1
|
da Silveira BP, Kahn SK, Legere RM, Bray JM, Cole-Pfeiffer HM, Golding MC, Cohen ND, Bordin AI. Enteral immunization with live bacteria reprograms innate immune cells and protects neonatal foals from pneumonia. Sci Rep 2025; 15:18156. [PMID: 40415003 DOI: 10.1038/s41598-025-02060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Using a horse foal model, we show that enteral immunization of newborn foals with Rhodococcus equi overcomes neonatal vaccination challenges by reprogramming innate immune responses, inducing R. equi-specific adaptive humoral and cell-mediated immune responses and protecting foals against experimental pneumonia challenge. Foals were immunized twice via gavage of R. equi (immunized group) or saline (control group) at ages 1 and 3 days. At age 28 days, all foals were challenged intrabronchially with R. equi. Post-challenge, all 5 immunized foals remained healthy, whereas 67% (4/6) of control foals developed clinical pneumonia. Immunized foals exhibit changes in the epigenetic profile of blood monocytes, > 1,000 differentially-expressed genes in neutrophils, higher concentrations of R. equi-specific IgG1 and IgG4/7, and a higher number of IFN-γ producing lymphocytes in response to R. equi stimulation indicating T helper type 1 response compared to control foals. Together, our data indicate that early life exposure to R. equi in the gastrointestinal tract can modulate innate immune responses, generate specific antibodies and cell-mediated immunity, and protect against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Rebecca M Legere
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jocelyne M Bray
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Hannah M Cole-Pfeiffer
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond-A Comprehensive Review. Antibiotics (Basel) 2024; 13:713. [PMID: 39200013 PMCID: PMC11350719 DOI: 10.3390/antibiotics13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
Collapse
Affiliation(s)
- Ajran Kabir
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Bibek Lamichhane
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Tasmia Habib
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Alexis Adams
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Nathan M. Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Mats H. T. Troedsson
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Yosra A. Helmy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| |
Collapse
|
3
|
Higgins C, Cohen ND, Slovis N, Boersma M, Gaonkar PP, Golden DR, Huber L. Antimicrobial Residue Accumulation Contributes to Higher Levels of Rhodococcus equi Carrying Resistance Genes in the Environment of Horse-Breeding Farms. Vet Sci 2024; 11:92. [PMID: 38393110 PMCID: PMC10892917 DOI: 10.3390/vetsci11020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial residues excreted in the environment following antimicrobial treatment enhance resistant microbial communities in the environment and have long-term effects on the selection and maintenance of antimicrobial resistance genes (AMRGs). In this study, we focused on understanding the impact of antimicrobial use on antimicrobial residue pollution and antimicrobial resistance (AMR) in the environment of horse-breeding farms. Rhodococcus equi is an ideal microbe to study these associations because it lives naturally in the soil, exchanges AMRGs with other bacteria in the environment, and can cause disease in animals and humans. The environment is the main source of R. equi infections in foals; therefore, higher levels of multidrug-resistant (MDR) R. equi in the environment contribute to clinical infections with MDR R. equi. We found that macrolide residues in the environment of horse-breeding farms and the use of thoracic ultrasonographic screening (TUS) for early detection of subclinically affected foals with R. equi infections were strongly associated with the presence of R. equi carrying AMRGs in the soil. Our findings indicate that the use of TUS contributed to historically higher antimicrobial use in foals, leading to the accumulation of antimicrobial residues in the environment and enhancing MDR R. equi.
Collapse
Affiliation(s)
- Courtney Higgins
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Noah D. Cohen
- Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M, College Station, TX 77843, USA;
| | - Nathan Slovis
- Hagyard Equine Medical Institute, Lexington, KY 40511, USA
| | - Melissa Boersma
- College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA;
| | - Pankaj P. Gaonkar
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Daniel R. Golden
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| | - Laura Huber
- Pathobiology Department, College of Veterinary Medicine, Auburn University, Auburn, AL 36832, USA (P.P.G.)
