplastic treatment and may lead to premature morbidity and mortality among cancer survivors. A symptom-based follow-up is ineffective, and there are growing evidences that early detection of myocardial damage in patients treated with antineoplastic drugs is the key point to prevent the occurrence of damage and improve the prognosis of these patients. Different techniques have been proposed to monitor cardiac function in oncologic patients such as cardiac imaging (echocardiography, nuclear imaging, and cardiac magnetic resonance) and biomarkers (troponin and natriuretic peptides). The European Association of Cardiovascular Imaging/American Society of Echocardiography consensus document encourages an integrated approach to early detect cardiotoxicity.
Collapse
Affiliation(s)
- Giuseppina Novo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Division of Cardiology University Hospital P. Giaccone, Palermo, Italy
| | - Cinzia Nugara
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Division of Cardiology University Hospital P. Giaccone, Palermo, Italy
- Neurolesi Center IRCCS “Bonino Pulejo”, Messina, Italy
| | - Antonella Fava
- Department of Cardiology, University Hospital “Città della Salute e Della Scienza”, Molinette Hospital, Turin, Italy
| | | | - Rodolfo Citro
- Heart Department, University Hospital of Salerno, Salerno, Italy
| |
Collapse
|
9
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Cadeddu Dessalvi C, Deidda M, Mele D, Bassareo PP, Esposito R, Santoro C, Lembo M, Galderisi M, Mercuro G. Chemotherapy-induced cardiotoxicity. J Cardiovasc Med (Hagerstown) 2018; 19:315-323. [DOI: 10.2459/jcm.0000000000000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol 2018; 9:167. [PMID: 29563880 PMCID: PMC5846016 DOI: 10.3389/fphys.2018.00167] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Antineoplastic drugs can be associated with several side effects, including cardiovascular toxicity (CTX). Biochemical studies have identified multiple mechanisms of CTX. Chemoterapeutic agents can alter redox homeostasis by increasing the production of reactive oxygen species (ROS) and reactive nitrogen species RNS. Cellular sources of ROS/RNS are cardiomyocytes, endothelial cells, stromal and inflammatory cells in the heart. Mitochondria, peroxisomes and other subcellular components are central hubs that control redox homeostasis. Mitochondria are central targets for antineoplastic drug-induced CTX. Understanding the mechanisms of CTX is fundamental for effective cardioprotection, without compromising the efficacy of anticancer treatments. Type 1 CTX is associated with irreversible cardiac cell injury and is typically caused by anthracyclines and conventional chemotherapeutic agents. Type 2 CTX, associated with reversible myocardial dysfunction, is generally caused by biologicals and targeted drugs. Although oxidative/nitrosative reactions play a central role in CTX caused by different antineoplastic drugs, additional mechanisms involving directly and indirectly cardiomyocytes and inflammatory cells play a role in cardiovascular toxicities. Identification of cardiologic risk factors and an integrated approach using molecular, imaging, and clinical data may allow the selection of patients at risk of developing chemotherapy-related CTX. Although the last decade has witnessed intense research related to the molecular and biochemical mechanisms of CTX of antineoplastic drugs, experimental and clinical studies are urgently needed to balance safety and efficacy of novel cancer therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Christian Cadeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, Center of Excellence on Aging, Università degli Studi “G. d'Annunzio” Chieti – Pescara, Chieti, Italy
- Department of Internal Medicine, Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center, Houston, TX, United States
| | - Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy
- Monaldi Hospital Pharmacy, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Parrella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Concetta Zito
- Division of Clinical and Experimental Cardiology, Department of Medicine and Pharmacology, Policlinico “G. Martino” University of Messina, Messina, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Diagnóstico y prevención de la cardiotoxicidad inducida por fármacos antineoplásicos: de la imagen a las tecnologías «ómicas». Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2016.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Madonna R. Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics" Technologies. ACTA ACUST UNITED AC 2017; 70:576-582. [PMID: 28246019 DOI: 10.1016/j.rec.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States.
| |
Collapse
|
14
|
Jarfelt M, Andersen NH, Hasle H. Is it possible to cure childhood acute myeloid leukaemia without significant cardiotoxicity? Br J Haematol 2016; 175:577-587. [PMID: 27739070 DOI: 10.1111/bjh.14374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since cardiotoxicity is a life threatening late effect, a reduction of cardiotoxicity in the treatment of acute myeloid leukaemia (AML) is essential. This review is a compilation of the current knowledge about cardiotoxicity after AML treatment and of how future directions in treatment may affect its incidence. A total of six studies concerning AML and cardiotoxicity were identified. The incidence of late subclinical cardiotoxicity varied between 1·3 and 15·3%, and late clinical cardiotoxicity varied between 1·3 and 9·3%. Cumulative dose of anthracyclines (ACs) and history of relapse were the most common risk factors identified. No conclusions could be drawn about new, potentially less toxic ACs. Differences in treatment data and variations in study populations made comparisons uncertain. The echocardiographic techniques used in the majority of the studies are inferior to more modern echocardiographic methods. This decreases reproducibility and may increase the risk of overestimation of cardiotoxicity. In summary, AML cannot be cured today without ACs. However, some ACs may cause less cardiotoxicity than others. Furthermore there is currently no consensus on equipotent doses of ACs and risk factors for cardiotoxicity. Further research including randomized trials is needed to evaluate whether or not the potentially less cardiotoxic agents fulfil their promise.
Collapse
Affiliation(s)
- Marianne Jarfelt
- Department of Paediatric Oncology and Haematology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niels H Andersen
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|