1
|
Ma H, Wang L, Sun L, Wang S, Lu L, Zhang C, He Y, Zhu Y. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma From Multi-Sequence Magnetic Resonance Imaging Based on Deep Fusion Representation Learning. IEEE J Biomed Health Inform 2025; 29:3259-3271. [PMID: 39196745 DOI: 10.1109/jbhi.2024.3451331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Recent studies have identified microvascular invasion (MVI) as the most vital independent biomarker associated with early tumor recurrence. With advancements in medical technology, several computational methods have been developed to predict preoperative MVI using diverse medical images. These existing methods rely on human experience, attribute selection or clinical trial testing, which is often time-consuming and labor-intensive. Leveraging the advantages of deep learning, this study presents a novel end-to-end algorithm for predicting MVI prior to surgery. We devised a series of data preprocessing strategies to fully extract multi-view features from the data while preserving peritumoral information. Notably, a new multi-branch deep fused feature algorithm based on ResNet (DFFResNet) is introduced, which combines Magnetic Resonance Images (MRI) from different sequences to enhance information complementarity and integration. We conducted prediction experiments on a dataset from the Radiology Department of the First Hospital of Lanzhou University, comprising 117 individuals and seven MRI sequences. The model was trained on 80% of the data using 10-fold cross-validation, and the remaining 20% were used for testing. This evaluation was processed in two cases: CROI, containing samples with a complete region of interest (ROI), and PROI, containing samples with a partial ROI region. The robustness results from repeated experiments at both image and patient levels demonstrate the superior performance and improved generalization of the proposed method compared to alternative models. Our approach yields highly competitive prediction results even when the ROI region outline is incomplete, offering a novel and effective multi-sequence fused strategy for predicting preoperative MVI.
Collapse
|
2
|
Tiwari E, Shrimankar D, Maindarkar M, Bhagawati M, Kaur J, Singh IM, Mantella L, Johri AM, Khanna NN, Singh R, Chaudhary S, Saba L, Al-Maini M, Anand V, Kitas G, Suri JS. Artificial intelligence-based cardiovascular/stroke risk stratification in women affected by autoimmune disorders: a narrative survey. Rheumatol Int 2025; 45:14. [PMID: 39745536 DOI: 10.1007/s00296-024-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/25/2025]
Abstract
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions. CVD risk prediction in AD can benefit from surrogate biomarker for coronary artery disease (CAD), such as carotid ultrasound. Due to non-linearity in the CVD risk stratification, we use artificial intelligence-based system using AD biomarkers and carotid ultrasound. Investigate the relationship between AD and CVD/stroke markers including autoantibody-influenced plaque load. Second, to study the surrogate biomarkers for the CAD and gather radiomics-based features such as carotid intima-media thickness (cIMT), and plaque area (PA). Third and final, explore the automated CVD/stroke risk identification using advanced machine learning (ML) and deep learning (DL) paradigms. Analysed biomarker data from women with AD, including carotid ultrasonography imaging, clinical parameters, autoantibody profiles, and vitamin D levels. Proposed artificial intelligence (AI) models to predict CVD/stroke risk accurately in AD for women. There is a strong association between AD duration and elevated cIMT/PA, with increased CVD risk linked to higher rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs) levels. AI models outperformed conventional methods by integrating imaging data and disorder-specific factors. Interdisciplinary collaboration is crucial for managing CVD/stroke in women with chronic autoimmune diseases. AI-based assisted risk stratification methods may improve treatment decision-making and cardiovascular outcomes.
Collapse
Affiliation(s)
- Ekta Tiwari
- Vishvswarya National Institute of Technology, Nagpur, India
| | | | - Mahesh Maindarkar
- School of Bioengineering and Sciences and Research, MIT Art Design and Technology University, Pune, 4123018, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Jiah Kaur
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Laura Mantella
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | - Rajesh Singh
- Department of Research and Innovation, UIT, Uttaranchal University, Dehradun, 248007, India
| | - Sumit Chaudhary
- Department of Research and Innovation, UIT, Uttaranchal University, Dehradun, 248007, India
| | - Luca Saba
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Vinod Anand
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Mancheser, M13 9PL, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.
