1
|
Fazzini L, Campana N, Cossu S, Deidda M, Madaudo C, Quagliariello V, Maurea N, Di Lisi D, Novo G, Zito C, Cadeddu Dessalvi C. Genetic Background in Patients with Cancer Therapy-Induced Cardiomyopathy. J Clin Med 2025; 14:1286. [PMID: 40004816 PMCID: PMC11856774 DOI: 10.3390/jcm14041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Emerging evidence indicates that specific genetic variants are associated with an increased risk of toxicity from anticancer treatments and cancer-related cardiovascular complications. These genetic factors influence drug metabolism, efficacy, and susceptibility to adverse effects. For cancer patients, the genetic background can have two major cardiovascular implications, namely therapy-related cardiotoxicity and cancer-related cardiovascular complications. Baseline risk stratification is essential to identify higher-risk individuals and ensure they receive appropriate preventive and therapeutic interventions and more frequent follow-up. Current guidelines recommend stratification based on cardiovascular risk factors, but these factors alone cannot accurately define individual risk. Genetic background has been shown to enhance risk stratification. Beyond rare genetic variants, recent genome-wide association studies have identified single nucleotide polymorphisms implicated in cancer therapy toxicity. Despite their current limitations, polygenic risk scores are expected to play a significant role in risk stratification. This review aims to summarize the current evidence on the role of the genetic background of patients with cancer treated with potentially cardiotoxic drugs who develop cardiotoxicity, aiming to provide insights to refine risk stratification further and tailor the management of these patients.
Collapse
Affiliation(s)
- Luca Fazzini
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (L.F.); (N.C.); (S.C.); (M.D.)
| | - Nicola Campana
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (L.F.); (N.C.); (S.C.); (M.D.)
| | - Stefano Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (L.F.); (N.C.); (S.C.); (M.D.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (L.F.); (N.C.); (S.C.); (M.D.)
| | - Cristina Madaudo
- Cardiology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University Hospital ‘Paolo Giaccone’, University of Palermo, 90133 Palermo, Italy (D.D.L.); (G.N.)
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Daniela Di Lisi
- Cardiology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University Hospital ‘Paolo Giaccone’, University of Palermo, 90133 Palermo, Italy (D.D.L.); (G.N.)
| | - Giuseppina Novo
- Cardiology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University Hospital ‘Paolo Giaccone’, University of Palermo, 90133 Palermo, Italy (D.D.L.); (G.N.)
| | - Concetta Zito
- Cardiology Unit, Department of Clinical and Experimental Medicine, University Hospital “G. Martino”, University of Messina, 98122 Messina, Italy;
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (L.F.); (N.C.); (S.C.); (M.D.)
| |
Collapse
|
2
|
Zare-Zardini H, Hedayati-Goudarzi MT, Alizadeh A, Sadeghian-Nodoushan F, Soltaninejad H. A review of cardioprotective effect of ginsenosides in chemotherapy-induced cardiotoxicity. Biomed Eng Online 2024; 23:128. [PMID: 39709452 DOI: 10.1186/s12938-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Chemotherapy-induced cardiotoxicity is a significant concern in cancer treatment, as certain chemotherapeutic agents can have adverse effects on the cardiovascular system. This can lead to a range of cardiac complications, including heart failure, arrhythmias, myocardial dysfunction, pericardial complications, and vascular toxicity. Strategies to mitigate chemotherapy-induced cardiotoxicity may include the use of cardioprotective agents (e.g., dexrazoxane), dose adjustments, alternative treatment regimens, and the implementation of preventive measures, such as lifestyle modifications and the management of cardiovascular risk factors. Ginsenosides, the active compounds found in ginseng (Panax ginseng), have been studied for their potential cardioprotective effects in the context of chemotherapy-induced cardiotoxicity. In this review, we investigate the cardioprotective effect of ginsenosides in chemotherapy-induced cardiotoxicity. Ginsenosides have been shown to possess potent antioxidant properties, which can help mitigate the oxidative stress and inflammation associated with chemotherapy-induced cardiac injury. They can modulate the expression of antioxidant enzymes and reduce the production of reactive oxygen species, thereby protecting cardiomyocytes from damage. Ginsenosides can also inhibit apoptosis (programmed cell death) of cardiomyocytes, which is a key mechanism underlying chemotherapy-induced cardiotoxicity. Modulation of ion channels, improvement of lipid profiles, anti-platelet and anti-thrombotic effects, and promotion of angiogenesis and neovascularization are another important mechanisms behind potential effects of ginsenosides on cardiovascular health. Ginsenosides can improve various parameters of cardiac function, such as ejection fraction, fractional shortening, and cardiac output, in animal models of chemotherapy-induced cardiotoxicity. The cardioprotective effects of ginsenosides have been observed in preclinical studies using various chemotherapeutic agents, including doxorubicin, cisplatin, and 5-fluorouracil. However, more clinical studies are needed to fully elucidate the therapeutic potential of ginsenosides in preventing and managing chemotherapy-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | | | - Ameneh Alizadeh
- Department of Applied Chemistry, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, 75918-74831, Iran
| | - Fatemeh Sadeghian-Nodoushan
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Soltaninejad
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, 15614, Iran
| |
Collapse
|
3
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Stout NL, Boatman D, Rice M, Branham E, Miller M, Salyer R. Unmet Needs and Care Delivery Gaps Among Rural Cancer Survivors. J Patient Exp 2024; 11:23743735241239865. [PMID: 38505492 PMCID: PMC10949551 DOI: 10.1177/23743735241239865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Community-based healthcare delivery systems frequently lack cancer-specific survivorship support services. This leads to a burden of unmet needs that is magnified in rural areas. Using sequential mixed methods we assessed unmet needs among rural cancer survivors diagnosed between 2015 and 2021. The Supportive Care Needs Survey (SCNS) assessed 5 domains; Physical and Daily Living, Psychological, Support and Supportive Services, Sexual, and Health Information. Needs were analyzed across domains by cancer type. Survey respondents were recruited for qualitative interviews to identify care gaps. Three hundred and sixty two surveys were analyzed. Participants were 85% White (n = 349) 65% (n = 234) female and averaged 2.03 years beyond cancer diagnosis. Nearly half (49.5%) of respondents reported unmet needs, predominantly in physical, psychological, and health information domains. Needs differed by stage of disease. Eleven interviews identified care gap themes regarding; Finding Support and Supportive Services and Health Information regarding Care Delivery and Continuity of Care. Patients experience persistent unmet needs after a cancer diagnosis across multiple functional domains. Access to community-based support services and health information is lacking. Community based resources are needed to improve access to care for long-term cancer survivors.
