1
|
Niu QQ, Fu ZZ, Mao BY, Zhang X, Wang HD, Li P, Lin LB, Xi YT, Yin YL, Kamal NNSNM, Lim V. Perillaldehyde targeting PARP1 to inhibit TRPM2-CaMKII/CaN signal transduction in diabetic cardiomyopathy. Int Immunopharmacol 2025; 150:114291. [PMID: 39970708 DOI: 10.1016/j.intimp.2025.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DC) is a serious complication of diabetes, characterized by myocardial fibrosis, hypertrophy, oxidative stress, and inflammation. Perillaldehyde (PAE), a natural monoterpene, has shown potential in mitigating cardiac damage. PURPOSE This study aims to elucidate the molecular mechanism of the protective effect of PAE on the DC and the interaction between DC pathogenesis. METHODS Network pharmacology and molecular docking were used to identify PARP1 as a core target for PAE in DC. Animal experiments involved intervening DC mice with PAE and assessing cardiac function, oxidative stress, and apoptosis. In vitro, high glucose-induced H9c2 cells were used to validate PAE's effects on cell viability and protein expression. RESULTS The results showed that PAE improved the general condition of DC mice, reduced cardiac injury and cardiac insufficiency, decreased myocardial mitochondrial damage, and reduced apoptosis. In addition, PAE upregulated the expression of Bcl-2, downregulated Bax protein expression, inhibited Caspase-3 activity, and inhibited the expression of PARP1, TRPM2, CaN, and CaMKII proteins in DC mice and high glucose-induced H9c2 cells. CONCLUSION Mechanically, this study clarified that PAE's inhibition of the PARP1-TRPM2-CaMKII/CaN pathway reduces calcium-activated mitochondrial damage, apoptosis, and oxidative stress in diabetic cardiomyopathy. This discovery provides an innovative therapeutic strategy for DC and an experimental foundation for PAE's drug development, with significant practical implications.
Collapse
Affiliation(s)
- Qian-Qian Niu
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang 13200, Malaysia.
| | - Zhan-Zhou Fu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Bing-Yan Mao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Dan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lai-Biao Lin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yu-Ting Xi
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Ling Yin
- School of Basic Medical Sciences, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China.
| | | | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang 13200, Malaysia.
| |
Collapse
|
2
|
Zheng J, Deng Y, Fang C, Xiong S, Zhu X, Wu W, Chen X, Wu W, Yin D, Hu K, Yan H. Comprehensive dataset of interactors for the entire PARP family using TurboID proximity labeling. Sci Data 2025; 12:405. [PMID: 40057523 PMCID: PMC11890743 DOI: 10.1038/s41597-025-04722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
A comprehensive dataset detailing protein interactors for the PARP family has been generated using TurboID proximity labeling under standardized experimental conditions. V5-TurboID fusion constructs enabled identification of 6,314 high-confidence interacting proteins through mass spectrometry, capturing transient interactions undetectable by conventional methods. Parallel GFP-PARP localization experiments validated physiological subcellular distributions. The dataset reveals both shared and unique interactors across PARP members, with network analysis suggesting functional cooperativity and specialization. Functional annotation analyses were performed on representative PARP members to validate key biological processes. All raw proteomic data (PRIDE: PXD052745)29 and processed interaction networks (figshare)50 are publicly available. This comprehensive interactome atlas provides a valuable foundation for advancing our understanding of PARP-mediated regulatory mechanisms and supports therapeutic development.
Collapse
Affiliation(s)
- Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Yawen Deng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cong Fang
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shiyu Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinliang Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
3
|
De Silva WGM, Sequeira VB, Yang C, Dixon KM, Holland AJA, Mason RS, Rybchyn MS. 1,25-Dihydroxyvitamin D 3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int J Mol Sci 2024; 25:5583. [PMID: 38891771 PMCID: PMC11171802 DOI: 10.3390/ijms25115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.
Collapse
Affiliation(s)
| | - Vanessa Bernadette Sequeira
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katie Marie Dixon
- Department of Anatomy and Histology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Xue DD, Zhang X, Li DW, Yang YL, Liu JJ. Protective effect of liraglutide on the myocardium of type 2 diabetic rats by inhibiting polyadenosine diphosphate-ribose polymerase-1. World J Diabetes 2023; 14:110-119. [PMID: 36926657 PMCID: PMC10011895 DOI: 10.4239/wjd.v14.i2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/26/2022] [Accepted: 12/21/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND In recent years, studies have found that the occurrence and development of diabetic cardiomyopathy (DCM) is closely related to an increase in polyadenosine diphosphate-ribose polymerase-1 (PARP-1) activity. PARP-1 activation could be involved in the pathophysiological process of DCM by promoting oxidative stress, the inflammatory response, apoptosis and myocardial fibrosis.
AIM To investigate the mechanism of liraglutide in improving myocardial injury in type 2 diabetic rats, further clarified the protective effect of liraglutide on the heart, and provided a new option for the treatment of DCM.