- University Centre for Research & Development, Chandigarh University, Mohali, India.
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
3
|
Yin Y, Zhang W, Chen Y, Zhang Y, Shen X. Radiomics predicting immunohistochemical markers in primary hepatic carcinoma: Current status and challenges. Heliyon 2024; 10:e40588. [PMID: 39660185 PMCID: PMC11629216 DOI: 10.1016/j.heliyon.2024.e40588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Primary hepatic carcinoma, comprising hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (cHCC-CCA), ranks among the most common malignancies worldwide. The heterogeneity of tumors is a primary factor impeding the efficacy of treatments for primary hepatic carcinoma. Immunohistochemical markers may play a potential role in characterizing this heterogeneity, providing significant guidance for prognostic analysis and the development of personalized treatment plans for the patients with primary hepatic carcinoma. Currently, primary hepatic carcinoma immunohistochemical analysis primarily relies on invasive techniques such as surgical pathology and tissue biopsy. Consequently, the non-invasive preoperative acquisition of primary hepatic carcinoma immunohistochemistry has emerged as a focal point of research. As an emerging non-invasive diagnostic technique, radiomics possesses the potential to extensively characterize tumor heterogeneity. It can predict immunohistochemical markers associated with hepatocellular carcinoma preoperatively, demonstrating significant auxiliary utility in clinical guidance. This article summarizes the progress in using radiomics to predict immunohistochemical markers in primary hepatic carcinoma, addresses the challenges faced in this field of study, and anticipates its future application prospects.
Collapse
Affiliation(s)
- Yunqing Yin
- The Second Clinical Medical College, Jinan University, China
| | - Wei Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yanhui Chen
- Department of Intervention, Shenzhen Bao'an People's Hospital, Shenzhen, 518100, Guangdong, China
| | - Yanfang Zhang
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xinying Shen
- Department of Intervention, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
4
|
Li J, Zou L, Ma H, Zhao J, Wang C, Li J, Hu G, Yang H, Wang B, Xu D, Xia Y, Jiang Y, Jiang X, Li N. Interpretable machine learning based on CT-derived extracellular volume fraction to predict pathological grading of hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3383-3396. [PMID: 38703190 DOI: 10.1007/s00261-024-04313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To develop a non-invasive auxiliary assessment method based on CT-derived extracellular volume (ECV) to predict the pathological grading (PG) of hepatocellular carcinoma (HCC). METHODS The study retrospectively analyzed 238 patients who underwent HCC resection surgery between January 2013 and April 2023. Six machine learning algorithms were employed to construct predictive models for HCC PG: logistic regression, extreme gradient boosting, Light Gradient Boosting Machine (LightGBM), random forest, adaptive boosting, and Gaussian naive Bayes. Model performance was evaluated using receiver operating characteristic curve analysis, including area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and F1 score. Calibration plots were used for visual evaluation of model calibration. Clinical decision curve analysis was performed to assess potential clinical utility by calculating net benefit. RESULTS 166 patients from Hospital A were allocated to the training set, while 72 patients from Hospital B (constituting 30.25% of the total sample) were assigned to the test set. The model achieved an AUC of 1.000 (95%CI: 1.000-1.000) in the training set and 0.927 (95%CI: 0.837-0.999) in the validation set, respectively. Ultimately, the model achieved an AUC of 0.909 (95%CI: 0.837-0.980) in the test set, with an accuracy of 0.778, sensitivity of 0.906, specificity of 0.789, negative predictive value of 0.556, and F1 score of 0.908. CONCLUSION This study successfully developed and validated a non-invasive auxiliary assessment method based on CT-derived ECV to predict the HCC PG, providing important supplementary information for clinical decision-making.
