1
|
Suwabe Y, Nakano R, Namba S, Yachiku N, Kuji M, Sugimura M, Kitanaka N, Kitanaka T, Konno T, Sugiya H, Nakayama T. Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells. PLoS One 2021; 16:e0243859. [PMID: 33539362 PMCID: PMC7861381 DOI: 10.1371/journal.pone.0243859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The rate of glucose uptake dramatically increases in cancer cells even in the presence of oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell growth in a time- and dose-dependent manner. Cell growth was also inhibited following treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and GLUT3 plays a crucial role for the growth of canine melanoma cells.
Collapse
Affiliation(s)
- Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Naoya Yachiku
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Manami Kuji
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Mana Sugimura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
2
|
Nakano R, Kitanaka T, Namba S, Kitanaka N, Suwabe Y, Konno T, Yamazaki J, Nakayama T, Sugiya H. Non-Transcriptional and Translational Function of Canonical NF- κB Signaling in Activating ERK1/2 in IL-1 β-Induced COX-2 Expression in Synovial Fibroblasts. Front Immunol 2020; 11:579266. [PMID: 33117381 PMCID: PMC7576893 DOI: 10.3389/fimmu.2020.579266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the synthesis of prostaglandin E2 by upregulating cyclooxygenase-2 (COX-2) in the synovial tissue of individuals with autoimmune diseases, such as rheumatoid arthritis (RA). IL-1β-mediated stimulation of NF-κB and MAPK signaling is important for the pathogenesis of RA; however, crosstalk(s) between NF-κB and MAPK signaling remains to be understood. In this study, we established a model for IL-1β-induced synovitis and investigated the role of NF-κB and MAPK signaling in synovitis. We observed an increase in the mRNA and protein levels of COX-2 and prostaglandin E2 release in cells treated with IL-1β. NF-κB and ERK1/2 inhibitors significantly reduced IL-1β-induced COX-2 expression. IL-1β induced the phosphorylation of canonical NF-κB complex (p65 and p105) and degradation of IκBα. IL-1β also induced ERK1/2 phosphorylation but did not affect the phosphorylation levels of p38 MAPK and JNK. IL-1β failed to induce COX-2 expression in cells transfected with siRNA for p65, p105, ERK1, or ERK2. Notably, NF-κB inhibitors reduced IL-1β-induced ERK1/2 phosphorylation; however, the ERK1/2 inhibitor had no effect on the phosphorylation of the canonical NF-κB complex. Although transcription and translation inhibitors had no effect on IL-1β-induced ERK1/2 phosphorylation, the silencing of canonical NF-κB complex in siRNA-transfected fibroblasts prevented IL-1β-induced phosphorylation of ERK1/2. Taken together, our data indicate the importance of the non-transcriptional/translational activity of canonical NF-κB in the activation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the synovial tissue, such as RA.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Suwabe
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Yamazaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
3
|
Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen Ther 2020; 15:121-128. [PMID: 33426210 PMCID: PMC7770349 DOI: 10.1016/j.reth.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. Methods The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. Results The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. Conclusions A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs. Functional rc-bFGF was successfully synthesized. rc-bFGF induced the differentiation of canine BMSCs into neuron-like cells. rc-bFGF may aid in regenerative therapy of spinal cord injury in dogs.
Collapse
Key Words
- BMSCs, bone marrow mesenchymal stem cells
- Basic fibroblast growth factor
- Bone marrow
- Differentiation
- Dog
- EDTA, ethylenediaminetetraacetic acid
- ERK, extracellular signal-regulated kinase
- FBS, fatal bovine serum
- FGFR, basic fibroblast growth factor receptor
- GUSB, β-glucuronidase
- HEK293, human embryonic kidney cells 293
- HRP, horseradish peroxidase
- Mesenchymal stem cell
- Neuron
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- PI3K, phosphatidylinositol 3-kinase
- RT-PCR, reverse transcription-polymerase chain reaction
- bFGF, basic fibroblast growth factor
- cDNA, complementary DNA
- mRNA, messenger ribonucleic acid
- pERK, phosphorylated extracellular signal-regulated kinase
- αMEM, alpha modified eagle minimum essential medium
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Airi Fujii
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Science, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mamiko Seki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
4
|
All-trans retinoic acid induces reprogramming of canine dedifferentiated cells into neuron-like cells. PLoS One 2020; 15:e0229892. [PMID: 32231396 PMCID: PMC7108708 DOI: 10.1371/journal.pone.0229892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
The specification of cell identity depends on the exposure of cells to sequences of bioactive ligands. All-trans retinoic acid (ATRA) affects neuronal development in the early stage, and it is involved in neuronal lineage reprogramming. We previously established a fibroblast-like dedifferentiated fat cells (DFATs) derived from highly homogeneous mature adipocytes, which are more suitable for the study of cellular reprogramming. Canine cognitive dysfunction is similar to human cognitive dysfunction, suggesting that dogs could be a pathological and pharmacological model for human neuronal diseases. However, the effect of ATRA on neuronal reprogramming in dogs has remained unclear. Therefore, in this study, we investigated the effect of ATRA on the neuronal reprogramming of canine DFATs. ATRA induced the expression of neuronal marker mRNA/protein. The neuron-like cells showed Ca2+ influx with depolarization (50 mM KCl; 84.75 ± 4.05%) and Na+ channel activation (50 μM veratridine; 96.02 ± 2.02%). Optical imaging of presynaptic terminal activity and detection of neurotransmitter release showed that the neuron-like cells exhibited the GABAergic neuronal property. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of canine DFATs is effectively reprogrammed towards that of cortical interneuron lineage. Collectively, ATRA can produce functional GABAergic cortical interneuron-like cells from canine DFATs, exhibiting neuronal function with > 80% efficiency. We further demonstrated the contribution of JNK3 to ATRA-induced neuronal reprogramming in canine DFATs. In conclusion, the neuron-like cells from canine DFATs could be a powerful tool for translational research in cell transplantation therapy, in vitro disease modeling, and drug screening for neuronal diseases.