Collapse
Affiliation(s)
- Nicole L Stout
- Department of Cancer Prevention and Control, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Health Policy, Management, and Leadership, School of Public, West Virginia University, Morgantown, WV, USA
| | - Dannell Boatman
- Department of Cancer Prevention and Control, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Madeline Rice
- Division of Physical Therapy, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Emelia Branham
- Division of Physical Therapy, School of Medicine, West Virginia University, Morgantown, WV, USA
| | | | - Rachel Salyer
- Department of Internal Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Khan G, Alam MF, Alshahrani S, Almoshari Y, Jali AM, Alqahtani S, Khalid M, Mir Najib Ullah SN, Anwer T. Trastuzumab-Mediated Cardiotoxicity and Its Preventive Intervention by Zingerone through Antioxidant and Inflammatory Pathway in Rats. J Pers Med 2023; 13:jpm13050750. [PMID: 37240920 DOI: 10.3390/jpm13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Trastuzumab (TZB) is a new medicine, used to treat cancers of the breast and stomach. However, the cardiotoxic potential of this drug edges out its clinical advantages. The present study was designed to find out the effect of zingerone against trastuzumab-mediated cardiotoxicity in rats. In this study, five groups of rats with eight animals in each group were used. Group 1 was treated with normal saline, as a normal control (NC); Group 2 was treated with TZB (6 mg/kg/week-for five weeks) intraperitoneally as a toxic control. Groups 3 and 4 were pre-treated with zingerone (50 and 100 mg/kg, as per their body weight orally) along with five doses of TZB for five weeks, and Group 5 was treated with zingerone (100 mg/kg, body weight orally) as a control. TZB treatment showed cardiotoxicity as evidenced by increased levels of aspartate aminotransferase (AST), creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), and lipid peroxidation (LPO) and decreased level of glutathione (GSH), and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s- transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. Zingerone pre-treatment significantly decreased the levels of AST, CK-MB, LDH, and LPO and increased GSH and antioxidant enzymes content toward their normal level. In the TZB-alone administered group, inflammatory cytokines (IL-2 and TNF-α) levels were also elevated. Pre-treatment with zingerone restored the level of IL-2 and TNF-α toward normal level. The current findings undoubtedly demonstrated zingerone's cardioprotective nature against TZB-mediated cardiotoxicity in rats with the evidence of histopathological recall.
Collapse
Affiliation(s)
- Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | | | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Mandoli GE, Cameli M, Pastore MC, Benfari G, Malagoli A, D'Andrea A, Sperlongano S, Bandera F, Esposito R, Santoro C, Pedrinelli R, Mercuro G, Indolfi C. Speckle tracking echocardiography in early disease stages: a therapy modifier? J Cardiovasc Med (Hagerstown) 2023; 24:e55-e66. [PMID: 37052222 DOI: 10.2459/jcm.0000000000001422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Echocardiography has been included as a first-line tool in several international guidelines for the management of patients with various cardiac diseases. Beyond diagnosis, echocardiographic examination helps in characterizing the severity of the condition since the very first stages. In particular, the application of second-level techniques, speckle tracking echocardiography in particular, can also reveal a subclinical dysfunction, while the standard parameters are in the normality range. The present review describes the potentialities of advanced echocardiography in different settings, including arterial hypertension, atrial fibrillation, diastolic dysfunction, and oncological patients, thus opening up potential starting points for its application as a clinical routine changer.