Collapse
Affiliation(s)
- Jie Li
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Linxuan Zou
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Jifu Zhao
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Chengyan Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Guangchao Hu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Haoran Yang
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Beizhong Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Yuanhao Xia
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Yi Jiang
- Department of Vascular Interventional Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Xingyue Jiang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Naixuan Li
- Department of Vascular Interventional Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China.
| |
Collapse
|
5
|
Huang Y, Chen L, Ding Q, Zhang H, Zhong Y, Zhang X, Weng S. CT-based radiomics for predicting pathological grade in hepatocellular carcinoma. Front Oncol 2024; 14:1295575. [PMID: 38690170 PMCID: PMC11059035 DOI: 10.3389/fonc.2024.1295575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Objective To construct and validate radiomics models for hepatocellular carcinoma (HCC) grade predictions based on contrast-enhanced CT (CECT). Methods Patients with pathologically confirmed HCC after surgery and underwent CECT at our institution between January 2016 and December 2020 were enrolled and randomly divided into training and validation datasets. With tumor segmentation and feature extraction, radiomic models were constructed using univariate analysis, followed by least absolute shrinkage and selection operator (LASSO) regression. In addition, combined models with clinical factors and radiomics scores (Radscore) were constructed using logistic regression. Finally, all models were evaluated using the receiver operating characteristic (ROC) curve with the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results In total 242 patients were enrolled in this study, of whom 170 and 72 formed the training and validation datasets, respectively. The arterial phase and portal venous phase (AP+VP) radiomics model were evaluated as the best for predicting HCC pathological grade among all the models built in our study (AUC = 0.981 in the training dataset; AUC = 0.842 in the validation dataset) and was used to build a nomogram. Furthermore, the calibration curve and DCA indicated that the AP+VP radiomics model had a satisfactory prediction efficiency. Conclusions Low- and high-grade HCC can be distinguished with good diagnostic performance using a CECT-based radiomics model.
Collapse
Affiliation(s)
- Yue Huang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingfeng Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingzhu Ding
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Han Zhang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Zhong
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiang Zhang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shangeng Weng
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
7
|
Zhou L, Chen Y, Li Y, Wu C, Xue C, Wang X. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 13:1323534. [PMID: 38234405 PMCID: PMC10792117 DOI: 10.3389/fonc.2023.1323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Radiomics have been increasingly used in the clinical management of hepatocellular carcinoma (HCC), such as markers prediction. Ki-67 and cytokeratin 19 (CK-19) are important prognostic markers of HCC. Radiomics has been introduced by many researchers in the prediction of these markers expression, but its diagnostic value remains controversial. Therefore, this review aims to assess the diagnostic value of radiomics in predicting Ki-67 and CK-19 expression in HCC. Methods Original studies were systematically searched in PubMed, EMBASE, Cochrane Library, and Web of Science from inception to May 2023. All included studies were evaluated by the radiomics quality score. The C-index was used as the effect size of the performance of radiomics in predicting Ki-67and CK-19 expression, and the positive cutoff values of Ki-67 label index (LI) were determined by subgroup analysis and meta-regression. Results We identified 34 eligible studies for Ki-67 (18 studies) and CK-19 (16 studies). The most common radiomics source was magnetic resonance imaging (MRI; 25/34). The pooled C-index of MRI-based models in predicting Ki-67 was 0.89 (95% CI:0.86-0.92) in the training set, and 0.87 (95% CI: 0.82-0.92) in the validation set. The pooled C-index of MRI-based models in predicting CK-19 was 0.86 (95% CI:0.81-0.90) in the training set, and 0.79 (95% CI: 0.73-0.84) in the validation set. Subgroup analysis suggested Ki-67 LI cutoff was a significant source of heterogeneity (I 2 = 0.0% P>0.05), and meta-regression showed that the C-index increased as Ki-67 LI increased. Conclusion Radiomics shows promising diagnostic value in predicting positive Ki-67 or CK-19 expression. But lacks standardized guidelines, which makes the model and variables selection dependent on researcher experience, leading to study heterogeneity. Therefore, standardized guidelines are warranted for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023427953.
