1
|
Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Matsuhashi T, Kawano A, Miyata H, Kuwahara M, Ohmura H. Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses. Physiol Rep 2024; 12:e16083. [PMID: 38789393 PMCID: PMC11126422 DOI: 10.14814/phy2.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO2max) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO2max until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.
Collapse
Affiliation(s)
- Yusaku Ebisuda
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Kazutaka Mukai
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Yuji Takahashi
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Toshinobu Yoshida
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Tsubasa Matsuhashi
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Aoto Kawano
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hajime Ohmura
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| |
Collapse
|
2
|
Bonhomme MM, Patarin F, Kruse CJ, François AC, Renaud B, Couroucé A, Leleu C, Boemer F, Toquet MP, Richard EA, Seignot J, Wouters CP, Votion DM. Untargeted Metabolomics Profiling Reveals Exercise Intensity-Dependent Alterations in Thoroughbred Racehorses' Plasma after Routine Conditioning Sessions. ACS OMEGA 2023; 8:48557-48571. [PMID: 38144146 PMCID: PMC10733985 DOI: 10.1021/acsomega.3c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Thoroughbred (TB) racehorses undergo rigorous conditioning programs to optimize their physical and mental capabilities through varied exercise sessions. While conventional investigations focus on limited hematological and biochemical parameters, this field study employed untargeted metabolomics to comprehensively assess metabolic responses triggered by exercise sessions routinely used in TB conditioning. Blood samples were collected pre- and post-exercise from ten racehorses, divided into two groups based on exercise intensity: high intensity (n = 6, gallop at ± 13.38 m/s, 1400 m) and moderate intensity (n = 4, soft canter at ± 7.63 m/s, 2500 m). Intensity was evaluated through monitoring of the speed, heart rate, and lactatemia. Resting and 30 min post-exercise plasma samples were analyzed using ultraperformance liquid chromatography coupled with high-resolution mass spectrometry. Unsupervised principal component analysis revealed exercise-induced metabolome changes, with high-intensity exercise inducing greater alterations. Following high-intensity exercise, 54 metabolites related to amino acid, fatty acid, nucleic acid, and vitamin metabolism were altered versus 23 metabolites, primarily linked to fatty acid and amino acid metabolism, following moderate-intensity exercise. Metabolomics confirmed energy metabolism changes reported by traditional biochemistry studies and highlighted the involvement of lipid and amino acid metabolism during routine exercise and recovery, aspects that had previously been overlooked in TB racehorses.
Collapse
Affiliation(s)
- Maëlle M. Bonhomme
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Florence Patarin
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Caroline-J. Kruse
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Anne-Christine François
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Benoît Renaud
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Anne Couroucé
- Equine
Department, Oniris, National Vet School
of Nantes, 101 Route
de Gachet, 44300 Nantes, France
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
| | - Claire Leleu
- Equi-Test, La Lande, 53290 Grez-en-Bouère, France
| | - François Boemer
- Biochemical
Genetics Laboratory, Human Genetics Department, University Hospital
of Liege, University of Liege, Avenue de l’Hôpital
1, 4000 Liège, Belgium
| | - Marie-Pierre Toquet
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
- LABÉO
(Frank Duncombe), 1 Route
de Rosel, 14280 Saint-Contest, France
| | - Eric A. Richard
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
- LABÉO
(Frank Duncombe), 1 Route
de Rosel, 14280 Saint-Contest, France
| | - Jérôme Seignot
- Clinique
Vétérinaire du Parc, 1 Avenue Malesherbes, 78600 Maisons-Laffitte, France
| | - Clovis P. Wouters
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Dominique-Marie Votion
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| |
Collapse
|
3
|
Meng S, Zhang Y, Lv S, Zhang Z, Liu X, Jiang L. Comparison of muscle metabolomics between two Chinese horse breeds. Front Vet Sci 2023; 10:1162953. [PMID: 37215482 PMCID: PMC10196265 DOI: 10.3389/fvets.2023.1162953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
