1
|
Frey J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins (Basel) 2019; 11:toxins11120719. [PMID: 31835534 PMCID: PMC6950323 DOI: 10.3390/toxins11120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.
Collapse
Affiliation(s)
- Joachim Frey
- Vetsuisse Facutly, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Health Res Rev 2019; 19:79-99. [PMID: 30683173 DOI: 10.1017/s1466252318000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
3
|
Periasamy S, Praveena PE, Singh N. Effects of Pasteurella multocida lipopolysaccharides on bovine leukocytes. Microb Pathog 2018; 119:225-232. [PMID: 29678740 DOI: 10.1016/j.micpath.2018.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide (LPS) is a major virulence factor of Gram-negative bacteria playing a major role in stimulating protective immune response in mammalian host. However, in many gram-negative bacterial infections, LPS also elicits immunopathology by inducing excessive inflammatory changes. P. multocida (Pm), a gram-negative bacterium, causes acute lung inflammation and fatal septicemic disease in animals. However, the effects of Pm LPS on host cells are little known. In this study, LPS isolated from three different serotypes (B:2, A:1 and A:3) of Pm were individually tested in vitro to assess the response of bovine leukocytes. Pm LPS induced cell proliferation and cell death of leukocytes, in a dose- and time-dependent manner. In these cells, mitochondrial dysfunction and caspase activation mediate cell death.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar 243112 India
| | - P Ezhil Praveena
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar 243112 India
| | - Nem Singh
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar 243112 India.
| |
Collapse
|
4
|
Buač M, Mojsilović S, Mišić D, Vuković D, Savić O, Valčić O, Marković D, Gvozdić D, Ilić V, Fratrić N. Circulating immune complexes of calves with bronchopneumonia modulate the function of peripheral blood leukocytes: In vitro evaluation. Res Vet Sci 2016; 106:135-42. [DOI: 10.1016/j.rvsc.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/09/2016] [Accepted: 04/03/2016] [Indexed: 12/29/2022]
|
5
|
Complete Closed Genome Sequences of a Mannheimia haemolytica Serotype A1 Leukotoxin Deletion Mutant and Its Wild-Type Parent Strain. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00417-15. [PMID: 25953160 PMCID: PMC4424311 DOI: 10.1128/genomea.00417-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mannheimia haemolytica is a bacterial pathogen that secretes leukotoxin (LktA) which binds to leukocyte membranes via CD18, causing bacterial pneumonia in ruminants. We report the complete closed genome sequences of a leukotoxin mutant and its parent strain that are frequently used in respiratory disease studies.
Collapse
|
6
|
Sláma P, Sládek Z, Ryšánek D. Application of methods for detection of apoptosis and necrosis of bovine blood neutrophil granulocytes in vitro. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200654050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Duquette SC, Fischer CD, Feener TD, Muench GP, Morck DW, Barreda DR, Nickerson JG, Buret AG. Anti-inflammatory effects of retinoids and carotenoid derivatives on caspase-3–dependent apoptosis and efferocytosis of bovine neutrophils. Am J Vet Res 2014; 75:1064-75. [DOI: 10.2460/ajvr.75.12.1064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
N'jai AU, Rivera J, Atapattu DN, Owusu-Ofori K, Czuprynski CJ. Gene expression profiling of bovine bronchial epithelial cells exposed in vitro to bovine herpesvirus 1 and Mannheimia haemolytica. Vet Immunol Immunopathol 2013; 155:182-9. [PMID: 23890750 PMCID: PMC7127263 DOI: 10.1016/j.vetimm.2013.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Bovine respiratory disease (BRD) often occurs when active respiratory virus infections (BHV-1, etc.) impair resistance to Mannheimia haemolytica infection in the lower respiratory tract. The interactions that occur when the respiratory epithelium encounters these viral and bacterial pathogens are poorly understood. We used Agilent bovine gene microarray chips containing 44,000 transcripts to elucidate bovine bronchial epithelial cell (BBEC) responses following in vitro exposure to BHV-1 alone, M. haemolytica alone, or both BHV-1 and M. haemolytica. Microarray analysis revealed differential regulation (>2-fold) of 978 transcripts by BHV-1 alone, 2040 transcripts by M. haemolytica alone, and 2189 genes by BHV-1 and M. haemolytica in combination. M. haemolytica treatment produced significantly greater inductions (>10-fold) of several inflammation associated genes, such as CXCL2, IL-6, IL-1α, e-selectin, and IL-8, than to BHV-1 alone. Functional analysis of the microarray data revealed a significant upregulation of genes involved in important biological processes such as inflammation (TNF-α, IL-8, Tlr-2, IL-1, CXCL2, CSF2), vascular functions (VEGF, EDN2) and leukocyte migration (ICAM1, IL-16) during a co-infection with BHV-1 and M. haemolytica compared to either pathogen alone. This study provides evidence to support that lung epithelial cells are a source of mediators that may promote inflammatory changes observed during bovine respiratory disease.