Collapse
Affiliation(s)
- Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiheng Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoyong Wu
- Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen, China
| | - Chongxiang Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Chen Y, Chen J, Yang C, Wu Y, Wei H, Duan T, Zhang Z, Long L, Jiang H, Song B. Preoperative prediction of cholangiocyte phenotype hepatocellular carcinoma on contrast-enhanced MRI and the prognostic implication after hepatectomy. Insights Imaging 2023; 14:190. [PMID: 37962669 PMCID: PMC10645671 DOI: 10.1186/s13244-023-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) expressing cytokeratin (CK) 7 or CK19 has a cholangiocyte phenotype that stimulates HCC proliferation, metastasis, and sorafenib therapy resistance This study aims to noninvasively predict cholangiocyte phenotype-positive HCC and assess its prognosis after hepatectomy. METHODS Between January 2010 and May 2022, preoperative contrast-enhanced MRI was performed on consecutive patients who underwent hepatectomy and had pathologically confirmed solitary HCC. Two abdominal radiologists separately assessed the MRI features. A predictive model for cholangiocyte phenotype HCC was created using logistic regression analysis and five-fold cross-validation. A receiver operating characteristic curve was used to calculate the model performance. Kaplan-Meier and log-rank methods were used to evaluate survival outcomes. RESULTS In total, 334 patients were included in this retrospective study. Four contrast-enhanced MRI features, including "rim arterial phase hyperenhancement" (OR = 5.9, 95% confidence interval [CI]: 2.9-12.0, 10 points), "nodule in nodule architecture" (OR = 3.5, 95% CI: 2.1-5.9, 7 points), "non-smooth tumor margin" (OR = 1.6, 95% CI: 0.8-2.9, 3 points), and "non-peripheral washout" (OR = 0.6, 95% CI: 0.3-1.0, - 3 points), were assigned to the cholangiocyte phenotype HCC prediction model. The area under the curves for the training and independent validation set were 0.76 and 0.73, respectively. Patients with model-predicted cholangiocyte phenotype HCC demonstrated lower rates of recurrence-free survival (RFS) and overall survival (OS) after hepatectomy, with an estimated median RFS and OS of 926 vs. 1565 days (p < 0.001) and 1504 vs. 2960 days (p < 0.001), respectively. CONCLUSIONS Contrast-enhanced MRI features can be used to predict cholangiocyte phenotype-positive HCC. Patients with pathologically confirmed or MRI model-predicted cholangiocyte phenotype HCC have a worse prognosis after hepatectomy. CRITICAL RELEVANCE STATEMENT Four contrast-enhanced MRI features were significantly associated with cholangiocyte phenotype HCC and a worse prognosis following hepatectomy; these features may assist in predicting prognosis after surgery and improve personalized treatment decision-making. KEY POINTS • Four contrast-enhanced MRI features were significantly associated with cholangiocyte phenotype HCC. • A noninvasive cholangiocyte phenotype HCC predictive model was established based on MRI features. • Patients with cholangiocyte phenotype HCC demonstrated a worse prognosis following hepatic resection.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Yuanan Wu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Guoxue Road No. 37, Chengdu, 610041, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
9
|
Liu P, Li W, Qiu G, Chen J, Liu Y, Wen Z, Liang M, Zhao Y. Multiparametric MRI combined with clinical factors to predict glypican-3 expression of hepatocellular carcinoma. Front Oncol 2023; 13:1142916. [PMID: 38023195 PMCID: PMC10666788 DOI: 10.3389/fonc.2023.1142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES The present study aims at establishing a noninvasive and reliable model for the preoperative prediction of glypican 3 (GPC3)-positive hepatocellular carcinoma (HCC) based on multiparametric magnetic resonance imaging (MRI) and clinical indicators. METHODS As a retrospective study, the subjects included 158 patients from two institutions with surgically-confirmed single HCC who underwent preoperative MRI between 2020 and 2022. The patients, 102 from institution I and 56 from institution II, were assigned to the training and the validation sets, respectively. The association of the clinic-radiological variables with the GPC3 expression was investigated through performing univariable and multivariable logistic regression (LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (GPC3-negative HCCs) in the training set, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. Next, a prediction nomogram was developed and validated for patients with GPC3-positive HCC. The performance of the nomogram was evaluated through examining its calibration and clinical utility. RESULTS Based on the results obtained from multivariable analyses, alpha-fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s and R2* value ≥ 38.6 sec-1 were found to be the significant independent predictors of GPC3-positive HCC. The SMOTE-LR model based on three features achieved the best predictive performance in the training (AUC, 0.909; accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good calibration performance and clinical usefulness. CONCLUSIONS The nomogram combining multiparametric MRI and clinical indicators is found to have satisfactory predictive efficacy for preoperative prediction of GPC3-positive HCC. Accordingly, the proposed method can promote individualized risk stratification and further treatment decisions of HCC patients.