With their enormous muscle mass and athletic ability, horses are well-positioned as model organisms for understanding muscle metabolism. There are two different types of horse breeds-Guanzhong (GZ) horses, an athletic breed with a larger body height (~148.7 cm), and the Ningqiang pony (NQ) horses, a lower height breed generally used for ornamental purposes-both inhabited in the same region of China with obvious differences in muscle content. The main objective of this study was to evaluate the breed-specific mechanisms controlling muscle metabolism. In this study, we observed muscle glycogen, enzyme activities, and LC-MS/MS untargeted metabolomics in the gluteus medius muscle of six, each of GZ and NQ horses, to explore differentiated metabolites that are related to the development of two muscles. As expected, the glycogen content, citrate synthase, and hexokinase activity of muscle were significantly higher in GZ horses. To alleviate the false positive rate, we used both MS1 and MS2 ions for metabolite classification and differential analysis. As a result, a total of 51,535 MS1 and 541 MS2 metabolites were identified, and these metabolites can separate these two groups from each other. Notably, 40% of these metabolites were clustered into lipids and lipid-like molecules. Furthermore, 13 significant metabolites were differentially detected between GZ and NQ horses (fold change [FC] value ≥ 2, variable important in projection value ≥1, and Q value ≤ 0.05). They are primarily clustered into glutathione metabolism (GSH, p = 0.01), taurine, and hypotaurine metabolism (p < 0.05) pathways. Seven of the 13 metabolites were also found in thoroughbred racing horses, suggesting that metabolites related to antioxidants, amino acids, and lipids played a key role in the development of skeleton muscle in horses. Those metabolites related to muscle development shed a light on racing horses' routine maintenance and improvement of athletic performance.
Collapse
Affiliation(s)
- Sihan Meng
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shipeng Lv
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhengkai Zhang
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
4
|
Thomas C, Delfour‐Peyrethon R, Lambert K, Granata C, Hobbs T, Hanon C, Bishop DJ. The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans. Front Physiol 2023; 14:1073407. [PMID: 36776968 PMCID: PMC9911540 DOI: 10.3389/fphys.2023.1073407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans. Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion. Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition. Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.
Collapse
Affiliation(s)
- Claire Thomas
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France,French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,*Correspondence: Claire Thomas,
| | - Rémi Delfour‐Peyrethon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Cesare Granata
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Thomas Hobbs
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France
| | - Christine Hanon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,French Athletics Federation, Paris, France
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Kitaoka Y, Mukai K, Tonai S, Ohmura H, Takahashi T. Effect of post-exercise muscle cooling on PGC-1α and VEGF mRNA expression in Thoroughbreds. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Besides preventing exertional heat illness, muscle cooling can be a potential strategy to enhance exercise-training induced adaptations. This study aimed to examine the effects of post-exercise cooling on the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and vascular endothelial growth factor (VEGF) in Thoroughbred skeletal muscle. Five Thoroughbred horses performed treadmill running until their pulmonary artery temperature reached 42 °C, followed by walking on the treadmill with no additional cooling (CONT) or muscle cooling with a shower using the tap water (26 °C, 0.4 l/s; COOL), for 30 min. Muscle biopsies were obtained before (PRE) and 3 h after exercise (3 Hr-REC) from the gluteus medius muscle. PGC-1α mRNA expression was elevated 3 h after exercise in both the CONT (PRE vs 3 Hr-REC: 1.0±0.1 vs 5.0±0.8, P<0.01) and COOL (PRE vs 3 Hr-REC: 1.1±0.3 vs 6.6±0.9, P<0.01) conditions; however, there was no difference between the two conditions at 3 h after exercise (P=0.17). VEGF mRNA expression was elevated 3 h after exercise in COOL (PRE vs 3 Hr-REC: 1.0±0.2 vs 2.2±0.2, P<0.05) but not in CONT (PRE vs 3 Hr-REC: 1.0±0.1 vs 1.8±0.3, P=0.08). VEGF mRNA expression at 3 h after exercise was significantly negatively correlated with rectal temperature at the end of the 30-min cooling period (r = -0.65, P<0.05). Our results suggest that the decline in body temperature after exercise may lead to greater expression of the key angiogenic gene in Thoroughbred horses.