METHODS Forty healthy male SD rats aged 6 wk were randomly divided into two groups, a normal control group (n = 10) and a model group (n = 30), which were fed an ordinary diet and a high-sugar and high-fat diet, respectively. After successful modeling, the rats in the model group were fed a high-glucose and high-fat diet for 4 wk and randomly divided into a model group and an intervention group (further divided into a high-dose group and a low-dose group). The rats were fed a high-glucose and high-fat diet for 8 wk and then started drug intervention. Blood samples were collected from the abdominal aorta to detect fasting blood glucose and lipid profiles. Intact heart tissue was dissected, and its weight was used to calculate the heart weight index. Haematoxylin and eosin staining was used to observe the pathological changes in the myocardium and the expression of PARP-1 in the heart by immunohistochemistry.
RESULTS The body weight and heart weight index of rats in the model group were significantly increased compared with those in the normal control group, and those in the intervention group were decreased compared with those in the model group, with a more obvious decrease observed in the high-dose group (P < 0.05). In the model group, myocardial fibers were disordered, and inflammatory cells and interstitial fibrosis were observed. The cardiomyopathy of rats in the intervention group was improved to different degrees, the myocardial fibers were arranged neatly, and the myocardial cells were clearly striated; the improvement was more obvious in the high-dose group. Compared with the normal control group, the expression of PARP-1 in myocardial tissue of the model group was increased, and the difference was statistically significant (P < 0.05). After liraglutide intervention, compared with the model group, the expression of PARP-1 in myocardial tissue was decreased, and the reduction was more obvious in the high-dose group (P < 0.05) but still higher than that in the normal control group.
CONCLUSION Liraglutide may improve myocardial injury in type 2 diabetic rats by inhibiting the expression of myocardial PARP-1 in a dose-dependent manner.
Collapse
Affiliation(s)
- Dong-Dong Xue
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030000, Shanxi Province, China
| | - Xiang Zhang
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030000, Shanxi Province, China
| | - De-Wei Li
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan 030000, Shanxi Province, China
| | - Yan-Lan Yang
- Department of Endocrine, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jing-Jin Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
5
|
Yang R, Yang Y. Albiflorin attenuates high glucose-induced endothelial apoptosis via suppressing PARP1/NF-κB signaling pathway. Inflamm Res 2023; 72:159-169. [PMID: 36357814 DOI: 10.1007/s00011-022-01666-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Paeonia lactiflora Pall has long been recognized as an anti-inflammatory traditional Chinese herbal medicine. We aimed to study the pharmacological action of albiflorin, an active ingredient extracted from the roots of Paeonia lactiflora Pall, on diabetic vascular complications. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with high glucose and treated with 5, 10, and 20 μM albiflorin. CCK-8 assay, EdU staining, Annexin V-FITC staining, transwell assay, scratch test, RT-PCR, ELISA, Western blot, and immunofluorescence were carried out. SwissTargetPrediction database was used for screening targets of albiflorin and molecular docking was done using Autodock Vina software. RESULTS Albiflorin treatment dose-dependently alleviated high glucose-induced viability loss of HUVECs. In addition, albiflorin promoted the proliferation and migration, while inhibited apoptosis and the release of TNF-α, IL-6, and IL-1β in HUVECs. PARP1 was predicted and confirmed to be a target for albiflorin in vitro. Albiflorin targeted PARP1 to inhibit the activation of NF-κB. Transfection of HUVECs with PARP1 overexpression plasmids effectively reversed the effects of albiflorin on high glucose-treated HUVECs. CONCLUSIONS Albiflorin suppressed high glucose-induced endothelial cell apoptosis and inflammation, suggesting its potential in treating diabetic vascular complications. The action of albiflorin possibly caused by its regulation on inhibiting PARP1/NF-κB signaling.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology and Immunology, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Kuchmerovska T, Yanitska L, Horkunenko O, Guzyk M, Tykhonenko T, Pryvrotska I. Nicotinamide prevention in diabetes-induced alterations in the rat liver. Endocr Regul 2023; 57:279-291. [PMID: 38127690 DOI: 10.2478/enr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective. The study was performed to elucidate whether nicotinamide (NAm) can attenuate the diabetes-induced liver damage by correction of ammonia detoxifying function and disbalance of NAD-dependent processes in diabetic rats. Methods. After four weeks of streptozotocin-induced diabetes, Wistar male rats were treated for two weeks with or without NAm. Urea concentration, arginase, and glutamine synthetase activities, NAD+ levels, and NAD+/NADH ratio were measured in cytosolic liver extracts. Expression of parp-1 gene in the liver was estimated by quantitative polymerase chain reaction and PARP-1 cleavage evaluated by Western blotting. Results. Despite the blood plasma lipid peroxidation products in diabetic rats were increased by 60%, the activity of superoxide dismutase (SOD) was reduced. NAm attenuated the oxidative stress, but did not affect the enzyme activity in diabetic rats. In liver of the diabetic rats, urea concentration and arginase activity were significantly higher than in the controls. The glutamine synthetase activity was decreased. Decline in NAD+ level and cytosolic NAD+/NADH ratio in the liver of diabetic rats was observed. Western blot analysis demonstrated a significant up-regulation of PARP-1 expression accompanied by the enzyme cleavage in the diabetic rat liver. However, no correlation was seen between mRNA expression of parp-1 gene and PARP-1 protein in the liver of diabetic rats. NAm markedly attenuated PARP-1 cleavage induced by diabetes, but did not affect the parp-1 gene expression. Conclusions. NAm counteracts diabetes-induced impairments in the rat liver through improvement of its detoxifying function, partial restoration of oxidative stress, NAD+ level, normalization of redox state of free cytosolic NAD+/NADH-couples, and prevention of PARP-1 cleavage.