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Weiqiu Li
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Ganbin Qiu
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Jincan Chen
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yonghui Liu
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Zhongyan Wen
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Mei Liang
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yue Zhao
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
10
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Wang Q, Wang A, Wu X, Hu X, Bai G, Fan Y, Stål P, Brismar TB. Radiomics models for preoperative prediction of the histopathological grade of hepatocellular carcinoma: A systematic review and radiomics quality score assessment. Eur J Radiol 2023; 166:111015. [PMID: 37541183 DOI: 10.1016/j.ejrad.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE To systematically review the efficacy of radiomics models derived from computed tomography (CT) or magnetic resonance imaging (MRI) in preoperative prediction of the histopathological grade of hepatocellular carcinoma (HCC). METHODS Systematic literature search was performed at databases of PubMed, Web of Science, Embase, and Cochrane Library up to 30 December 2022. Studies that developed a radiomics model using preoperative CT/MRI for predicting the histopathological grade of HCC were regarded as eligible. A pre-defined table was used to extract the data related to study and patient characteristics, characteristics of radiomics modelling workflow, and the model performance metrics. Radiomics quality score and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were applied for research quality evaluation. RESULTS Eleven eligible studies were included in this review, consisting of 2245 patients (range 53-494, median 165). No studies were prospectively designed and only two studies had an external test cohort. Half of the studies (five) used CT images and the other half MRI. The median number of extracted radiomics features was 328 (range: 40-1688), which was reduced to 11 (range: 1-50) after feature selection. The commonly used classifiers were logistic regression and support vector machine (both 4/11). When evaluated on the two external test cohorts, the area under the curve of the radiomics models was 0.70 and 0.77. The median radiomics quality score was 10 (range 2-13), corresponding to 28% (range 6-36%) of the full scale. Most studies showed an unclear risk of bias as evaluated by QUADAS-2. CONCLUSION Radiomics models based on preoperative CT or MRI have the potential to be used as an imaging biomarker for prediction of HCC histopathological grade. However, improved research and reporting quality is required to ensure sufficient reliability and reproducibility prior to implementation into clinical practice.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Anrong Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Interventional Therapy, People's Hospital of Dianjiang County, Chongqing, China
| | - Xueyun Wu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Hu
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guojie Bai
- Department of Radiology, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| | - Yingfang Fan
- Department of General Surgery and Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Per Stål
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
12
|
Liu G, Ma D, Wang H, Zhou J, Shen Z, Yang Y, Chen Y, Sack I, Guo J, Li R, Yan F. Three-dimensional multifrequency magnetic resonance elastography improves preoperative assessment of proliferative hepatocellular carcinoma. Insights Imaging 2023; 14:89. [PMID: 37198348 PMCID: PMC10192481 DOI: 10.1186/s13244-023-01427-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND To investigate the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE). METHODS This prospective study included 121 patients with 124 HCCs as training cohort, and validation cohort included 33 HCCs. They all underwent preoperative conventional magnetic resonance imaging (MRI) and tomoelastography based on 3D multifrequency MRE. Viscoelastic parameters of the tumor and liver were quantified as shear