| |
Collapse
|
4
|
Kahn SK, Cohen ND, Bordin AI, Coleman MC, Heird JC, Welsh TH. Transfusion of hyperimmune plasma for protecting foals against Rhodococcus equi pneumonia. Equine Vet J 2022; 55:376-388. [PMID: 35834170 DOI: 10.1111/evj.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
The bacterium Rhodococcus equi causes pneumonia in foals that is prevalent at breeding farms worldwide. In the absence of an effective vaccine, transfusion of commercial plasma from donor horses hyperimmunised against R. equi is used by many farms to reduce the incidence of pneumonia among foals at farms where the disease is endemic. The effectiveness of hyperimmune plasma for controlling R. equi pneumonia in foals has varied considerably among reports. The purposes of this narrative review are: 1) to review early studies that provided a foundational basis for the practice of transfusion of hyperimmune plasma that is widespread in the US and in many other countries; 2) to summarise current knowledge of hyperimmune plasma for preventing R. equi pneumonia; 3) to provide an interpretive summary of probable explanations for the variable results among studies evaluating the effectiveness of transfusion of hyperimmune plasma for reducing the incidence of R. equi pneumonia; 4) to review mechanisms by which hyperimmune plasma might mediate protection; and 5) to consider risks of transfusing foals with hyperimmune plasma. Although the weight of evidence supports the practice of transfusing foals with hyperimmune plasma to prevent R. equi pneumonia, many important gaps in our knowledge of this topic remain including the volume/dose of hyperimmune plasma to be transfused, the timing(s) of transfusion, and the mechanism(s) by which hyperimmune plasma mediates protection. Transfusing foals with hyperimmune plasma is expensive, labour-intensive, and carries risks for foals; therefore, alternative approaches for passive and active immunisation to prevent R. equi pneumonia are greatly needed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michelle C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James C Heird
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Cohen ND, Kahn SK, Bordin AI, Gonzales GM, da Silveira BP, Bray JM, Legere RM, Ramirez-Cortez SC. Association of pneumonia with concentrations of virulent Rhodococcus equi in fecal swabs of foals before and after intrabronchial infection with virulent R. equi. J Vet Intern Med 2022; 36:1139-1145. [PMID: 35322902 PMCID: PMC9151490 DOI: 10.1111/jvim.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background Intragastric administration of virulent Rhodococcus equi protects foals against subsequent experimental intrabronchial (IB) infection, but it is unknown whether R. equi naturally ingested by foals contributes to their susceptibility to pneumonia. Hypothesis Fecal concentration of virulent R. equi before IB infection with R. equi is positively associated with protection from pneumonia in foals. Animals Twenty‐one university‐owned foals. Methods Samples were collected from experimental studies. Five foals were gavaged with live, virulent R. equi (LVRE) at age 2 and 4 days; the remaining 16 foals were not gavaged with LVRE (controls). Fecal swabs were collected from foals at ages 28 days, immediately before IB infection. Foals were monitored for clinical signs of pneumonia, and fecal swabs were collected approximately 2 weeks after IB infection. Swabs were tested by quantitative PCR for concentration of virulent R. equi (ie, copy numbers of the virulence‐associated protein A gene [vapA] per 100 ng fecal DNA). Results Fecal concentrations of virulent R. equi (vapA) before IB infection were significantly (P < .05) lower in control foals (25 copies/100 ng DNA [95% CI, 5 to 118 copies/100 ng DNA) that developed pneumonia (n = 8) than in healthy control foals (n = 8; 280 copies/100 ng DNA; 95% CI, 30 to 2552 copies/100 ng DNA) or those gavaged with LVRE (707 copies/100 ng DNA, 95% CI, 54 to 9207 copies/100 ng DNA). Conclusions and Clinical Importance Greater natural ingestion of LVRE might contribute to protection against pneumonia among foals.
Collapse
Affiliation(s)
- Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Giana M Gonzales
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jocelyne M Bray
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rebecca M Legere
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sophia C Ramirez-Cortez
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Roth P, Stanley J, Chamoun-Emanuelli A, Whitfield-Cargile C, Coleman M. Fecal extract from obese horses induces an inflammatory response by murine macrophages in vitro. Am J Vet Res 2022; 83:419-425. [PMID: 35113795 DOI: 10.2460/ajvr.21.02.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the inflammatory response of murine macrophages exposed to the enteric microbiome of obese horses versus nonobese horses. SAMPLE Fecal samples from 12 obese horses (body condition score ≥ 7/9) and 12 nonobese horses (body condition score 4 to 5/9) with similar dietary management. PROCEDURES Fecal supernatant was prepared from frozen fecal samples. RAW 264.7 macrophage cells were exposed to the fecal extract. Inflammatory cytokine (interleukin-1β, tumor necrosis factor-α, and interleukin-6) gene expression was quantified via real-time quantitative reverse transcription PCR assay, and cytokine concentration was quantified via ELISA. Lipopolysaccharide was evaluated in fecal extract via chromo-limulus amoebocyte lysate assay. RESULTS Compared with fecal extracts from nonobese horses, fecal extracts from obese horses presented higher concentrations of lipopolysaccharide and induced a heightened expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interleukin-6 from macrophages. CLINICAL RELEVANCE The increased levels of inflammatory markers induced in murine macrophages by the microbiome of obese horses in vitro suggested important differences in the enteric microbial composition of these horses, compared with nonobese horses. Overall, this study showed that the microbiome may play a role in mediating an inflammatory response within the gastrointestinal tract of obese horses. Mechanisms of obesity in the horse have not been fully elucidated. Improved understanding of the pathophysiology of disease will guide future research into potential diagnostic and therapeutic interventions for equine obesity.
Collapse
|
7
|
Álvarez-Narváez S, Berghaus LJ, Morris ERA, Willingham-Lane JM, Slovis NM, Giguere S, Cohen ND. A Common Practice of Widespread Antimicrobial Use in Horse Production Promotes Multi-Drug Resistance. Sci Rep 2020; 10:911. [PMID: 31969575 PMCID: PMC6976650 DOI: 10.1038/s41598-020-57479-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
The practice of prophylactic administration of a macrolide antimicrobial with rifampin (MaR) to apparently healthy foals with pulmonary lesions identified by thoracic ultrasonography (i.e., subclinically pneumonic foals) is common in the United States. The practice has been associated epidemiologically with emergence of R. equi resistant to MaR. Here, we report direct evidence of multi-drug resistance among foals treated with MaR. In silico and in vitro analysis of the fecal microbiome and resistome of 38 subclinically pneumonic foals treated with either MaR (n = 19) or gallium maltolate (GaM; n = 19) and 19 untreated controls was performed. Treatment with MaR, but not GaM, significantly decreased fecal microbiota abundance and diversity, and expanded the abundance and diversity of antimicrobial resistance genes in feces. Soil plots experimentally infected with Rhodococcus equi (R. equi) and treated with MaR selected for MaR-resistant R. equi, whereas MaR-susceptible R. equi out-competed resistant isolates in GaM-treated or untreated plots. Our results indicate that MaR use promotes multi-drug resistance in R. equi and commensals that are shed into their environment where they can persist and potentially infect or colonize horses and other animals.