Collapse
Affiliation(s)
- Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena
| | - Giovanni Benfari
- Section of Cardiology, Department of Medicine, University of Verona, Verona
| | - Alessandro Malagoli
- Division of Cardiology, Nephro-Cardiovascular Department, Baggiovara Hospital, University of Modena and Reggio Emilia, Modena
| | | | - Simona Sperlongano
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, Naples
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milano
- Cardiology University Department, IRCCS Policlinico San Donato, Milan
| | | | - Ciro Santoro
- Department of Advanced Biomedical Science, Federico II University Hospital, Naples
| | - Roberto Pedrinelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy
| |
Collapse
|
7
|
Ahmed RA, Alam MF, Alshahrani S, Jali AM, Qahl AM, Khalid M, Muzafar HMA, Alhamami HN, Anwer T. Capsaicin Ameliorates the Cyclophosphamide-Induced Cardiotoxicity by Inhibiting Free Radicals Generation, Inflammatory Cytokines, and Apoptotic Pathway in Rats. Life (Basel) 2023; 13:life13030786. [PMID: 36983940 PMCID: PMC10056591 DOI: 10.3390/life13030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Cyclophosphamide is an antineoplastic agent that has a broad range of therapeutic applications; however, it has numerous side effects, including cardiotoxicity. Furthermore, chili peppers contain a substance called capsaicin, having antioxidant and anti-inflammatory effects. Thus, this research paper focuses on the potential mechanism of capsaicin’s cardioprotective activity against cyclophosphamide-induced cardiotoxicity by measuring the expression of oxidative and inflammatory marker such as interleukins and caspases. The following groups of rats were randomly assigned: only vehicle given for 6 days (control group); cyclophosphamide 200 mg/kg intraperitoneal on 4th day only (positive control group); capsaicin 10 mg/kg orally given for 6 days followed by cyclophosphamide 200 mg/kg on 4th day of treatment; capsaicin 20 mg/kg orally for six days followed by cyclophosphamide 200 mg/kg on 4th day of treatment; and maximum amount of capsaicin alone (20 mg/kg) orally for six days. Using ELISA kits, it was found that the cyclophosphamide administration significantly increased the levels of lactate dehydrogenase, troponin-I (cardiac cell damage marker), lipid peroxidation, triglyceride, interleukin-6, tumor necrosis factor-alpha, and caspase 3. However, it markedly reduced the antioxidant enzymes catalase and glutathione levels. Both doses of capsaicin could reverse cardiac cell damage markers, as shown by a significant decline in (lactate dehydrogenase and troponin-I). In addition, capsaicin significantly reduced the cytokine levels (interleukin-6 and tumor necrosis factor-alpha), caspase 3, lipid peroxidation, and triglycerides. However, capsaicin treatment significantly raised the antioxidant content of enzymes such as glutathione and catalase. The capsaicin-treated group restored the oxidative parameter’s imbalance and generated considerable protection against cardiomyocyte harm from cyclophosphamide in male Wistar rats. These protective effects might be beneficial against the negative impacts of cyclophosphamide when used to treat cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (R.A.A.); (M.F.A.)
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (R.A.A.); (M.F.A.)
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah M. Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Hisham M. A. Muzafar
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Lim S, Kim SW, Kim IK, Song BW, Lee S. Organ-on-a-chip: Its use in cardiovascular research. Clin Hemorheol Microcirc 2023; 83:315-339. [PMID: 36502306 DOI: 10.3233/ch-221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.
Collapse
Affiliation(s)
- Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Moustafa I, Viljoen M, Perumal-Pillay VA, Oosthuizen F. Critical appraisal of clinical guidelines for prevention and management of doxorubicin-induced cardiotoxicity. J Oncol Pharm Pract 2022; 29:695-708. [PMID: 36567532 DOI: 10.1177/10781552221147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Doxorubicin is a valuable chemotherapeutic drug; however, it is associated with a high risk of cardiotoxicity. Several institutions and organizations have developed guidelines for risk factor assessment, monitoring and prevention strategies against chemotherapy-induced cardiotoxicity. This review aimed to assess the quality of current practice guidelines, using the Appraisal of Guidelines for Research and Evaluation II (AGREE II). This tool was used to compare the recommendations with regards to their strength and evidence recommendations were based on. DATA SOURCES This review identified guidelines in literature from January 1960 to February 6, 2022, through a systematic search that included PubMed, EMBASE, MEDLINE, Cochrane Database and Google Scholar. The quality, consistency and the strength of supporting evidence was evaluated using the AGREE II method. DATA SUMMARY Eight guidelines met the inclusion criteria and 144 recommendations were extracted from these guidelines. The results from the AGREE II evaluation showed that the total assessment scores of guidelines ranged from 2 to 5, indicating the guidelines need modifications. The recommendations were evaluated according to the references used, and it was found that 12 (11%) recommendations had high evidence, 36 (33%) had moderate evidence, 38 (35.19%) had low and 22 (20.37%) had insufficient evidence. Recommendations for risk factors assessment, prophylaxis of cardiotoxicity, management of cardiotoxicity and monitoring of cardiotoxicity were quite varied amongst the different guidelines evaluated. CONCLUSIONS All studied guidelines need modifications as per the AGREE II evaluating tool. Several shortcomings were identified, including a lack of evidence-based studies supporting the recommendations in the guidelines.