wave speed (c, m/s) and loss angle (φ, rad), representing stiffness and fluidity, respectively. Five MRI features were evaluated. Multivariate logistic regression analyses were used to determine predictors of proliferative HCC to construct corresponding nomograms. RESULTS In training cohort, model 1 (Combining cirrhosis, hepatitis virus, rim APHE, peritumoral enhancement, and tumor margin) yielded an area under the curve (AUC), sensitivity, specificity, accuracy of 0.72, 58.73%,78.69%, 67.74%, respectively. When adding MRE properties (tumor c and tumor φ), established model 2, the AUC increased to 0.81 (95% CI 0.72-0.87), with sensitivity, specificity, accuracy of 71.43%, 81.97%, 75%, respectively. The C-index of nomogram of model 2 was 0.81, showing good performance for proliferative HCC. Therefore, integrating tumor c and tumor φ can significantly improve the performance of preoperative diagnosis of proliferative HCC (AUC increased from 0.72 to 0.81, p = 0.012). The same finding was observed in the validation cohort, with AUC increasing from 0.62 to 0.77 (p = 0.021). CONCLUSIONS Proliferative HCC exhibits low stiffness and high fluidity. Adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC. CRITICAL RELEVANCE STATEMENT We investigated the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE), and find that adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC.
Collapse
Affiliation(s)
- Guixue Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafeng Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
13
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
14
|
Tao YY, Shi Y, Gong XQ, Li L, Li ZM, Yang L, Zhang XM. Radiomic Analysis Based on Magnetic Resonance Imaging for Predicting PD-L2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:365. [PMID: 36672315 PMCID: PMC9856314 DOI: 10.3390/cancers15020365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third leading cause of cancer death in the world. The emerging field of radiomics involves extracting many clinical image features that cannot be recognized by the human eye to provide information for precise treatment decision making. Radiomics has shown its importance in HCC identification, histological grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC. The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of 108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted, arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection operator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression models were constructed and validated using fivefold cross-validation. The area under the receiver characteristic curve (AUC) was used to evaluate the predictive performance of each model. The results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted, arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789 (95% CI: 0.702-0.875), 0.727 (95% CI: 0.632-0.823), 0.770 (95% CI: 0.682-0.875), and 0.871 (95% CI: 0.803-0.939), respectively. The combined model showed the best performance. The results of this study suggest that prediction based on the radiomic characteristics of MRI could noninvasively predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yue Shi
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zu-Mao Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
15
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
16
|
Brancato V, Garbino N, Salvatore M, Cavaliere C. MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051085. [PMID: 35626241 PMCID: PMC9139902 DOI: 10.3390/diagnostics12051085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) in the management of HCC. The purpose of our study is to develop an MRI-based radiomics approach to preoperatively detect HCC and predict its histological grade. Thirty-eight HCC patients at staging who underwent axial T2-weighted and dynamic contrast-enhanced MRI (DCE-MRI) were considered. Three-dimensional volumes of interest (VOIs) were manually placed on HCC lesions and normal hepatic tissue (HT) on arterial phase post-contrast images. Radiomic features from T2 images and arterial, portal and tardive post-contrast images from DCE-MRI were extracted by using Pyradiomics. Feature selection was performed using correlation filter, Wilcoxon-rank sum test and mutual information. Predictive models were constructed for HCC differentiation with respect to HT and HCC histopathologic grading used at each step an imbalance-adjusted bootstrap resampling (IABR) on 1000 samples. Promising results were obtained from radiomic prediction models, with best AUCs ranging from 71% to 96%. Radiomics MRI based on T2 and DCE-MRI revealed promising results concerning both HCC detection and grading. It may be a suitable tool for personalized treatment of HCC patients and could also be used to develop new prognostic biomarkers useful for HCC assessment without the need for invasive procedures.
