1
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
2
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
3
|
Petrová M, Hurníková Z, Lauková A, Dvorožňáková E. Antiparasitic Activity of Enterocin M and Durancin-like from Beneficial Enterococci in Mice Experimentally Infected with Trichinella spiralis. Microorganisms 2024; 12:923. [PMID: 38792753 PMCID: PMC11123709 DOI: 10.3390/microorganisms12050923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Beneficial/probiotic strains protect the host from pathogens by competitive displacement and production of antibacterial substances, i.e., bacteriocins. The antiparasitic potential of bacteriocins/enterocins and their producing strains in experimental murine trichinellosis were tested as a new therapeutic strategy. Enterocin M and Durancin-like and their producers Enterococcus faecium CCM8558 and Enterococcus durans ED26E/7 were administered daily to mice that were challenged with Trichinella spiralis. Our study confirmed the antiparasitic effect of enterocins/enterococci, which reduced the number of adults in the intestine (Enterocin M-43.8%, E. faecium CCM8558-54.5%, Durancin-like-16.4%, E. durans ED26E/7-35.7%), suppressed the Trichinella reproductive capacity ex vivo (Enterocin M-61%, E. faecium CCM8558-74%, Durancin-like-38%, E. durans ED26E/7-66%), and reduced the number of muscle larvae (Enterocin M-39.6%, E. faecium CCM8558-55.7%, Durancin-like-15%, E. durans ED26E/7-36.3%). The direct effect of enterocins on Trichinella fecundity was documented by an in vitro test in which Durancin-like showed a comparable reducing effect to Enterocin M (40-60%) in contrast to the ex vivo test. The reducing activity of T.spiralis infection induced by Enterocin M was comparable to its strain E. faecium CCM8558; Durancin-like showed lower antiparasitic activity than its producer E. durans ED26E/7.
Collapse
Affiliation(s)
- Miroslava Petrová
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Kosice, Slovakia;
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| |
Collapse
|
4
|
Vargová M, Revajová V, Lauková A, Hurníková Z, Dvorožňáková E. Modulatory Effect of Beneficial Enterococci and Their Enterocins on the Blood Phagocytes in Murine Experimental Trichinellosis. Life (Basel) 2023; 13:1930. [PMID: 37763333 PMCID: PMC10532878 DOI: 10.3390/life13091930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteriocins (enterocins) represent a new therapeutic strategy in various intestinal and non-intestinal infections. In antiparasitic defence, an oxidative inflammation of phagocytes is effective in destroying new-born Trichinella spiralis larvae. The strains Enterococcus faecium CCM8558 and E. durans ED26E/7 and their enterocins, enterocin M and a durancin-like enterocin, respectively, were administered daily, and mice were then infected with T. spiralis larvae on the seventh day of treatment. Phagotest and Bursttest kits were used to detect the phagocytosis and respiratory burst in blood leukocytes. T. spiralis infection inhibited phagocytosis from day 11 post-infection (dpi) during the migration of new-born larvae into the muscles. E. faecium CCM8558, E. durans ED26E/7, and the durancin-like enterocin increased phagocytic activity from day 11 dpi. Both strains and their enterocins (enterocin M and durancin-like) stimulated the ingestion capability of phagocytes from 18 to 32 dpi. Enterococci/enterocins therapy prevented a reduction in cells with respiratory burst caused by T. spiralis infection from 11 dpi. The enzymatic activity of phagocytes was stimulated on 18 and 25 dpi, particularly by E. faecium CCM8558 and enterocin M. Enterocin M and the durancin-like enterocin were as effective in stimulating phagocytosis as the bacterial strains that produce them. The stimulation of phagocytosis could contribute to decreased larval migration and reduced parasite burden in the host.
Collapse
Affiliation(s)
- Miroslava Vargová
- Institute of Parasitology, Slovak Academy of Sciences, 04001 Košice, Slovakia; (M.V.); (Z.H.)
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, 04181 Košice, Slovakia;
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 04001 Košice, Slovakia;
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, 04001 Košice, Slovakia; (M.V.); (Z.H.)