Collapse
Affiliation(s)
- Y. Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - K. Mukai
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - S. Tonai
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - H. Ohmura
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - T. Takahashi
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| |
Collapse
|
6
|
Mukai K, Kitaoka Y, Takahashi Y, Takahashi T, Takahashi K, Ohmura H. Moderate-intensity training in hypoxia improves exercise performance and glycolytic capacity of skeletal muscle in horses. Physiol Rep 2021; 9:e15145. [PMID: 34889527 PMCID: PMC8661515 DOI: 10.14814/phy2.15145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
We investigated whether moderate-intensity training of horses in moderate hypoxia for 4 weeks elicits greater adaptations in exercise performance, aerobic capacity, and glycolytic/oxidative metabolism in skeletal muscle compared to normoxic training. In a randomized crossover study design, seven untrained Thoroughbred horses (5.9 ± 1.1 years, 508 ± 9 kg) completed 4 weeks (3 sessions/week) of two training protocols consisting of 3-min cantering at 70% of maximal oxygen consumption ( V ˙ O 2 max ) in hypoxia (HYP; FI O2 = 14.7%) and normoxia (NOR; FI O2 = 21.0%) with a 4-month washout period. Normoxic incremental exercise tests (IET) were conducted before and after training. Biopsy samples were obtained from the middle gluteal muscle before IET and monocarboxylate transporter (MCT) protein expression and glycolytic/mitochondrial enzyme activities were analyzed. Data were analyzed using mixed models (p < 0.05). Running speed was 7.9 ± 0.2 m/s in both groups and arterial oxygen saturation during training in NOR and HYP were 92.9 ± 0.9% and 75.7 ± 3.9%, respectively. Run time in HYP (+9.7%) and V ˙ O 2 max in both groups (NOR, +6.4%; HYP, +4.3%) at IET increased after 4 weeks of training. However, cardiac output, arterial-mixed venous O2 difference, and hemoglobin concentration at exhaustion were unchanged in both conditions. While MCT1 protein and citrate synthase activity did not increase in both conditions after training, MCT4 protein (+13%), and phosphofructokinase activity (+42%) increased only in HYP. In conclusion, 4 weeks of moderate-intensity hypoxic training improves exercise performance and glycolytic capacity of skeletal muscle in horses.
Collapse
Affiliation(s)
- Kazutaka Mukai
- Sports Science DivisionEquine Research InstituteJapan Racing AssociationShimotsukeTochigiJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaKanagawaJapan
| | - Yuji Takahashi
- Sports Science DivisionEquine Research InstituteJapan Racing AssociationShimotsukeTochigiJapan
| | - Toshiyuki Takahashi
- Sports Science DivisionEquine Research InstituteJapan Racing AssociationShimotsukeTochigiJapan
| | | | - Hajime Ohmura
- Sports Science DivisionEquine Research InstituteJapan Racing AssociationShimotsukeTochigiJapan
| |
Collapse
|
7
|
Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes 2020; 53:101620. [PMID: 32659253 DOI: 10.1016/j.mcp.2020.101620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
An analogous condition to human metabolic syndrome, Equine Metabolic Syndrome (EMS) is defined by several clinical signs including obesity, hyperinsulinemia, and peripheral insulin dysregulation (ID). Affected horses may also exhibit hypertension, hyperlipemia and systemic inflammation. Measures of ID typically comprise the gold-standard for diagnosis in veterinary care. Yet, the dynamic nature of insulin homeostasis and complex procedures of typical assays make accurate quantification of ID and EMS challenging. This work aimed to investigate new strategies for identification of biochemical markers and correlated genes in EMS. To quantify EMS risk within this population, we utilized a composite score derived from nine common diagnostic variables. We applied a global liquid chromatography/mass spectroscopy approach (HPLC/MS) to whole