Collapse
Affiliation(s)
- Alhaji U N'jai
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive-West, WI 52706, United States
| | | | | | | | | |
Collapse
|
9
|
Geering B, Stoeckle C, Conus S, Simon HU. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 2013; 34:398-409. [PMID: 23665135 DOI: 10.1016/j.it.2013.04.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022]
Abstract
Neutrophils, eosinophils, and basophils play essential roles during microbe-induced and sterile inflammation. The severity of such inflammatory processes is controlled, at least in part, by factors that regulate cell death and survival of granulocytes. In recent years, major progress has been made in understanding the molecular mechanisms of granulocyte cell death and in identifying novel damage- and pathogen-associated molecular patterns as well as regulatory cytokines impacting granulocyte viability. Furthermore, an increased interest in innate immunity has boosted our overall understanding of granulocyte biology. In this review, we describe and compare factors and mechanisms regulating neutrophil, eosinophil, and basophil lifespan. Because dysregulation of death pathways in granulocytes can contribute to inflammation-associated immunopathology, targeting granulocyte lifespan could be therapeutically promising.
Collapse
Affiliation(s)
- Barbara Geering
- Institute of Pharmacology, University of Bern, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
10
|
Frey J. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol 2011; 153:51-8. [PMID: 21645978 DOI: 10.1016/j.vetmic.2011.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/29/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding β-subunit (CD18) of β2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.
Collapse
Affiliation(s)
- Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Laenggasstrasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
11
|
Anti-Inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription. Antimicrob Agents Chemother 2010; 55:338-48. [PMID: 20956586 DOI: 10.1128/aac.01052-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which tulathromycin confers anti-inflammatory benefits.
Collapse
|
12
|
Kisiela DI, Aulik NA, Atapattu DN, Czuprynski CJ. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells. Cell Microbiol 2010; 12:976-87. [PMID: 20109159 DOI: 10.1111/j.1462-5822.2010.01445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria.
Collapse
Affiliation(s)
- Dagmara I Kisiela
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
14
|
Atapattu DN, Albrecht RM, McClenahan DJ, Czuprynski CJ. Dynamin-2-dependent targeting of mannheimia haemolytica leukotoxin to mitochondrial cyclophilin D in bovine lymphoblastoid cells. Infect Immun 2008; 76:5357-65. [PMID: 18765728 PMCID: PMC2573345 DOI: 10.1128/iai.00221-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 06/09/2008] [Accepted: 08/26/2008] [Indexed: 11/20/2022] Open
Abstract
Exotoxins which belong to the family containing the RTX toxins (repeats in toxin) contribute to a variety of important human and animal diseases. One example of such a toxin is the potent leukotoxin (LKT) produced by the bovine respiratory pathogen Mannheimia haemolytica. LKT binds to CD18, resulting in the death of bovine leukocytes. In this study, we showed that internalized LKT binds to the outer mitochondrial membrane, which results in the release of cytochrome c and collapse of the mitochondrial membrane potential (psi(m)). Incubation of bovine lymphoblastoid cells (BL-3 cells) with the mitochondrial membrane-stabilizing agent cyclosporine (CSA) reduced LKT-mediated cytotoxicity, cytochrome c release, and collapse of the psi(m). Coimmunoprecipitation and intracellular binding studies suggested that LKT binds to the mitochondrial matrix protein cyclophilin D. We also demonstrated that LKT mobilizes the vesicle scission protein dynamin-2 from mitochondria to the cell membrane. Incubation with CSA depleted mitochondrial dynamin-2 in BL-3 cells, making it unavailable for vesicle scission and LKT internalization. The results of this study show that LKT trafficking and LKT-mediated cell death involve dynamin-2 and cyclophilin D, in a process that can be prevented by the mitochondrial membrane-protecting function of CSA.