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 04001 Košice, Slovakia; (M.V.); (Z.H.)
| |
Collapse
|
5
|
Saad AE, Othman AA, Ghanem HB, Soliman S, Alshenawy HA, Ghafar MTA, Rayia DMA. Vitamin D3 supplementation could ameliorate the inflammatory and redox status in the muscular phase of trichinellosis. Parasitol Int 2023; 94:102737. [PMID: 36736658 DOI: 10.1016/j.parint.2023.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Nutritional supplements, particularly vitamin D, have been widely used worldwide in the treatment of various infections, including parasites. This study aimed to evaluate the potential effects of vitamin D3 supplementation on the muscular phase of trichinellosis in experimental animals. Mice were divided as follows: (group I): infected untreated, (group IIa) infected and treated with vitamin D3 for 12 doses beginning 2 weeks before infection and continuing after infection, (group IIb) infected and treated with vitamin D3 for 8 doses beginning on the same day of infection, (group III) normal control, (group IVa) which received vitamin D3 for 12 doses and (group IVb) which received vitamin D3 for 8 doses. Mice were sacrificed 35 days after infection and total muscle larval count, and histopathological examination of muscle samples with immunohistochemical staining of cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) were performed. Muscle relative cathelicidin mRNA expression was assessed, as well as serum levels of muscle enzymes CK and LDH, interleukin-4 (IL-4), IL-10, IL-17 and interferon-gamma (INF-γ). Vitamin D3 supplementation significantly reduced muscle larval count, inflammatory cellular infiltration, COX2 and iNOS expression. Furthermore, it increased cathelicidin gene expression, decreased serum levels of CK and LDH and affected serum cytokine levels, increasing serum IL-4 and IL10 levels while decreasing serum INF γ and IL-17. In conclusion, vitamin D3 supplementation has favorable outcomes on the muscle phase of trichinellosis, including anti-inflammatory, antioxidant, and immunomodulatory effects.
Collapse
Affiliation(s)
- Abeer Ezzat Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt.; Medical Parasitology Sub-Unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad Aly Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Heba Bassiony Ghanem
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Shaimaa Soliman
- Public Health, Biostatistics and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | | | | |
Collapse
|
6
|
Sun Q, Vega NM, Cervantes B, Mancuso CP, Mao N, Taylor MN, Collins JJ, Khalil AS, Gore J, Lu TK. Enhancing nutritional niche and host defenses by modifying the gut microbiome. Mol Syst Biol 2022; 18:e9933. [PMID: 36377768 PMCID: PMC9664710 DOI: 10.15252/msb.20209933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 08/18/2023] Open
Abstract
The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.
Collapse
Affiliation(s)
- Qing Sun
- Synthetic Biology CenterMITCambridgeMAUSA
- Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Nic M Vega
- Department of PhysicsMITCambridgeMAUSA
- Biology DepartmentEmory UniversityAtlantaGAUSA
| | - Bernardo Cervantes
- Institute for Medical Engineering & Science and Department of Biological EngineeringMITCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Microbiology Graduate ProgramMITCambridgeMAUSA
| | - Christopher P Mancuso
- Biological Design CenterBoston UniversityBostonMAUSA
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - Ning Mao
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | | | - James J Collins
- Synthetic Biology CenterMITCambridgeMAUSA
- Institute for Medical Engineering & Science and Department of Biological EngineeringMITCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Ahmad S Khalil
- Biological Design CenterBoston UniversityBostonMAUSA
- Department of Biomedical EngineeringBoston UniversityBostonMAUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Jeff Gore
- Department of PhysicsMITCambridgeMAUSA
| | - Timothy K Lu
- Synthetic Biology CenterMITCambridgeMAUSA
- Department of Electrical Engineering and Computer ScienceMITCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| |
Collapse
|
7
|
Schofs L, Sparo MD, de Yaniz MG, Lissarrague S, Domínguez MP, Álvarez L, Sánchez Bruni SF. Antinematodic effect of Enterococcus faecalis CECT7121 using Trichinella spiralis as a model of nematode infection in mice. Exp Parasitol 2022; 241:108358. [PMID: 36030886 DOI: 10.1016/j.exppara.2022.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Nematode infections affect a significant percentage of the human population worldwide, especially in developing countries. There are a small number of drugs available to treat these infections, with variable outcomes. Therefore, the potential use of probiotics to help control parasitic infections has emerged as a suitable option. The main goal of this work was to assess the antinematodic effect of the probiotic Enterococcus faecalis CECT7121 (EFCECT7121) in vitro and in vivo, using Trichinella spiralis as a nematode model of infection. The in vitro assay showed a reduction in T. spiralis larvae viability of 31.6% when compared with the control group (6.3%) after 48 h incubation with EFCECT7121. Nevertheless, the isolated antimicrobial peptide AP7121 when inoculated at different concentrations did not reveal any larvicidal effect. Different EFCECT7121 treatment schemes in mice were evaluated, and the reduction of the enteral and parenteral burden of T. spiralis was determined. In addition, the protective effect of EFCECT7121 combined with the conventional anthelmintic albendazole (ABZ, 5 mg/kg) was also assessed. The oral administration of EFCECT7121 previous T. spiralis infection produced a reduction in the larvae per gram (LPG) of mice muscle tissue ranging from 32.8 to 47.9% on the 28th day post-infection. ABZ alone and the combination EFCECT7121 + ABZ produced a reduction of the LPG of muscle tissue of 62 and 60.7%, respectively. Results obtained in the current work support the hypothesis that probiotics such as EFCECT7121 have an antinematodic effect, and their combination with conventional anthelmintic drugs may result useful for improving clinical and parasitological outcomes.