plasma collected from 49 Arabian horses, resulting in 3392 high-confidence features and identification of putative metabolites in public databases. We performed a genome wide association analysis with genotypes from the 670k Affymetrix Equine SNP array utilizing EMS-correlated metabolites as phenotypes. We discovered four metabolite features significantly correlated with EMS score (P < 1.474 × 10-5). GWAs for these features results (P = 6.787 × 10-7, Bonferroni) identified four unique candidate regions (r2 > 0.4) containing 63 genes. Significant genomic markers capture 43.52% of the variation in the original EMS score phenotype. The identified genomic loci provide insight into the pathways controlling variation in EMS and the origin of genetic predisposition to the condition. Rapid, feasible and accurate diagnostic tools derived from metabogenomics can be translated into measurable benefits in the timeline and quality of preventative management practices to preserve health in horses.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA
| | - Martha F Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - Maureen T Long
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, PO Box 100123, Gainesville, FL, 32610, USA
| | - Samantha A Brooks
- Department of Animal Sciences and UF Genetics Institute, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Wang W, Mukai K, Takahashi K, Ohmura H, Takahashi T, Hatta H, Kitaoka Y. Short-term hypoxic training increases monocarboxylate transporter 4 and phosphofructokinase activity in Thoroughbreds. Physiol Rep 2020; 8:e14473. [PMID: 32512646 PMCID: PMC7279979 DOI: 10.14814/phy2.14473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate effects of short-term hypoxic training on lactate metabolism in the gluteus medius muscle of Thoroughbreds. Using crossover design (3 months washout), eight Thoroughbred horses were trained for 2 weeks in normoxia (FI O2 = 21%) and hypoxia (FI O2 = 18%) each. They ran at 95% maximal oxygen consumption (V̇O2max ) on a treadmill inclined at 6% for 2 min (3 days/week) measured under normoxia. Before and after each training period, all horses were subjected to an incremental exercise test (IET) under normoxia. Following the 2-week trainings, V̇O2max in IET increased significantly under both oxygen conditions. The exercise duration in IET increased significantly only after hypoxic training. The monocarboxylate transporter (MCT) 1 protein levels remained unchanged after training under both oxygen conditions, whereas MCT4 protein levels increased significantly after training in hypoxia but not after training in normoxia. Phosphofructokinase activity increased significantly only after hypoxic training, whereas cytochrome c oxidase activity increased significantly only after normoxic training. Our results suggest that hypoxic training efficiently enhances glycolytic capacity and levels of the lactate transporter protein MCT4, which facilitates lactate efflux from the skeletal muscle.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| | - Kazutaka Mukai
- Equine Research InstituteJapan Racing AssociationTochigiJapan
| | - Kenya Takahashi
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Hajime Ohmura
- Equine Research InstituteJapan Racing AssociationTochigiJapan
| | | | - Hideo Hatta
- Department of Sports SciencesThe University of TokyoTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityKanagawaJapan
| |
Collapse
|
9
|
Bryan K, McGivney BA, Farries G, McGettigan PA, McGivney CL, Gough KF, MacHugh DE, Katz LM, Hill EW. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components. BMC Genomics 2017; 18:595. [PMID: 28793853 PMCID: PMC5551008 DOI: 10.1186/s12864-017-4007-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. RESULTS An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. CONCLUSION Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive 're-wiring' of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion.