Collapse
Affiliation(s)
- Iman Moustafa
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Pharmaceutical care department, King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, AlHasa, Saudi Arabia.,King Abdullah International Medical Research Center, AlHasa, Saudi Arabia
| | - Michelle Viljoen
- School of Pharmacy, 56390University of the Western Cape, Bellville, South Africa
| | - Velisha Ann Perumal-Pillay
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Inbaraj G, Sathyaprabha TN, Udupa K, Ram A, Patil S, Rajeswaran J, Nandakumar KK, Belur S, Singh AD, Prathyusha PV, Bayari SK, Raghavendra RM. Impact of integrated yoga therapy on cognitive impairment and cardiac dysfunction in relation to quality of life in breast cancer patients undergoing chemotherapy: Study protocol for a two-arm randomized controlled trial. Front Oncol 2022; 12:955184. [PMID: 36185291 PMCID: PMC9524232 DOI: 10.3389/fonc.2022.955184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundChemotherapy-related cognitive impairment (CRCI) and cardiac dysfunction (CRCD) are common adverse effects seen in breast cancer patients undergoing chemotherapy. Even though these effects significantly influence daily functioning and overall quality of life, effective strategies to avoid and/or mitigate these adverse effects remain elusive. Yoga as a Mind-body intervention has been used increasingly by cancer patients and has undergone empirical investigations as a potential intervention for patients with cancer. Furthermore, yoga is associated with improved cognition and cardiac functioning in healthy older adults and subjects with cognitive and cardiac impairments. Accordingly, in the current study, yoga holds promise as an intervention to prevent/manage CRCI and CRCD with improved overall QOL in women receiving chemotherapy for breast cancer.MethodsThe study is a two-arm, randomized controlled trial. Women diagnosed with stage I-III breast cancer and awaiting neo-adjuvant or adjuvant chemotherapy will be recruited from a tertiary care center in Bangalore, India. Following recruitment, subjects are randomized to the intervention group (integrated yoga therapy intervention during chemotherapy) or the control group (standard care during chemotherapy). The study’s primary outcome is to measure the quality of life (cognitive domain) using European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30). The other primary objectives will include cognitive functioning using neuropsychological test battery and cardiac autonomic function testing using heart rate variability. Secondary outcomes are Brain-derived neurotrophic factor (BDNF), brain function (functional MRI), Echocardiography, serum cortisol, Functional assessment of cancer therapy-cognition (FACT-Cog V3), perceived stress scale and Ryff Scales of Psychological Well-Being. Assessments take place before, during and after chemotherapy; 16-weeks post chemotherapy and 1-year post-baseline.DiscussionYoga is a promising intervention for preventing and/or managing chemotherapy-related adverse effects (CRAE) and enhancing the quality of life among breast cancer patients. The findings from this study may also help understand the inner mechanisms involved in the protective and restorative effects of yoga on CRAE and support the use of yoga prophylactically for breast cancer patients. In addition, the results of this study could help chemotherapy-exposed individuals with other solid cancer types who have cognitive and cardiac issues.Ethics and DisseminationThe study is approved by the ethics committee of the HealthCare Global Enterprises Ltd. Hospital (EC/434/19/01) and National Institute of Mental Health and Neurosciences (NIMH/DO/ETHICS SUB-COMMITTEE (BS&NS) 9th MEETING/2018).Clinical Trial Registrationhttp://ctri.nic.in/Clinicaltrials/advancesearchmain.php, identifier CTRI/2020/10/028446.
Collapse
Affiliation(s)
- Ganagarajan Inbaraj
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Talakad N. Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Amritanshu Ram
- Department of Complementary and Alternative Medicine, HealthCare Global, Bangalore, Karnataka, India
| | - Shekar Patil
- Department of Clinical Oncology, HealthCare Global, Bangalore, Karnataka, India
| | - Jamuna Rajeswaran
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Krishna K. Nandakumar
- Department of Complementary and Alternative Medicine, HealthCare Global, Bangalore, Karnataka, India
| | - Spoorthi Belur
- Department of Complementary and Alternative Medicine, HealthCare Global, Bangalore, Karnataka, India
| | - Arman Deep Singh
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technologies (TDU), Bengaluru, Karnataka, India
| | | | - Sapna K. Bayari
- Department of Complementary and Alternative Medicine, HealthCare Global, Bangalore, Karnataka, India
| | - Rao M. Raghavendra
- Department of Complementary and Alternative Medicine, HealthCare Global, Bangalore, Karnataka, India
- Central Council for Research in Yoga and Naturopathy, New Delhi, India
- *Correspondence: Rao M. Raghavendra,
| |
Collapse
|
11
|
Mousa AM, Soliman KEA, Alhumaydhi FA, Almatroudi A, Allemailem KS, Alsahli MA, Alrumaihi F, Aljasir M, Alwashmi ASS, Ahmed AA, Khan A, Al-Regaiey KA, AlSuhaymi N, Alsugoor MH, Aljarbou WA, Elsayed AM. Could allicin alleviate trastuzumab-induced cardiotoxicity in a rat model through antioxidant, anti-inflammatory, and antihyperlipidemic properties? Life Sci 2022; 302:120656. [PMID: 35605695 DOI: 10.1016/j.lfs.2022.120656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
Abstract
AIMS Although trastuzumab (TZB)-induced cardiotoxicity is well documented and allicin (one of the main active garlic ingredients) has ameliorating effects against numerous causes of toxicities; however, the influence of allicin on TZB-induced cardiotoxicity has not been investigated yet. Therefore, the current work explored the potential cardioprotective structural, biochemical, and molecular mechanisms of allicin against TZB-induced cardiotoxicity in a rat's model. METHODS Forty rats were divided into four equal groups and treated for five weeks. The control group (G1) received PBS, the allicin group (G2) received allicin (9 mg/kg/day), the TZB group (G3) received TZB (6 mg/kg/week), and the allicin+TZB group (G4) received 9 mg of allicin/kg/day +6 mg of TZB/kg/week. Heart specimens and blood samples were processed for histopathological, immunohistochemical, biochemical, and molecular investigations to determine the extent of cardiac injury in all groups. KEY FINDINGS The myocardium of G3 revealed significant increases in the numbers of inflammatory and apoptotic cells and the area percentage of collagen fibers and TNF-α immunoexpression compared with G1 and G2. Besides, qRT-PCR analysis exhibited significant reductions of SOD3, GPX1, and CAT expressions with significant increases in TNFα, IL-1β, IL-6, cTnI, cTnT, and LDH expressions. Additionally, flow cytometry analysis demonstrated a significant elevation in the apoptotic and ROS levels. In contrast, allicin+TZB cotherapy in G4 ameliorated all previous changes compared with G3. SIGNIFICANCE The current study proves that allicin could be used as a novel supplementary cardioprotective therapy to avoid TZB-induced cardiotoxicity via its anti-inflammatory, antifibrotic, antioxidant, antihyperlipidemic, and antiapoptotic properties.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah 51452, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt.