Collapse
Affiliation(s)
- Dhammika N Atapattu
- Department of Pathobiological Sciences, 2015 Linden Drive West, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Mannheimia haemolytica is the principal bacterium isolated from respiratory disease in feedlot cattle and is a significant component of enzootic pneumonia in all neonatal calves. A commensal of the nasopharynx, M. haemolytica is an opportunist, gaining access to the lungs when host defenses are compromised by stress or infection with respiratory viruses or mycoplasma. Although several serotypes act as commensals, A1 and A6 are the most frequent isolates from pneumonic lungs. Potential virulence factors include adhesin, capsular polysaccharide, fimbriae, iron-regulated outer membrane proteins, leukotoxin (Lkt), lipopolysaccharide (LPS), lipoproteins, neuraminidase, sialoglycoprotease and transferrin-binding proteins. Of these, Lkt is pivotal in induction of pneumonia. Lkt-mediated infiltration and destruction of neutrophils and other leukocytes impairs bacterial clearance and contributes to development of fibrinous pneumonia. LPS may act synergistically with Lkt, enhancing its effects and contributing endotoxic activity. Antibiotics are employed extensively in the feedlot industry, both prophylactically and therapeutically, but their efficacy varies because of inconsistencies in diagnosis and treatment regimes and development of antibiotic resistance. Vaccines have been used for many decades, even though traditional bacterins failed to demonstrate protection and their use often enhanced disease in vaccinated animals. Modern vaccines use culture supernatants containing Lkt and other soluble antigens, or bacterial extracts, alone or combined with bacterins. These vaccines have 50-70% efficacy in prevention of M. haemolytica pneumonia. Effective control of M. haemolytica pneumonia is likely to require a combination of more definitive diagnosis, efficacious vaccines, therapeutic intervention and improved management practices.
Collapse
|
16
|
Czuprynski CJ, Leite F, Sylte M, Kuckleburg C, Schultz R, Inzana T, Behling-Kelly E, Corbeil L. Complexities of the pathogenesis ofMannheimia haemolyticaandHaemophilus somnusinfections: challenges and potential opportunities for prevention? Anim Health Res Rev 2007; 5:277-82. [PMID: 15984339 DOI: 10.1079/ahr200483] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractProgress in producing improved vaccines against bacterial diseases of cattle is limited by an incomplete understanding of the pathogenesis of these agents. Our group has been involved in investigations of two members of the family Pasteurellaceae,Mannheimia haemolyticaandHaemophilus somnus, which illustrate some of the complexities that must be confronted. Susceptibility toM. haemolyticais greatly increased during active viral respiratory infection, resulting in rapid onset of a severe and even lethal pleuropneumonia. Despite years of investigation, understanding of the mechanisms underlying this viral–bacterial synergism is incomplete. We have investigated the hypothesis that active viral infection increases the susceptibility of bovine leukocytes to theM. haemolyticaleukotoxin by increasing the expression of or activating the β2integrin CD11a/CD18 (LFA-1) on the leukocyte surface.In vitroexposure to proinflammatory cytokines (i.e. interleukin-1β, tumor necrosis factor-α and interferon-γ) increases LFA-1 expression on bovine leukocytes, which in turn correlates with increased binding and responsiveness to the leukotoxin. Alveolar macrophages and peripheral blood leukocytes from cattle with active bovine herpesvirus-1 (BVH-1) infection are more susceptible to the lethal effects of the leukotoxinex vivothan leukocytes from uninfected cattle. Likewise,in vitroincubation of bovine leukocytes with bovine herpesvirus 1 (BHV-1) potentiates LFA-1 expression and makes the cells more responsive to leukotoxin. A striking characteristic ofH. somnusinfection is its propensity to cause vasculitis. We have shown thatH. somnusand its lipo-oligosaccharide (LOS) trigger caspase activation and apoptosis in bovine endothelial cellsin vitro. This effect is associated with the production of reactive oxygen and nitrogen intermediates, and is amplified in the presence of platelets. The adverse effects ofH. somnusLOS are mediated in part by activation of endothelial cell purinergic receptors such as P2X7. Further dissection of the pathways that lead to endothelial cell damage in response toH. somnusmight help in the development of new preventive or therapeutic regimens. A more thorough understanding ofM. haemolyticaandH. somnusvirulence factors and their interactions with the host might identify new targets for prevention of bovine respiratory disease.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kelley ST, Cassirer EF, Weiser GC, Safaee S. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep. INFECTION GENETICS AND EVOLUTION 2007; 7:13-23. [PMID: 16635591 DOI: 10.1016/j.meegid.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 11/25/2022]
Abstract
Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated from sheep in distantly removed populations. For example, lktA sequences from P. trehalosi isolated from remote Alaskan Dall's sheep were 100% identical over a 900-nucleotide stretch to sequences determined from M. haemolytica isolated from domestic sheep in the UK. This extremely high degree of sequence similarity of lktA sequences among distinct bacterial species suggests that HGT has played a role in the evolution of lktA in wild hosts.