Collapse
Affiliation(s)
- S Álvarez-Narváez
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Ga, USA
| | - L J Berghaus
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Ga, USA
| | - E R A Morris
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J M Willingham-Lane
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Ga, USA
| | - N M Slovis
- Hagyard Equine Medical Institute, Lexington, KY, USA
| | - S Giguere
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Ga, USA
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Huber L, Giguère S, Cohen ND, Slovis NM, Berghaus L, Greiter M, Hart KA. Identification of macrolide- and rifampicin-resistant Rhodococcus equi in environmental samples from equine breeding farms in central Kentucky during 2018. Vet Microbiol 2019; 232:74-78. [PMID: 31030848 DOI: 10.1016/j.vetmic.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
Rhodococcus equi causes severe pneumonia in foals and is most often recognized in people as an opportunistic pathogen. Longitudinal studies examining antimicrobial-resistant R. equi from environmental samples are lacking. We hypothesized that antimicrobial-resistant R. equi would be detectable in the ground (pasture soil or stall bedding) and air at breeding farms with previous documentation of foals infected with resistant isolates, and that concentrations of resistant isolates would increase over time during the foaling season. In this prospective cohort study, ground and air samples were collected from stalls and paddocks in January, March, May and July of 2018 at 10 horse-breeding farms with history of foal pneumonia attributed to macrolide- or Rifampicin-resistant R. equi. Environmental samples were cultured in the presence and absence of macrolides and Rifampicin to select for resistant organisms. Data were analyzed with linear mixed-effects and Hurdle models. Concentrations of total R. equi in bedding or air of stalls were significantly (P < 0.05) higher in January than other months. The proportion of resistant R. equi in soil samples from paddocks was significantly (P < 0.05) higher than stall bedding during all months. For each month, air samples from paddocks had a significantly (P < 0.05) higher proportion of resistant isolates than those from stalls. Fifty-five percent of resistant soil isolates and 34% of resistant air isolates were considered virulent by identification of the vapA gene. Concentrations of resistant R. equi isolates did not increase over time during the foaling season. Antimicrobial-resistant R. equi can persist in the environment at farms with a history of pneumonia caused by resistant R. equi infections, and exposure to resistant isolates in paddocks and stalls appears stable during the foaling season. Resistant isolates in the environment not only pose a risk for disease but also can serve as a repository for dissemination of resistance genes.
Collapse
Affiliation(s)
- L Huber
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - S Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - N M Slovis
- Hagyard Equine Medical Institute, Lexington, KY, USA
| | - L Berghaus
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M Greiter
- Hagyard Equine Medical Institute, Lexington, KY, USA
| | - K A Hart
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Coleman MC, Blodgett GP, Bevevino KE, Ivanek R, Cummings KJ, Carter GK, Cohen ND. Foal-Level Risk Factors Associated With Development of Rhodococcus equi Pneumonia at a Quarter Horse Breeding Farm. J Equine Vet Sci 2018; 72:89-96. [PMID: 30929790 DOI: 10.1016/j.jevs.2018.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022]
Abstract
The occurrence of Rhodococcus equi at farms varies, with disease occurring endemically at some farms, but only sporadically, or not at all at other farms. Only some foals residing on endemic farms develop clinical signs of disease. Limited evidence is available regarding foal-level risk factors for the development of R. equi pneumonia. The purpose of this study was to identify foal-level risk factors associated with the development of R. equi pneumonia among foals at a large breeding farm in Texas with a recurrent problem of R. equi pneumonia. A retrospective cohort study was conducted using data from foals born at the farm from January 2009 through December 2011 that met the criteria for inclusion. Dam-level, foal-level, and health-related data were collected from all foals. Independent variables were analyzed with logistic regression, controlling for the effect of year. Data from 787 foals born at the farm were included, of which 209 (27%) developed R. equi pneumonia. The cumulative incidence of disease at the farm varied significantly by year. Foals that were diagnosed with a prior morbidity besides R. equi were less likely to develop R. equi pneumonia.
Collapse
Affiliation(s)
- Michelle C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX.
| | | | - Kari E Bevevino
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Renata Ivanek
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Gerald Kent Carter
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
10
|
Fecal shedding of Rhodococcus equi in mares and foals after experimental infection of foals and effect of composting on concentrations of R. equi in contaminated bedding. Vet Microbiol 2018; 223:42-46. [PMID: 30173750 DOI: 10.1016/j.vetmic.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/23/2022]
Abstract
Rhodococcus equi, a soil saprophyte, is a common cause of pneumonia in foals and a frequent opportunistic pathogen in immunosuppressed people. Because it is widespread in the environment, R. equi can be detected in the feces of most horses. However, the exact timing and rate of shedding relative to infection is unknown. The objectives of this study were to quantify shedding of R. equi in mares and foals after experimental infection of foals with 2 different inocula and to determine the effect of composting on concentrations of R. equi in contaminated bedding. Foals were infected intratracheally with virulent R. equi using inocula of 1 × 107 CFU/mL (n = 16) or 1 × 106 CFU/mL (n = 12) at 23 ± 2 days (range 21 to 27 days) of age. Fecal samples were collected from mares and foals prior to infection and on days 3, 7, and 14 post-infection for quantitative culture of total and virulent R. equi. Waste from the horses was composted for 7 days. Concentrations of total and virulent R. equi in foal feces were significantly higher on day 14 post-infection compared to day 0, regardless of inoculum size. Concentration of total R. equi in mare feces was significantly higher on days 3, 7 and 14 compared to day 0 regardless of inoculum size, whereas shedding of virulent R. equi only increased on day 14 post-infection. Composting for 7 days significantly decreased concentrations of total R. equi and virulent R. equi by an average of 1.08 ± 0.21 and 0.59 ± 0.26 log10 CFU/g, respectively.