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmed A Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, Umm Al-Qura University, AlQunfudah, Makkah 21912, Saudi Arabia.
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, Umm Al-Qura University, AlQunfudah, Makkah 21912, Saudi Arabia.
| | | | - Abulmaaty M Elsayed
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Mutah, Jordan; Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| |
Collapse
|
12
|
Lembo M, Trimarco V, Manzi MV, Mancusi C, Esposito G, Esposito S, Morisco C, Izzo R, Trimarco B. Determinants of improvement of left ventricular mechano-energetic efficiency in hypertensive patients. Front Cardiovasc Med 2022; 9:977657. [PMID: 35966525 PMCID: PMC9365966 DOI: 10.3389/fcvm.2022.977657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Arterial hypertension, especially when coexisting with other cardiovascular risk factors, could determine an imbalance between myocardial energetic demand and altered efficiency, leading to an early left ventricular (LV) systolic dysfunction, even in terms of echo-derived mechano-energetic efficiency indexed for myocardial mass (MEEi). We aim to analyse an improvement in LV MEEi, if any, in a population of hypertensive patients with a long-term follow-up and to identify clinical, metabolic and therapeutic determinants of LV MEEi amelioration. Materials and methods In total, 7,052 hypertensive patients, followed-up for 5.3 ± 4.5 years, enrolled in the Campania Salute Network, underwent echocardiographic and clinical evaluation. LV MEEi was obtained as the ratio between stroke volume and heart rate and normalized per grams of LV mass and ΔMEEi was calculated as difference between follow-up and baseline MEEi. Patients in the highest ΔMEEi quartile (≥0.0454 mL/s/g) (group 1) were compared to the merged first, second and third quartiles (<0.0454 mL/s/g) (group 2). METS-IR (Metabolic Score for Insulin Resistance), an established index of insulin sensitivity, was also derived. Results Patients with MEEi improvement experienced a lower rate of major cardiovascular events (p = 0.02). After excluding patients experiencing cardiovascular events, patients in group 1 were younger (p < 0.0001), less often diabetic (p = 0.001) and obese (p = 0.035). Group 1 experienced more frequently LV mass index reduction, lower occurrence of LV ejection fraction reduction, and had a better metabolic control in terms of mean METS-IR during the follow-up (all p < 0.0001). Beta-blockers were more often used in group 1 (p < 0.0001) than group 2. A logistic regression analysis showed that younger age, lower mean METS-IR values, more frequent LV mass index reduction and therapy with beta-blockers were significantly associated with LV MEEi improvement, independently of presence of diabetes and obesity. Conclusion Metabolic control and therapy with beta-blockers could act in a synergic way, determining an improvement in LV MEEi in hypertensive patients over time, possibly confining cardiac damage and hampering progression toward heart failure.
Collapse
Affiliation(s)
- Maria Lembo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Valentina Trimarco
- Department of Neurosciences, Federico II University of Naples, Naples, Italy
| | - Maria Virginia Manzi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Salvatore Esposito
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- *Correspondence: Raffaele Izzo,
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
13
|
Manzi MV, Mancusi C, Lembo M, Esposito G, Rao MAE, de Simone G, Morisco C, Trimarco V, Izzo R, Trimarco B. Low mechano-energetic efficiency is associated with future left ventricular systolic dysfunction in hypertensives. ESC Heart Fail 2022; 9:2291-2300. [PMID: 35481670 PMCID: PMC9288798 DOI: 10.1002/ehf2.13908] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
Aims In a hypertensive population with optimal blood pressure control with a long‐term follow‐up, we aimed at analysing possible predictors of left ventricular (LV) ejection fraction (LVEF) reduction, including indexed mechano‐energetic efficiency (MEEi), a well‐recognized echo‐derived parameter of LV performance. Methods and results The study population included 5673 hypertensive patients from the Campania Salute Network with a long‐term follow‐up, normal baseline LVEF (≥50%), and no prevalent cardiovascular (CV) disease. Patients developing LVEF impairment (LVEF < 50% or a reduction of at least 10 percentage points compared with baseline) were compared with patients with persistently normal LVEF. Optimal blood pressure control was achieved in about 80% of patients. Patients who experienced LVEF reduction were 2.41% during a long‐term follow‐up (mean duration 5.6 ± 3.9 years). At baseline, they were older (59.46 ± 11.58 vs. 53.40 ± 11.41, P < 0.0001) and showed higher LV mass index (53.3 ± 12.83 vs. 47.56 ± 9.58, P < 0.0001), left atrial (LA) volume index (14.4 ± 4.2 vs. 13.1 ± 2.8, P < 0.0001) and carotid intima–media thickness (1.99 ± 0.86 vs. 1.61 ± 0.73, P < 0.0001), lower MEEi (0.32 ± 0.08 vs. 0.34 ± 0.07, P = 0.037), and higher prevalence of CV events during follow‐up (13.9% vs. 3%, P < 0.0001) compared with patients with persistently normal LVEF. A logistic regression analysis, performed after running univariate analyses and selecting parameters significantly associated with LVEF reduction, showed that having a CV event [odds ratio (OR) 7.57, P < 0.0001], being in the lowest MEEi quartile (OR 2.43, P = 0.003), and having a larger LA volume index (OR 1.08, P = 0.028) were all parameters independently associated with the development of LV systolic dysfunction. A further logistic regression model, performed by excluding patients experiencing CV events, demonstrated that the lowest MEEi quartile was independently associated with the evolution towards LVEF reduction (OR 2.35, P = 0.004), despite significant impact of LA volume index (OR 1.08, P = 0.023) and antiplatelet therapy (OR 1.89, P < 0.01). Receiver operating characteristic curves showed that the model including MEEi had higher accuracy than the model without MEEi in predicting LVEF reduction (areas under the curve 0.68 vs. 0.63, P = 0.046). Conclusions Lower values of MEEi at baseline identify hypertensive patients more liable to develop LVEF reduction. In hypertensive setting, MEEi evaluation improves risk stratification for development of LV systolic dysfunction during long‐term follow‐up.