Collapse
Affiliation(s)
- Scott T Kelley
- Department of Biology, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182, United States.
| | | | | | | |
Collapse
|
18
|
Atapattu DN, Czuprynski CJ. Mannheimia haemolytica leukotoxin induces apoptosis of bovine lymphoblastoid cells (BL-3) via a caspase-9-dependent mitochondrial pathway. Infect Immun 2005; 73:5504-13. [PMID: 16113266 PMCID: PMC1231077 DOI: 10.1128/iai.73.9.5504-5513.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/08/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022] Open
Abstract
Mannheimia haemolytica is a key pathogen in the bovine respiratory disease complex. It produces a leukotoxin (LKT) that is an important virulence factor, causing cell death in bovine leukocytes. The LKT binds to the beta(2) integrin CD11a/CD18, which usually activates signaling pathways that facilitate cell survival. In this study, we investigated mechanisms by which LKT induces death in bovine lymphoblastoid cells (BL-3). Incubation of BL-3 cells with a low concentration of LKT results in the activation of caspase-3 and caspase-9 but not caspase-8. Similarly, the proapoptotic proteins Bax and BAD were significantly elevated, while the antiapoptotic proteins Bcl-2, Bcl(XL) and Akt-1 were downregulated. Following exposure to LKT, we also observed a reduction in mitochondrial cytochrome c and corresponding elevation of cytosolic cytochrome c, suggesting translocation from the mitochondrial compartment to the cytosol. Consistent with this observation, tetramethylrhodamine ethyl ester perchlorate staining revealed that mitochondrial membrane potential was significantly reduced. These data suggest that LKT induces apoptosis of BL-3 cells via a caspase-9-dependent mitochondrial pathway. Furthermore, scanning electron micrographs of mitochondria from LKT-treated BL-3 cells revealed lesions in the outer mitochondrial membrane, which are larger than previous reports of the permeability transition pore through which cytochrome c is usually released.
Collapse
Affiliation(s)
- Dhammika N Atapattu
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Dr. West, Madison, WI 53706, USA
| | | |
Collapse
|
19
|
Sladek Z, Rysanek D. Tissue pool neutrophils of the bovine mammary gland: ultrastructural features during in vitro senescence. Anat Histol Embryol 2005; 34:159-66. [PMID: 15929730 DOI: 10.1111/j.1439-0264.2005.00586.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the study was to verify whether the in vitro senescence process of tissue pool neutrophils of the bovine mammary gland is accompanied by similar changes of ultrastructure as typically occurs in in vivo conditions. The experiments were carried out in four clinically healthy, Holstein x Bohemian Red-Pied crossbred heifers aged 14-16 months. With the aid of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and flow cytometry (FCM), neutrophil apoptosis in vivo was detected and during senescence it was monitored in vitro. The neutrophil apoptosis comprised three ultrastructurally different stages: (1) karyopyknosis, (2) zeiosis, and (3) apoptotic bodies. These stages were obvious in the apoptotic neutrophils both in vivo and in vitro. In addition to the common morphological signs, however, ultrastructural differences were also detected in apoptotic neutrophils in vitro. These in vitro ultrastructural differences mostly comprised hyper-vacuolation of the cytoplasm with mega-vacuoles and secondary necrosis of apoptotic neutrophils. Morphological features of apoptosis during in vitro senescence of tissue pool neutrophils of the bovine mammary gland were shown to be in close accordance with these in vivo signs.
Collapse
Affiliation(s)
- Z Sladek
- Department of Morphology, Physiology and Veterinary Sciences, Faculty of Agriculture, Mendel University, Zemedelska 1, Brno 613 00, Czech Republic.
| | | |
Collapse
|
20
|
Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microb Pathog 2005; 38:161-72. [PMID: 15797811 DOI: 10.1016/j.micpath.2005.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/03/2005] [Accepted: 01/03/2005] [Indexed: 01/24/2023]
Abstract
Mannheimia (Pasteurella) haemolytica leukotoxin (LktA) binds to the bovine beta2 integrins (such as LFA-1-CD11a/CD18) and leads to subsequent cellular effects in a dose dependent manner. The objectives of this study were to delineate the mechanisms that underlie LktA-induced oncosis and apoptosis and to examine the role of LktA/LFA-1 interaction in these events. The results demonstrate that LktA-induced oncosis proceeds through a LFA-1 and caspase-1 dependent pathway referred to as 'pyrotosis', as well as through a LFA-1- and caspase-1-independent pathway. LktA-induced apoptosis in alveolar macrophages involves activation of caspase-3 and engages the extrinsic and intrinsic pathways of apoptosis, with the extrinsic pathway being dependent on LFA-1 signaling and TNFalpha.
Collapse
Affiliation(s)
- Praveen Thumbikat
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St.Paul, MN 55108, USA
| | | | | | | |
Collapse
|