Collapse
|
11
|
Bordin AI, Gressler LT, Alexander ERC, Sule P, Cirillo JD, Edwards JF, Cohen ND. Guinea pig infection with the intracellular pathogen Rhodococcus equi. Vet Microbiol 2018; 215:18-22. [PMID: 29426401 DOI: 10.1016/j.vetmic.2017.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/04/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
Rhodococcus equi is an opportunistic, intracellular pathogen that causes pyogranulomatous pneumonia in foals and immunocompromised people. Currently, there is no experimental model of R. equi pneumonia other than intra-bronchial experimental infection of foals with R. equi, which is labor-intensive and costly. This study's objective was to develop a guinea pig (GP) model of R. equi pneumonia that would facilitate development of novel approaches for controlling and preventing this disease. Guinea pigs were infected with either 101, 102, 103, or 104 colony forming units (CFUs) of a virulent strain of R. equi using a Madison aerosol chamber, or 106 or 107 CFUs of this strain intratracheally. Animals were monitored daily for clinical signs of pneumonia, and were euthanized and necropsied on days 1, 3, 7, or 35 post-infection (PI). Lung homogenates were plated onto selective agar to determine bacterial load. No clinical signs of disease were observed regardless of the inoculum dose or infection method. No bacteria were recovered from GPs euthanized at 35 days PI. Histology and immunostaining of T-cells, B-cells, and macrophages in lungs showed that inflammatory responses in infected GPs were similarly unremarkable irrespective of dose or route of infection. Guinea pigs appear to be resistant to pulmonary infection with virulent R. equi even at doses that reliably produce clinical pneumonia in foals.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| | - Leticia T Gressler
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ellen Ruth C Alexander
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - John F Edwards
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Gressler LT, Machado G, da Silveira BP, Cohen ND, Corbellini LG, Leotti VB, Diehl GN, Dos Santos LC, de Vargas AC. Prevalence of Rhodococcus equi from the nasal cavity of 1010 apparently healthy horses. Equine Vet J 2018; 50:667-671. [PMID: 29341220 DOI: 10.1111/evj.12804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/09/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rhodococcus equi is an important cause of foal pneumonia. While its isolation from different sources has been widely evaluated, there is a need to better understand the R. equi epidemiology from samples of the nasal cavity of healthy horses. OBJECTIVES To determine the prevalence of R. equi from the nasal cavity of healthy horses, along with its virulence profile, antimicrobial susceptibility and environmental variables associated. STUDY DESIGN Cross-sectional study. METHODS Swabs from the nasal cavity of 1010 apparently healthy horses from 341 farms were submitted for bacteriological analyses. The identity and virulence profile of the R. equi isolates were assessed by multiplex PCR; antimicrobial susceptibility was determined by the disk-diffusion method. The occurrence of R. equi was calculated at the level of both animal and farm. The association of seven specific environmental factors with R. equi isolation was assessed using logistic regression and by a spatial scan statistical method to determine the presence of local clusters. RESULTS Antimicrobial-sensitive R. equi was isolated from 10 (1%) of 1010 horses ranging between 3 and 29 years old. Ten farms (3%) had at least one positive horse. Only one R. equi isolate (10%) was classified as virulent. Red-Yellow Argisol (PVA/PV) soils were significantly associated with R. equi isolation (odds ratio (OR) 8.02; CI95% , 1.98-32.50, P = 0.01), and areas with well-drained soil were less likely to be test positive (OR 0.85; CI95% , 0.76-0.96, P = 0.03). MAIN LIMITATIONS The use of culture-based method instead of PCR-based assay and the lack of soil sampling. CONCLUSIONS Antimicrobial-sensitive R. equi may be considered a minor part of the normal bacterial flora in the nasal cavity of healthy and immunologically functional horses breeding on pasture. Further studies are warranted to determine if soils rich in iron and well-drained are, in fact, associated with the occurrence of R. equi.