Collapse
Affiliation(s)
- Maria V Manzi
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Costantino Mancusi
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Maria Lembo
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Giovanni Esposito
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | | | - Giovanni de Simone
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Carmine Morisco
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Valentina Trimarco
- Department of Neurosciences, Federico II University of Naples, Naples, Italy
| | - Raffaele Izzo
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| | - Bruno Trimarco
- Hypertension Research Center, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini 5, Naples, 80131, Italy
| |
Collapse
|
14
|
Lembo M, Manzi MV, Mancusi C, Morisco C, Rao MAE, Cuocolo A, Izzo R, Trimarco B. Advanced imaging tools for evaluating cardiac morphological and functional impairment in hypertensive disease. J Hypertens 2022; 40:4-14. [PMID: 34582136 PMCID: PMC10871661 DOI: 10.1097/hjh.0000000000002967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023]
Abstract
Arterial hypertension represents a systemic burden, and it is responsible of various morphological, functional and tissue modifications affecting the heart and the cardiovascular system. Advanced imaging techniques, such as speckle tracking and three-dimensional echocardiography, cardiac magnetic resonance, computed tomography and PET-computed tomography, are able to identify cardiovascular injury at different stages of arterial hypertension, from subclinical alterations and overt organ damage to possible complications related to pressure overload, thus giving a precious contribution for guiding timely and appropriate management and therapy, in order to improve diagnostic accuracy and prevent disease progression. The present review focuses on the peculiarity of different advanced imaging tools to provide information about different and multiple morphological and functional aspects involved in hypertensive cardiovascular injury. This evaluation emphasizes the usefulness of the emerging multiimaging approach for a comprehensive overview of arterial hypertension induced cardiovascular damage.
Collapse
Affiliation(s)
- Maria Lembo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Zhang B, Shen X, Li Q, Su F, Li S. Biocompatibility, drug release, and anti‐tumor effect of
pH
‐sensitive micelles prepared from poly(2‐ethyl‐2‐oxazoline)‐poly(
DL
‐lactide) block copolymers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuandou Wang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Baogang Zhang
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao China
| | - Xin Shen
- Research & Development Department CP Pharmaceutical (Qingdao) Co., Ltd. Qingdao China
- Cancer Institute The Affiliated Hospital of Qingdao University Qingdao China
| | - Qian Li
- Cancer Institute The Affiliated Hospital of Qingdao University Qingdao China
| | - Feng Su
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao China
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
16
|
Chen CB, Dalsania RK, Hamad EA. Healthcare disparities in cardio oncology: patients receive same level of surveillance regardless of race at a safety net hospital. CARDIO-ONCOLOGY 2021; 7:3. [PMID: 33494840 PMCID: PMC7831259 DOI: 10.1186/s40959-020-00080-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022]
Abstract
Background Cardiotoxicity remains a dreaded complication for patients undergoing chemotherapy with human epidermal growth factor (HER)-2 receptor antagonists and anthracyclines. Though many studies have looked at racial disparities in heart failure patients, minimal data is present for the cardio-oncology population. Methods We queried the echocardiogram database at a safety net hospital, defined by a high proportion of patients with Medicaid or no insurance, for patients who received HER2 receptor antagonists and/or anthracyclines from January 2016 to December 2018. Patient demographics, clinical characteristics, and treatment outcomes were collected. Based on US census data in 2019, home ZIP codes were used to group patients into quartiles based on median annual household income. The primary end point studied was referral rate to cardiology for patients undergoing chemotherapy. Results We identified 149 patients who had echocardiograms and also underwent treatment with HER2 receptor antagonists and/or anthracyclines, of which 70 (47.0%) were referred to the cardio-oncology program at our institution. Basic demographics were similar, but white patients were more likely to live in ZIP codes with higher income quartiles (p < 0.00001). Comparing between racial groups, there was no statistical difference in the percentage of patients that had a reduction in ejection fraction (EF) (p = 0.75). There was no statistical difference between racial groups in the number of cardiology or oncology appointments attended, number of appointments cancelled, average number of echocardiograms received, additional cardiac imaging received. Black patients were more likely to receive ACEI/ARB post chemotherapy (p = 0.047). A logistic regression model was created using race, age, gender, insurance, income quartile by home ZIP code, comorbidities (hypertension, hyperlipidemia, coronary artery disease, arrhythmia, diabetes mellitus, smoking, family history, age > 65), procedures (coronary stents, cardiac surgery), medications pre-chemotherapy, cancer type, cancer stage, and chemotherapy. This model found that there was an increased referral rate among patients from higher income quartiles (p = 0.017 for quartile 3, p = 0.049 for quartile 4), patients with a history of hypertension (p < 0.0001), and patients with breast cancer (p = 0.02). Conclusions The results of this study suggest that patients of our cardio-oncology population at a safety net hospital receive the same level of surveillance and treatment, and develop drop in ejection fraction at similar rates regardless of their race. However, patients that reside in ZIP codes associated with higher income quartiles, with hypertension, and with breast cancer, are associated with increased rate of referral.