Collapse
|
17
|
Gong XQ, Tao YY, Wu Y, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. OBJECTIVE This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. METHODS A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. RESULTS Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. CONCLUSION Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao–Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
18
|
Effect of Short-Term Tacrolimus Exposure on Rat Liver: An Insight into Serum Antioxidant Status, Liver Lipid Peroxidation, and Inflammation. Mediators Inflamm 2021; 2021:6613786. [PMID: 33679236 PMCID: PMC7929660 DOI: 10.1155/2021/6613786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tacrolimus (TAC) is an immunosuppressive drug, optimally used for liver, kidney, and heart transplant to avoid immune rejection. In retrospect, a multitude of studies have reported effects of TAC, such as nephrotoxicity, diabetes, and other complications. However, limited information is available regarding short-term exposure of TAC on the liver. Therefore, the present study was designed to unravel the effects of short-term exposure of TAC on a rat model. The animal model was established by TAC administration for 6, 12, 24, and 48 h time points. Liver histopathological changes were observed with PAS-D, reticulin stain, and immunostaining of PCNA and CK-7 coupled with glycogen quantification in a liver homogenate. TUNEL assay was performed to evaluate the DNA damage in the liver. Concentration of GSH and activities of SOD and CAT in the serum were measured to assess the antioxidant status, whereas liver tissue MDA level was measured as a biomarker of oxidative stress. Hepatic gene expression analysis of IL-10, IL-13, SOCS-2, and SOCS-3 was performed by RT-PCR. Results revealed marked changes in liver architecture of all TAC-treated groups, as evidenced by sinusoid dilation, hepatocyte derangement, glycogen deposition, and collapsed reticulin fibers. Significant increase in PCNA and CK-7 immunostaining along with the presence of TUNEL-positive cells was revealed in treatment groups as compared to the control group. Serum antioxidant enzyme status was markedly decreased, whereas the liver MDA level was increased in TAC treatment groups indicating oxidative stress induction. The gene expression profile of cytokines was significantly upregulated in treatment groups highlighting an inflammatory response. In conclusion, results of the current study propose that even a short-term TAC exposure can induce change in antioxidant status and lipid peroxidation. Therefore, these factors should be considered to avoid and minimize immunosuppression-related issues in a prolonged course of treatment.
Collapse
|
19
|
Maruyama H, Yamaguchi T, Nagamatsu H, Shiina S. AI-Based Radiological Imaging for HCC: Current Status and Future of Ultrasound. Diagnostics (Basel) 2021; 11:diagnostics11020292. [PMID: 33673229 PMCID: PMC7918339 DOI: 10.3390/diagnostics11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Recent international guidelines request an identification of the stage and patient background/condition for an appropriate decision for the management direction. Radiomics is a technology based on the quantitative extraction of image characteristics from radiological imaging modalities. Artificial intelligence (AI) algorithms are the principal axis of the radiomics procedure and may provide various results from large data sets beyond conventional techniques. This review article focused on the application of the radiomics-related diagnosis of HCC using radiological imaging (computed tomography, magnetic resonance imaging, and ultrasound (B-mode, contrast-enhanced ultrasound, and elastography)), and discussed the current role, limitation and future of ultrasound. Although the evidence has shown the positive effect of AI-based ultrasound in the prediction of tumor characteristics and malignant potential, posttreatment response and prognosis, there are still a number of issues in the practical management of patients with HCC. It is highly expected that the wide range of applications of AI for ultrasound will support the further improvement of the diagnostic ability of HCC and provide a great benefit to the patients.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
- Correspondence: ; Tel.: +81-3-38133111; Fax: +81-3-56845960
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan;
| | - Hiroaki Nagamatsu
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| |
Collapse
|