Collapse
Affiliation(s)
- L T Gressler
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| | - G Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine North, Carolina State University, Raleigh, North Carolina, USA
| | - B P da Silveira
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| | - N D Cohen
- College of Veterinary Medicine, Veterinary Large Animal Clinical Sciences, Texas A&M, College Station, Texas, USA
| | - L G Corbellini
- Department of Statistics, Institute of Mathematics and Statistics and Post-Graduate Program of Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V B Leotti
- Department of Statistics, Institute of Mathematics and Statistics and Post-Graduate Program of Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - G N Diehl
- Department of Agriculture, Livestock and Agribusiness of the State of Rio Grande do Sul (SEAPA-RS), Brazil, Porto Alegre, Rio Grande do Sul, Brazil
| | - L C Dos Santos
- Department of Agriculture, Livestock and Agribusiness of the State of Rio Grande do Sul (SEAPA-RS), Brazil, Porto Alegre, Rio Grande do Sul, Brazil
| | - A C de Vargas
- Laboratory of Bacteriology, Federal University of Santa Maria (UFSM), Cidade Universitária, Bairro Camobi, Santa Maria - Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Shaw SD, Cohen ND, Chaffin MK, Blodgett GP, Syndergaard M, Hurych D. Estimating the Sensitivity and Specificity of Real-Time Quantitative PCR of Fecal Samples for Diagnosis of Rhodococcus equi Pneumonia in Foals. J Vet Intern Med 2015; 29:1712-7. [PMID: 26436545 PMCID: PMC4895660 DOI: 10.1111/jvim.13631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/17/2015] [Accepted: 08/26/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Real-time, quantitative PCR (qPCR) methods for detecting Rhodococcus equi in feces have been developed as a noninvasive, rapid diagnostic test for R. equi pneumonia, but have not been evaluated in a large population of foals. OBJECTIVE The objective of this study was to evaluate the clinical utility of fecal PCR as a diagnostic test for R. equi pneumonia in foals using receiver operating characteristic (ROC) methods. ANIMALS 186 foals born in 2011 at an R. equi-endemic ranch in Texas. METHODS Fecal samples were collected at the time of onset of clinical signs for pneumonic foals (n = 31). Foals with pneumonia were matched by age and birth date to healthy (n = 31) and subclinical (n = 124) control foals; fecal samples were collected from these controls. DNA was extracted from feces using commercial kits and concentration of virulent R. equi in feces was determined by qPCR. RESULTS Concentration of R. equi in feces differed significantly (P < .05) among groups. The area under the ROC curve for fecal qPCR for diagnosis of R. equi pneumonia was 89% (95% CI, 83-99), with a sensitivity of 94% and specificity of 72%. CONCLUSIONS AND CLINICAL IMPORTANCE qPCR of feces can be useful as an alternative to tracheobronchial aspiration for the diagnosis of R. equi in foals with clinical signs of pneumonia. Caution should be used in extrapolating results of this study to other populations because fecal concentration of R. equi might vary by geographic location or management practices.
Collapse
Affiliation(s)
- S D Shaw
- Department of Large Animal Clinical Sciences, College of Biomedical Sciences and Veterinary Medicine, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Biomedical Sciences and Veterinary Medicine, Texas A&M University, College Station, TX
| | - M K Chaffin
- Department of Large Animal Clinical Sciences, College of Biomedical Sciences and Veterinary Medicine, Texas A&M University, College Station, TX
| | | | | | - D Hurych
- Department of Large Animal Clinical Sciences, College of Biomedical Sciences and Veterinary Medicine, Texas A&M University, College Station, TX
| |
Collapse
|
14
|
Composition and Diversity of the Fecal Microbiome and Inferred Fecal Metagenome Does Not Predict Subsequent Pneumonia Caused by Rhodococcus equi in Foals. PLoS One 2015; 10:e0136586. [PMID: 26305682 PMCID: PMC4549325 DOI: 10.1371/journal.pone.0136586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023] Open
Abstract
In equids, susceptibility to disease caused by Rhodococcus equi occurs almost exclusively in foals. This distribution might be attributable to the age-dependent maturation of immunity following birth undergone by mammalian neonates that renders them especially susceptible to infectious diseases. Expansion and diversification of the neonatal microbiome contribute to development of immunity in the gut. Moreover, diminished diversity of the gastrointestinal microbiome has been associated with risk of infections and immune dysregulation. We thus hypothesized that varying composition or reduced diversity of the intestinal microbiome of neonatal foals would contribute to increased susceptibility of their developing R. equi pneumonia. The composition and diversity indices of the fecal microbiota at 3 and 5 weeks of age were compared among 3 groups of foals: 1) foals that subsequently developed R. equi pneumonia after sampling; 2) foals that subsequently developed ultrasonographic evidence of pulmonary abscess formation or consolidation but not clinical signs (subclinical group); and, 3) foals that developed neither clinical signs nor ultrasonographic evidence of pulmonary abscess formation or consolidation. No significant differences were found among groups at either sampling time, indicating absence of evidence of an influence of composition or diversity of the fecal microbiome, or predicted fecal metagenome, on susceptibility to subsequent R. equi pneumonia. A marked and significant difference identified between a relatively short interval of time appeared to reflect ongoing adaptation to transition from a milk diet to a diet including available forage (including hay) and access to concentrate fed to the mare.
Collapse
|
15
|
Reuss SM, Cohen ND. Update on Bacterial Pneumonia in the Foal and Weanling. Vet Clin North Am Equine Pract 2015; 31:121-35. [DOI: 10.1016/j.cveq.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
|
17
|
Bordin AI, Pillai SD, Brake C, Bagley KB, Bourquin JR, Coleman M, Oliveira FN, Mwangi W, McMurray DN, Love CC, Felippe MJB, Cohen ND. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals. PLoS One 2014; 9:e105367. [PMID: 25153708 PMCID: PMC4143214 DOI: 10.1371/journal.pone.0105367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals.