Collapse
Affiliation(s)
- Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Beatrice A. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Paul A. McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Charlotte L. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Katie F. Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Lisa M. Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Emmeline W. Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| |
Collapse
|
10
|
Regatieri IC, Almeida MLM, Teixeira Neto AR, Curi RA, Ferraz GC, Queiroz-Neto A. Quantification of MCT1 and CD147 in Red Blood Cells of Arabian and Quarter Horses. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
TAKAHASHI Y, TAMURA Y, MATSUNAGA Y, KITAOKA Y, TERADA S, HATTA H. Effects of Taurine Administration on Carbohydrate Metabolism in Skeletal Muscle during the Post-Exercise Phase. J Nutr Sci Vitaminol (Tokyo) 2016; 62:257-264. [DOI: 10.3177/jnsv.62.257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Yuki TAMURA
- Department of Sports Sciences, The University of Tokyo
| | | | - Yu KITAOKA
- Department of Sports Sciences, The University of Tokyo
| | - Shin TERADA
- Department of Sports Sciences, The University of Tokyo
| | - Hideo HATTA
- Department of Sports Sciences, The University of Tokyo
| |
Collapse
|
12
|
Hoshino D, Kitaoka Y, Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo
| |
Collapse
|
13
|
Intravenous infusion of H2-saline suppresses oxidative stress and elevates antioxidant potential in Thoroughbred horses after racing exercise. Sci Rep 2015; 5:15514. [PMID: 26493164 PMCID: PMC4616033 DOI: 10.1038/srep15514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Upon intensive, exhaustive exercise, exercise-induced reactive oxygen species may exceed the antioxidant defence threshold, consequently resulting in muscular damage or late-onset chronic inflammation. Recently, the therapeutic antioxidant and anti-inflammatory effects of molecular hydrogen (H2) for human rheumatoid arthritis have been demonstrated. However, it is also important to clarify the effects of administrating H2 in large animals other than humans, as H2 is thought to reach the target organ by passive diffusion upon delivery from the blood flow, indicating that the distance from the administration point to the target is critical. However, data on the effects of H2 on oxidative stress in real-life exhaustive exercise in large animals are currently lacking. We here investigated 13 Thoroughbred horses administered intravenous 2-L saline with or without 0.6-ppm H2 (placebo, N = 6; H2, N = 7) before participating in a high-intensity simulation race. Intravenous H2-saline significantly suppressed oxidative stress immediately, 3 h, and 24 h after the race, although the antioxidant capability was not affected throughout the study. The serum creatine kinase, lactate, and uric acid levels were increased in both groups. Taken together, these results indicate that intravenous H2-saline can significantly and specifically suppress oxidative stress induced after exhaustive racing in Thoroughbred horses.
Collapse
|
14
|
Conditioning increases the gain of contraction-induced sarcolemmal substrate transport in ultra-endurance racing sled dogs. PLoS One 2014; 9:e103087. [PMID: 25075856 PMCID: PMC4116179 DOI: 10.1371/journal.pone.0103087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/27/2014] [Indexed: 12/05/2022] Open
Abstract
Endurance exercise relies on transsarcolemmal flux of substrates in order to avoid depletion of intramuscular reserves. Previous studies of endurance trained sled dogs have shown a remarkable capacity of these dogs to adapt rapidly to endurance exercise by decreasing the utilization of intramuscular reserves. The current study tested the hypothesis that the dogs' glycogen-sparing phenotype is due to increased sarcolemmal transport of glucose and fatty acids. Basal and exercise-induced transport of glucose and fatty acids into sarcolemmal vesicles was evaluated in racing sled dogs prior to and after 7 months of exercise conditioning. Sarcolemmal substrate transport capacity was measured using sarcolemmal vesicles and radiolabelled substrates, and transporter abundance was measured using Western blot quantification in whole muscle homogenates and the sarcolemmal vesicle preparations. Conditioning resulted in increased basal and exercise-induced transport of both glucose and palmitate. Neither acute exercise nor conditioning resulted in changes in muscle content of GLUT4 or FAT/CD36, but conditioning did result in decreased abundance of both transporters in the sarcolemmal vesicles used for the basal transport assays, and this decrease was further amplified in the vesicles used for the exercise-induced transport assays. These results demonstrate conditioning-induced increases in sarcolemmal transport of oxidizable substrates, as well as increased gain of exercise-induced sarcolemmal transport of these substrates. These results further indicate that increased sarcolemmal transport of oxidizable substrates may be due to either an increased intrinsic capacity of the existing transporters or to a different population of transporters from those investigated.
Collapse
|
15
|
Kitaoka Y, Endo Y, Mukai K, Aida H, Hiraga A, Hatta H. Muscle glycogen breakdown and lactate metabolism during intensive exercise in Thoroughbred horses. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|