Collapse
Affiliation(s)
- Crystal B Chen
- Department of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Raj K Dalsania
- Department of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Eman A Hamad
- Department of Cardiology, Temple Heart and Vascular Institute, Section of Advanced Heart Failure and Transplantation, Temple University Hospital, 3401 N Broad Street, Parkinson Pavilion, 9th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Galderisi M, Santoro C, Bossone E, Mancusi C. Rationale and proposal for cardio-oncology services in Italy. J Cardiovasc Med (Hagerstown) 2020; 23:207-215. [PMID: 32858628 DOI: 10.2459/jcm.0000000000001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
: In the last 20 years, a substantial improvement in the efficacy of cancer treatment has induced a progressive increase in cancer survival, with an obvious parallel increase in morbidity and mortality related to the adverse effects of anticancer therapy, in particular, cardiovascular complications. In relation to the peculiar aspects related to cardiac and vascular toxicity, clinical management of patients should be ideally reserved for experts in the field of this novel medical discipline, which has been defined as cardio-oncology. The rationale for this choice corresponds to the aim of identifying patients more prone to developing cardiovascular damage, prevent overt cardiotoxicity and conduct active surveillance of treated patients for early identification of cardiac and vascular involvement during short- and long-term follow-up. Due to the burden of treated cancer patients, the development of dedicated cardio-oncology services has become one of the main goals of contemporary medicine, needed to accomplish the peculiar mission of guiding the patients through the narrow path of cancer survival without the expense of cardiovascular damage. The main purpose of cardio-oncology services is to provide dedicated cardiologic care to cancer patients affected by concomitant (subclinical or overt) cardiovascular diseases, either preexisting the cancer onset or acquired during and after the time course of anticancer therapy. In this article, we describe a possible spoke-hub model of cardio-oncology services, which could be appropriately applied in Italy. Rationale, organization, definition of referral criteria, strategies, interventional programs, long-term surveillance and home assistance of this model are described and discussed.
Collapse
Affiliation(s)
- Maurizio Galderisi
- Interdepartmental Program of Cardiovascular Emergencies and Onco-Hematologic Complications, Department of advanced Biomedical Sciences, Federico II University Hospital
| | - Ciro Santoro
- Interdepartmental Program of Cardiovascular Emergencies and Onco-Hematologic Complications, Department of advanced Biomedical Sciences, Federico II University Hospital
| | - Eduardo Bossone
- Unit of Cardiac Rehabilitation, Antonio Cardarelli Hospital, Naples, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II, University Hospital
| |
Collapse
|
18
|
Cadeddu Dessalvi C, Pepe A, Penna C, Gimelli A, Madonna R, Mele D, Monte I, Novo G, Nugara C, Zito C, Moslehi JJ, de Boer RA, Lyon AR, Tocchetti CG, Mercuro G. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev 2020; 24:915-925. [PMID: 31256318 DOI: 10.1007/s10741-019-09820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.
Collapse
Affiliation(s)
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Gimelli
- Nuclear Medicine Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Donato Mele
- Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Giuseppina Novo
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Cinzia Nugara
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology, University of Messina, Messina, Italy
| | - Javid J Moslehi
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | | | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4965171. [PMID: 32454939 PMCID: PMC7238386 DOI: 10.1155/2020/4965171] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest in recent times.
Collapse
|
20
|
Cardioprotective Effect of Croton macrostachyus Stem Bark Extract and Solvent Fractions on Cyclophosphamide-Induced Cardiotoxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8467406. [PMID: 32328140 PMCID: PMC7150702 DOI: 10.1155/2020/8467406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
Objective To evaluate the antioxidant and cardioprotective activities of stem bark extract and solvent fractions of Croton macrostachyus on cyclophosphamide-induced cardiotoxicity in rats. Materials and Methods. DPPH free radical scavenging assay method was used to determine antioxidant activity whereas Sprague-Dawley rats were used to evaluate the cardioprotective activity. Except for the normal control, all groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on the first day. Enalapril at 10 mg/kg was used as a reference. The hydromethanolic crude extract (100, 200, and 400 mg/kg) and aqueous and ethyl acetate fractions (100 and 200 mg/kg, each) were administered for 10 days. The cardioprotective activities were evaluated using cardiac biomarkers such as Troponin I, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and histopathological studies of heart tissue. Results Crude extract and ethyl acetate and aqueous fractions exhibited free radical scavenging activities at IC50 of 594 μg/mL, 419 μg/mL, and 716 μg/mL, respectively. Crude extract at 400 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.29 ± 0.06 ng/mL, 103.00 ± 7.63 U/L, 99.80 ± 6.18 U/L, and 108.80 ± 8.81 U/L, respectively. In addition, ethyl acetate fraction at 200 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.22 ± 0.02 ng/mL, 137.00 ± 14.30 U/L, 90.33 ± 6.13 U/L, and 166.67 ± 13.50 U/L, respectively, compared with the cyclophosphamide control group. Conclusions Croton macrostachyus possesses cardioprotective activities and it could be a possible source of treatment for cardiotoxicity induced by cyclophosphamide.