Collapse
Affiliation(s)
- Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Suresh D. Pillai
- National Center for Electron Beam Research and Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas, United States of America
| | - Courtney Brake
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kaytee B. Bagley
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica R. Bourquin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michelle Coleman
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | | | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - David N. McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, United States of America
| | - Charles C. Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Maria Julia B. Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kilcoyne I, Nieto J, Vaughan B. Tibial osteomyelitis caused by Rhodococcus equiin a mature horse. EQUINE VET EDUC 2014. [DOI: 10.1111/eve.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. Kilcoyne
- William R. Pritchard Veterinary Medical Teaching Hospital; California USA
| | - J. Nieto
- Department of Surgical and Radiological Sciences; School of Veterinary Medicine; University of California-Davis; California USA
| | - B. Vaughan
- Department of Surgical and Radiological Sciences; School of Veterinary Medicine; University of California-Davis; California USA
| |
Collapse
|
19
|
Stoughton W, Poole T, Kuskie K, Liu M, Bishop K, Morrissey A, Takai S, Cohen N. Transfer of the Virulence-Associated Protein A-Bearing Plasmid between Field Strains of Virulent and Avirulent Rhodococcus equi. J Vet Intern Med 2013; 27:1555-62. [DOI: 10.1111/jvim.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- W. Stoughton
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - T. Poole
- Southern Plains Agricultural Research Center; Agricultural Research Service; U.S. Department of Agriculture; College Station TX
| | - K. Kuskie
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - M. Liu
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - K. Bishop
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - A. Morrissey
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - S. Takai
- School of Veterinary Medicine and Animal Sciences; Kitasoto University; Towada Aomori Japan
| | - N. Cohen
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| |
Collapse
|
20
|
Cohen ND, Chaffin MK, Kuskie KR, Syndergaard MK, Blodgett GP, Takai S. Association of perinatal exposure to airborne Rhodococcus equi with risk of pneumonia caused by R equi in foals. Am J Vet Res 2013; 74:102-9. [PMID: 23270353 DOI: 10.2460/ajvr.74.1.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether the concentrations of airborne virulent Rhodococcus equi in stalls housing foals during the first 2 weeks after birth are associated with subsequent development of R equi pneumonia in those foals. SAMPLE Air samples collected from foaling stalls and holding pens in which foals were housed during the first 2 weeks after birth. PROCEDURES At a breeding farm in Texas, air samples (500 L each) were collected (January through May 2011) from stalls and pens in which 121 foals were housed on day 1 and on days 4, 7, and 14 after birth. For each sample, the concentration of airborne virulent R equi was determined with an immunoblot technique. The association between development of pneumonia and airborne R equi concentration was evaluated via random-effects Poisson regression analysis. RESULTS Some air samples were not available for analysis. Of the 471 air samples collected from stalls that housed 121 foals, 90 (19%) contained virulent R equi. Twenty-four of 121 (20%) foals developed R equi pneumonia. Concentrations of virulent R equi in air samples from stalls housing foals that developed R equi pneumonia were significantly higher than those in samples from stalls housing foals that did not develop pneumonia. Accounting for disease effects, air sample concentrations of virulent R equi did not differ significantly by day after birth or by month of birth. CONCLUSIONS AND CLINICAL RELEVANCE Exposure of foals to airborne virulent R equi during the first 2 weeks after birth was significantly (and likely causally) associated with development of R equi pneumonia.
Collapse
Affiliation(s)
- Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kachroo P, Ivanov I, Seabury AG, Liu M, Chowdhary BP, Cohen ND. Age-related changes following in vitro stimulation with Rhodococcus equi of peripheral blood leukocytes from neonatal foals. PLoS One 2013; 8:e62879. [PMID: 23690962 PMCID: PMC3656898 DOI: 10.1371/journal.pone.0062879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/25/2013] [Indexed: 01/10/2023] Open
Abstract
Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ashley G. Seabury
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mei Liu
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cohen ND, Kuskie KR, Smith JL, Slovis NM, Brown SE, Stepusin RS, Chaffin MK, Takai S, Carter CN. Association of airborne concentration of virulentRhodococcus equiwith location (stall versus paddock) and month (January through June) on 30 horse breeding farms in central Kentucky. Am J Vet Res 2012; 73:1603-9. [DOI: 10.2460/ajvr.73.10.1603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Abstract
Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism.
Collapse
|
24
|
Krishnen G, Kecskés ML, Rose MT, Geelan-Small P, Amprayn KO, Pereg L, Kennedy IR. Field monitoring of plant-growth-promoting rhizobacteria by colony immunoblotting. Can J Microbiol 2011; 57:914-22. [DOI: 10.1139/w11-059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inoculant plant-growth-promoting bacteria are emerging as an important component of sustainable agriculture. There is a need to develop inexpensive methods for enumerating these organisms after their application in the field, to better understand their survival and impacts on yields. Immunoblotting is one potential method to measure viable cells, but the high cost of the conventionally used nylon membranes makes this method prohibitive. In this study, less expensive alternative materials such as filter papers, glossy photo papers, and transparencies for the purpose of colony immunoblotting were evaluated and the best substance was chosen for further studies. Whatman filter paper No. 541 combined with a 0.01 mol·L–1 H2SO4 rinsing step gave similar results to nylon membranes but <20% of the overall cost of the original colony immunoblotting assay. The application of the modified immunoblot method was tested on nonsterile clay soil samples that were spiked with high numbers (>107 CFU·g–1) of the plant-growth-promoting bacteria Pseudomonas fluorescens , Azospirillum brasilense , or Rhizobium leguminosarum . The modified protocol allowed the identification and recovery of over 50% of the inoculated cells of all three strains, amidst a background of the native soil microflora. Subsequently, the survival of P. fluorescens was successfully monitored for several months after application to field-grown rice at Jerilderie, New South Wales, Australia, thus validating the procedure.