Collapse
Affiliation(s)
- Tamara Kuchmerovska
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lesya Yanitska
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oksana Horkunenko
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykhailo Guzyk
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Tykhonenko
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Irina Pryvrotska
- 3Gorbachevsky Ternopil' State Medical University, Ministry of Public Health of Ukraine, Ternopil', Ukraine
| |
Collapse
|
7
|
Bidirectional regulation role of PARP-1 in high glucose-induced endothelial injury. Exp Cell Res 2022; 421:113400. [PMID: 36283454 DOI: 10.1016/j.yexcr.2022.113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Loss of poly (ADP-ribose) polymerase-1 (PARP-1) has been found to slow the progression of diabetes and diabetic angiopathy. In our study, we found bidirectional regulation of PARP-1 in high glucose induced endothelial injury, which promoting repair at the early stage of injury and inhibiting repair at the late stage of injury. To further investigate the mechanism of PARP-1 regulation, we first examined the expression of PARP-1 in aortic tissues and cultured cells at early, middle, and late stages of injury, PARP-1 expression was significantly greater than that of control group. Overexpression of PARP-1 in HUVECs significantly reduced the number of apoptotic cells 12 h after high glucose injury, while reducing the level of reactive oxygen species (ROS)/malondialdehyde (MDA)/inducible nitric oxide synthase (iNOS), increasing the level of endothelial nitric oxide synthase (eNOS); however, when the injury extended to 3 days, the number of apoptosis in HUVECs overexpressing PARP-1 was significantly higher than that in the injury group, and the level of ROS/MDA/iNOS was significantly higher, while the secretion of eNOS was significantly lower. Similarly, PARP-1 inhibitors aggravate early damage and inhibit late damage. We found that PARP-1 promoted the activation of P53 and P53R2 in endothelial cells after 12 h of injury, and PARP-1 promoted the activation of P53 and caspas3 in endothelial cells after 3 days of injury. Therefore, we suggest that PARP-1 plays a dual regulatory role in promoting repair or aggravating injury.
Collapse
|
8
|
Tykhonenko T, Guzyk M, Tykhomyrov A, Korsa V, Yanitska L, Kuchmerovska T. Modulatory effects of vitamin B3 and its derivative on the levels of apoptotic and vascular regulators and cytoskeletal proteins in diabetic rat brain as signs of neuroprotection. Biochim Biophys Acta Gen Subj 2022; 1866:130207. [PMID: 35882257 DOI: 10.1016/j.bbagen.2022.130207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Beneficial effects of nicotinamide (NAm) and its derivates have been earlier shown in animal models of diabetes mellitus (DM), but the mechanisms of their neuroprotective activities are still largely unknown. The aim of the present study was to investigate if NAm and conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) are able to modulate expression levels of apoptosis regulators, angiogenesis-related molecules, and specific cytoskeletal proteins in diabetic rat brain. METHODS After six weeks of streptozotocin induced type 1 DM, rats were daily administered either by NAm (100 mg/kg) or N-GABA (55 mg/kg) intraperitoneally for two weeks. Protein levels were assessed by western blot and immunohistochemistry. RESULTS Both NAm and N-GABA down-regulated NF-κB and Bax levels in diabetic rat brain, suggesting their anti-apoptotic activities. Tested compounds normalized VEGF and nNOS contents improving pro-angiogenic signaling reduced by hyperglycemia. Western blot showed marked up-regulation of astroglial marker GFAP and lowering neurofilament protein levels in DM group, confirmed immunohistochemically, indicating the development of reactive astrogliosis as a major response to diabetes-induced neurodegeneration. NAm had no effects on GFAP and Nf-L levels in the diabetic brain, while N-GABA increased their expression. Inversely, NAm and N-GABA dramatically reduced enhanced levels of GFAP and Nf-L found in the blood serum of diabetic rats, providing for the first time strong evidence for preserving blood-brain barrier integrity by studied compounds. CONCLUSION Thus, NAm and N-GABA may exert neuroprotective effects by decreasing pro-apoptotic regulators levels and improving expression of angiogenic and cytoskeletal proteins impaired by hyperglycemia in rat brain.
Collapse
Affiliation(s)
- Tetiana Tykhonenko
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Mykhailo Guzyk
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine
| | - Lesya Yanitska
- Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Tamara Kuchmerovska
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Ukraine.
| |
Collapse
|