Collapse
|
5
|
Spinal Cord Injuries in Dogs Part II: Standards of Care, Prognosis and New Perspectives. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Severe spinal cord injuries (SCI), causing physical handicaps and accompanied by many serious complications, remains one of the most challenging problems in both, human and veterinary health care practices. The central nervous system in mammals does not regenerate, so the neurological deficits in a dog following SCI persists for the rest of its life and the affected animals display an image of permanent suffering. Diagnostics are based on: neurological examination, plain x-rays of vertebral column, x-rays of the vertebral column following intrathecal administration of a water-soluble contrast medium (myelography), x-rays of the vertebral column following epidural administration of a contrast medium (epidurography), computed tomography (CT) and/or magnetic resonance imaging (MRI). Currently, only limited therapeutic measures are available for the dogs with SCIs. They include: the administration of methylprednisolone sodium succinate (MPSS) during the acute stage; early spinal cord decompression; stabilisation of vertebral fractures or luxations; prevention and treatment of complications, and expert rehabilitation. Together with the progress in the understanding of pathophysiologic events occurring after SCI, different therapeutic strategies have been instituted, including the local delivery of MPSS, the utilisation of novel pharmacological agents, hypothermia, and stem/precursor cell transplantation have all been tested in the experimental models and preclinical trials with promising results. The aim of this review is the presentation of the generally accepted methods of diagnostics and management of dogs with SCIs, as well as to discuss new therapeutic modalities. The research strategy involved a PubMed, Medline (Ovid), Embase (Ovid) and ISI Web of Science literature search from January 2001 to December 2017 using the term “spinal cord injury”, in the English language literature; also references from selected papers were scanned and relevant articles included.
Collapse
|
6
|
Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression. Sci Rep 2018; 8:8535. [PMID: 29867151 PMCID: PMC5986758 DOI: 10.1038/s41598-018-26473-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/04/2018] [Indexed: 01/18/2023] Open
Abstract
The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca2+. Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E2 synthesis in dermal fibroblasts.
Collapse
|
7
|
Nakano R, Edamura K, Nakayama T, Narita T, Okabayashi K, Sugiya H. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway. PLoS One 2015; 10:e0141581. [PMID: 26523832 PMCID: PMC4629880 DOI: 10.1371/journal.pone.0141581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
8
|
Tsuchiya H, Nakano R, Konno T, Okabayashi K, Narita T, Sugiya H. Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblasts. Vet Immunol Immunopathol 2015; 168:223-32. [PMID: 26549149 DOI: 10.1016/j.vetimm.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/30/2022]
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) induced cyclooxygenases-2 (COX-2) mRNA expression and lipid mediator prostaglandin E2 release and in a time- and dose-dependent manner in canine dermal fibroblasts. The MEK inhibitor U0126 and the ERK inhibitor FR180204 clearly inhibited IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. IL-1β enhanced ERK1/2 phosphorylation, which was attenuated by inhibitors of MEK and ERK. The NF-κB inhibitor BAY 11-7082 also suppressed IL-1β-induced prostaglandin E2 release and COX-2 mRNA expression. Treatment of fibroblasts with IL-1β led to the phosphorylation of p65 and degradation of IκBα occurred, indicating that IL-1β treatment activated NF-κB. MEK and ERK1/2 inhibitors had no effect on the phosphorylation of p65 subunit induced by IL-1β, whereas the NF-κB inhibitor completely blocked IL-1β-induced phosphorylation of ERK1/2. We also observed that IκBα-knockdown enhanced the phosphorylation of p65 and ERK1/2. These findings suggest that stimulation of MEK/ERK signaling pathway by NF-κB activation regulates IL-1β-induced COX-2 expression and subsequent prostaglandin E2 release in canine dermal fibroblasts.
Collapse
Affiliation(s)
- Hisashi Tsuchiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
9
|
Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, Okabayashi K, Sugiya H. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci 2014; 77:27-35. [PMID: 25284120 PMCID: PMC4349535 DOI: 10.1292/jvms.14-0284] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into voltage- and glutamate-responsive neuron-like cells. BMSCs were obtained from the bone marrow of healthy beagle dogs. Canine BMSCs were incubated with the basal medium for neurons containing recombinant human basic fibroblast growth factor (bFGF; 100 ng/ml). The viability of the bFGF-treated cells was assessed by a trypan blue exclusion assay, and the morphology was monitored. Real-time RT-PCR was performed to evaluate mRNA expression of neuronal, neural stem cell and glial markers. Western blotting and immunocytochemical analysis for the neuronal markers were performed to evaluate the protein expression and localization. The Ca(2+) mobilization of the cells was evaluated using the Ca(2+) indicator Fluo3 to monitor Ca(2+) influx. To investigate the mechanism of bFGF-induced neuronal differentiation, the fibroblast growth factor receptor inhibitor, the phosphoinositide 3-kinase inhibitor or the Akt inhibitor was tested. The bFGF treatment resulted in the maintenance of the viability of canine BMSCs for 10 days, in the expression of neuronal marker mRNAs and proteins and in the manifestation of neuron-like morphology. Furthermore, in the bFGF-treated BMSCs, a high concentration of KCl and L-glutamate induced an increase in intracellular Ca(2+) levels. Each inhibitor significantly attenuated the bFGF-induced increase in neuronal marker mRNA expression. These results suggest that bFGF contributes to the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells and may lead to the development of new cell-based treatments for neuronal diseases.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | |
Collapse
|