Collapse
Affiliation(s)
- Ganisan Krishnen
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
- Strategic Resources Research Centre, MARDI Head Quarters, 43400 Serdang, Selangor, Malaysia
| | - Mihály L. Kecskés
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
| | - Michael T. Rose
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
| | - Peter Geelan-Small
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
| | - Khanok-on Amprayn
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale New South Wales, Australia
| | - Ivan R. Kennedy
- SUNFix Centre for Nitrogen Fixation, Faculty of Agriculture, Food and Natural Resources, Biomedical Building, 1 Central Avenue, Eveleigh, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
Rhodococcus equi pneumonia in the foal--part 1: pathogenesis and epidemiology. Vet J 2011; 192:20-6. [PMID: 22015138 DOI: 10.1016/j.tvjl.2011.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/20/2011] [Accepted: 08/12/2011] [Indexed: 10/16/2022]
Abstract
Rhodococcus equi pneumonia is a worldwide infectious disease of major concern to the equine breeding industry. The disease typically manifests in foals as pyogranulomatous bronchopneumonia, resulting in significant morbidity and mortality. Inhalation of aerosolised virulent R. equi from the environment and intracellular replication within alveolar macrophages are essential components of the pathogenesis of R. equi pneumonia in the foal. Recently documented evidence of airborne transmission between foals indicates the potential for an alternative contagious route of disease transmission. In the first of this two-part review, the complexity of the host, pathogen and environmental interactions that underpin R. equi pneumonia will be discussed through an exploration of current understanding of the epidemiology and pathogenesis of R. equi pneumonia in the foal.
Collapse
|
26
|
Associations between the Exposure to Airborne Virulent Rhodococcus equi and the Incidence of R equi Pneumonia among Individual Foals. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Chaffin MK, Cohen ND, Martens RJ, O'Conor M, Bernstein LR. Evaluation of the efficacy of gallium maltolate for chemoprophylaxis against pneumonia caused byRhodococcus equiinfection in foals. Am J Vet Res 2011; 72:945-57. [DOI: 10.2460/ajvr.72.7.945] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kuskie KR, Smith JL, Wang N, Carter CN, Chaffin MK, Slovis NM, Stepusin RS, Cattoi AE, Takai S, Cohen ND. Effects of location for collection of air samples on a farm and time of day of sample collection on airborne concentrations of virulent Rhodococcus equi at two horse breeding farms. Am J Vet Res 2011; 72:73-9. [PMID: 21194338 DOI: 10.2460/ajvr.72.1.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether airborne concentrations of virulent Rhodococcus equi at 2 horse breeding farms varied on the basis of location, time of day, and month. SAMPLE POPULATION 2 farms in central Kentucky with recurrent R equi-induced pneumonia in foals. PROCEDURES From February through July 2008, air samples were collected hourly for a 24-hour period each month from stalls and paddocks used to house mares and their foals. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot technique. Differences were compared by use of zero-inflated negative binomial methods to determine effects of location, time, and month. RESULTS Whether mares and foals were housed predominantly in stalls or paddocks significantly affected results for location of sample collection (stall vs paddock) by increasing airborne concentrations of virulent R equi at the site where horses were predominantly housed. Airborne concentrations of virulent R equi were significantly higher from 6:00 pm through 11:59 pm than for the period from midnight through 5:59 am. Airborne concentrations of virulent R equi did not differ significantly between farms or among months. CONCLUSIONS AND CLINICAL RELEVANCE Airborne concentrations of virulent R equi were significantly increased when horses were predominantly housed at the site for collection of air samples (ie, higher in stalls when horses were predominantly housed in stalls and higher in paddocks when horses were predominantly housed in paddocks). Concentrations of virulent R equi among air samples collected between the hours of 6:00 am and midnight appeared similar.
Collapse
Affiliation(s)
- Kyle R Kuskie
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl Environ Microbiol 2010; 77:669-83. [PMID: 21097585 DOI: 10.1128/aem.01952-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The isolation and results of genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiDocB7, ReqiPine5, and ReqiPoco6 (hereafter referred to as Pepy6, DocB7, Pine5, and Poco6, respectively) are reported. Two phages, Pepy6 and Poco6, more than 75% identical, exhibited genome organization and protein sequence likeness to Lactococcus lactis phage 1706 and clostridial prophage elements. An unusually high fraction, 27%, of Pepy6 and Poco6 proteins were predicted to possess at least one transmembrane domain, a value much higher than the average of 8.5% transmembrane domain-containing proteins determined from a data set of 36,324 phage protein entries. Genome organization and protein sequence comparisons place phage Pine5 as the first nonmycobacteriophage member of the large Rosebush cluster. DocB7, which had the broadest host range among the four isolates, was not closely related to any phage or prophage in the database, and only 23 of 105 predicted encoded proteins could be assigned a functional annotation. Because of the relationship of Rhodococcus to Mycobacterium, it was anticipated that these phages should exhibit some of the features characteristic of mycobacteriophages. Traits that were identified as shared by the Rhodococcus phages and mycobacteriophages include the prevalent long-tailed morphology and the presence of genes encoding LysB-like mycolate-hydrolyzing lysis proteins. Application of DocB7 lysates to soils amended with a host strain of R. equi reduced recoverable bacterial CFU, suggesting that phage may be useful in limiting R. equi load in the environment while foals are susceptible to infection.