Collapse
|
21
|
Guo P, He Y, Xu T, Pi C, Jiang Q, Wei Y, Zhao L. Co-delivery system of chemotherapy drugs and active ingredients from natural plants: a brief overview of preclinical research for cancer treatment. Expert Opin Drug Deliv 2020; 17:665-675. [PMID: 32149539 DOI: 10.1080/17425247.2020.1739647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Many active ingredients from natural plants (AINPs) have been revealed to possess remarkable anticancer properties. Combination chemotherapy of chemo-drugs and AINPs has also proven to be more advantageous than individual chemo-drug treatment with respect to enhancing efficiency, alleviating toxicity, and controlling the development of multidrug resistance (MDR). Co-delivery is considered a promising method to effectively achieve and manage combination chemotherapy of chemo-drugs and AINPs, and various distinctive and functional co-delivery systems have been designed for these purposes to date.Areas covered: This review focuses on recent preclinical investigations of co-delivery systems for chemo-drugs and AINPs as new cancer treatment modalities. We particularly emphasize the apparent treatment advantages of these approaches, including augmenting efficiency, reducing toxicity, and controlling MDR.Expert opinion: There has already been notable progress in the application of combination chemotherapy with co-delivery systems loaded with chemo-drugs and AINPs based on results with cellular and animal models. The main challenge is to translate these successes into new anticancer compound preparations and promote their clinical application in practice. Nevertheless, continuous efforts with new designs of co-delivery systems remain essential, providing a foundation for future clinical research and development of new anticancer drugs.
Collapse
Affiliation(s)
- Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Casavecchia G, Galderisi M, Novo G, Gravina M, Santoro C, Agricola E, Capalbo S, Zicchino S, Cameli M, De Gennaro L, Righini FM, Monte I, Tocchetti CG, Brunetti ND, Cadeddu C, Mercuro G. Early diagnosis, clinical management, and follow-up of cardiovascular events with ponatinib. Heart Fail Rev 2020; 25:447-456. [DOI: 10.1007/s10741-020-09926-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Matyjaszczyk-Gwarda K, Wójcik T, Łukawska M, Chlopicki S, Walczak M. Lipophilicity profiling of anthracycline antibiotics by microemulsion electrokinetic chromatography-effects on cardiotoxicity and endotheliotoxicity. Electrophoresis 2019; 40:3108-3116. [PMID: 31650569 DOI: 10.1002/elps.201900259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 01/11/2023]
Abstract
Accurate profiling of the lipophilicity of amphoteric compounds might be complex and laborious. In the present work the lipophilicity of 12 anthracycline antibiotics-four parent drugs: doxorubicin, daunorubicin, epidoxorubicin, and epidaunorubicin and eight novel formamidyne derivatives with attached morpholine, hexamethylenoimine or piperidine rings-was determined based on novel approach using MEEKC. In the second stage, lipophilicity was correlated with anthracycline toxicity towards two cell lines. In rat cardiomyoblast cell line (h9c2) a significant correlation between the logP and toxicity was found. The anthracycline lipophilicity was not correlated with toxicity towards the endothelial hybrid cell line (EAhy.926). In conclusion, the lipophilicity of anthracyclines seems to determine their toxicity towards cardiomyoblasts but not on endothelial cells, suggesting a different mechanism of anthracyclines intercellular transport or extrusion in cardiomyoblast and endothelial cells.
Collapse
Affiliation(s)
- Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.,Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Wójcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Małgorzata Łukawska
- Łukasiewicz Research Network-Institute of Biotechnology and Antibiotics, Warszawa, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.,Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
24
|
Bassareo PP, Cocco D, Cadeddu C, Mercuro G. Multimodality Imaging Diagnosis of Multiple Ventricular Thrombosis and Massive Stroke after Gemcitabine and Cisplatin Chemotherapy for Urothelial Cancer. J Cardiovasc Echogr 2019; 29:71-74. [PMID: 31392124 PMCID: PMC6657469 DOI: 10.4103/jcecho.jcecho_12_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer and chemotherapy are known to be risk factors for developing coagulative disorders, venous thrombosis, adverse cardiovascular events, and cardiotoxicity. Combined modality gemcitabine–cisplatin chemotherapy is often administered to treat a few solid tumors. We report the unusual case of a man suffering from urothelial cancer and admitted for chemotherapy, who developed an ischemic stroke after the last chemotherapeutical cycle. During his hospital stay, at echocardiographic examination, left ventricular transient hypokinesia and two intraventricular thrombi were detected, without evidence of acute coronary syndrome. Multimodality imaging approach (i.e., transthoracic echo, transoesophageal echo, computed tomography, and cardiac magnetic resonance imaging) played a pivotal role for a clear diagnosis and prompt decision-making. This is the first report of an intraventricular-related arterial thromboembolic event in a patient treated with the combination gemcitabine–cisplatin.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Department of Cardiology, University College of Dublin, Mater Misericordiae University Hospital, Dublin, Republic of Ireland, Monserrato, Italy.,Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Daniele Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Christian Cadeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| |
Collapse
|
25
|
|
26
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|