Collapse
|
30
|
Buntain S, Carter C, Kuskie K, Smith J, Stepusin R, Chaffin MK, Takai S, Cohen N. Frequency of Rhodococcus equi in Feces of Mares in Central Kentucky. J Equine Vet Sci 2010. [DOI: 10.1016/j.jevs.2010.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Dawson TRMY, Horohov DW, Meijer WG, Muscatello G. Current understanding of the equine immune response to Rhodococcus equi. An immunological review of R. equi pneumonia. Vet Immunol Immunopathol 2009; 135:1-11. [PMID: 20064668 DOI: 10.1016/j.vetimm.2009.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Rhodococcus equi is recognised to cause chronic purulent bronchopneumonia in foals of less than 6 months of age. Virulent strains of the bacteria possess a large 80-90 kb plasmid encoding several virulence-associated proteins, including virulence-associated protein A (VapA), which is associated with disease. R. equi pneumonia can represent significant costs and wastage to the equine breeding industry, especially on stud farms where the disease is endemic. This article reviews knowledge of the equine immune response, both in the immune adult and susceptible neonate, with respect to this pathogen. Humoral immune responses are addressed, with a discussion on the use of hyperimmune and normal adult equine plasma as prophylactic tools. The role that innate immune mechanisms play in the susceptibility of some foals to R. equi infection is also highlighted. Likewise, cell-mediated immune components are reviewed, with particular attention directed towards research undertaken to develop an effective vaccine for foals. It is possible that the implementation of a single immunoprophylaxis strategy to prevent R. equi infection on farms will yield disappointing results. Combined prophylactic protocols that address husbandry practices, environmental and aerosol contamination levels, enhancement of innate immunity, good quality hyperimmune plasma for the neonate, and vaccinal efficacy in the developing foal may be required.
Collapse
Affiliation(s)
- Tamsin R M Y Dawson
- The Faculty of Applied Sciences, University of Sunderland, Fleming Building, Wharncliffe Street, Sunderland SR1 3SD, UK.
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, UK
| | - Wim G Meijer
- School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - Gary Muscatello
- Faculty of Veterinary Science, The University of Sydney, Australia
| |
Collapse
|
32
|
|
33
|
von Bargen K, Haas A. Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 2009; 33:870-91. [PMID: 19453748 DOI: 10.1111/j.1574-6976.2009.00181.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The soil actinomycete Rhodococcus equi is a pulmonary pathogen of young horses and AIDS patients. As a facultative intracellular bacterium, R. equi survives and multiplies in macrophages and establishes its specific niche inside the host cell. Recent research into chromosomal virulence factors and into the role of virulence plasmids in infection and host tropism has presented novel aspects of R. equi infection biology and pathogenicity. This review will focus on new findings in R. equi biology, the trafficking of R. equi-containing vacuoles inside host cells, factors involved in virulence and host resistance and on host-pathogen interaction on organismal and cellular levels.
Collapse
|
34
|
Abstract
A pulmonary cavity is a gas-filled area of the lung in the center of a nodule or area of consolidation and may be clinically observed by use of plain chest radiography or computed tomography. Cavities are present in a wide variety of infectious and noninfectious processes. This review discusses the differential diagnosis of pathological processes associated with lung cavities, focusing on infections associated with lung cavities. The goal is to provide the clinician and clinical microbiologist with an overview of the diseases most commonly associated with lung cavities, with attention to the epidemiology and clinical characteristics of the host.
Collapse
|
35
|
Chaffin MK, Cohen ND, Martens RJ. Chemoprophylactic effects of azithromycin againstRhodococcus equi–induced pneumonia among foals at equine breeding farms with endemic infections. J Am Vet Med Assoc 2008; 232:1035-47. [DOI: 10.2460/javma.232.7.1035] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Cohen ND, Carter CN, Scott HM, Chaffin MK, Smith JL, Grimm MB, Kuskie KR, Takai S, Martens RJ. Association of soil concentrations ofRhodococcus equiand incidence of pneumonia attributable toRhodococcus equiin foals on farms in central Kentucky. Am J Vet Res 2008; 69:385-95. [DOI: 10.2460/ajvr.69.3.385] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Muscatello G, Leadon DP, Klayt M, Ocampo-Sosa A, Lewis DA, Fogarty U, Buckley T, Gilkerson JR, Meijer WG, Vazquez-Boland JA. Rhodococcus equi infection in foals: the science of 'rattles'. Equine Vet J 2007; 39:470-8. [PMID: 17910275 DOI: 10.2746/042516407x209217] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with Rhodococcus (Corynebacterium) equi is a well-recognised condition in foals that represents a consistent and serious risk worldwide. The condition manifests itself primarily as one of pulmonary abscessation and bronchitis, hence the terminology of 'rattles' derived from its most obvious clinical sign, frequently terminal when first identified. This review addresses the clinical manifestation, bacteriology and pathogenesis of the condition together with recent developments providing knowledge of the organism in terms of virulence, epidemiology, transmission and immune responses. Enhanced understanding of R. equi virulence mechanisms and biology derived from the recently available genome sequence may facilitate the rational development of a vaccine and the improvement of farm management practices used to control R. equi on stud farms in the future. Reliance on vaccines alone, in the absence of management strategies to control the on-farm challenge is likely to be disappointing.
Collapse
Affiliation(s)
- G Muscatello
- Equine Infectious Disease Laboratory, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|