Collapse
Affiliation(s)
- Laureano Schofs
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, B7000, Tandil, Buenos Aires, Argentina.
| | - Mónica D Sparo
- Departamento de Clínica, Facultad de Ciencias de La Salud, Universidad Nacional Del Centro de La Provincia de Buenos Aires, Campus Universitario, B7400, Olavarría, Buenos Aires, Argentina
| | - María Guadalupe de Yaniz
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, B7000, Tandil, Buenos Aires, Argentina
| | - Sabina Lissarrague
- Departamento de Clínica, Facultad de Ciencias de La Salud, Universidad Nacional Del Centro de La Provincia de Buenos Aires, Campus Universitario, B7400, Olavarría, Buenos Aires, Argentina
| | - María Paula Domínguez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, B7000, Tandil, Buenos Aires, Argentina
| | - Luis Álvarez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, B7000, Tandil, Buenos Aires, Argentina
| | - Sergio F Sánchez Bruni
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, B7000, Tandil, Buenos Aires, Argentina
| |
Collapse
|
8
|
The Effect of Supplementation with Weizmannia coagulans Strain SANK70258 to Coccidia-Infected Broilers Is Similar to That of a Coccidiostat Administration. Vet Sci 2022; 9:vetsci9080406. [PMID: 36006321 PMCID: PMC9416079 DOI: 10.3390/vetsci9080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
To determine whether it could also improve the production performance of Eimeria-infected broilers, Weizmannia coagulans strain SANK70258 (WC) supplementation was compared with coccidiostat lasalocid-A sodium (AM) administration. First, to determine the optimum WC dose, newly hatched broiler chick groups (n = 10) were untreated or consecutively given WC (0.005%, 0.01%, 0.03%, and 0.1%) and AM until slaughter (31 days of age). At day 21, all chicks were infected with coccidia. From the economical and practical viewpoints, 0.03% WC supplementation was the best dose. Second, newly hatched broiler chick groups (n = 10) were untreated or given 0.03% WC and AM. Each group was run in triplicate. At day 21, two chicks/pen with the farthest body weights as per the group’s mean body weight were spared, and the remaining inoculated with coccidia. At days 42 and 49, the WC and AM groups had significantly greater body weights and daily weight gains. Intestinal lesion scores were lower in 29-day-old AM and WC. Oocyst numbers were lower in 29- and 49-day-old AM and WC, but only 29- and 49-day-old AM had higher Escherichia coli levels. To conclude, although WC and AM induced similar growth performance in coccidium-infected chicks, unlike AM, the E. coli levels did not increase with WC.
Collapse
|
9
|
Lauková A, Tomáška M, Fraqueza MJ, Szabóová R, Bino E, Ščerbová J, Pogány Simonová M, Dvorožňáková E. Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods 2022; 11:foods11070959. [PMID: 35407045 PMCID: PMC8997471 DOI: 10.3390/foods11070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
Stored ewe’s milk lump cheese is a local product that can be a source of autochthonous beneficial microbiota, especially lactic acid bacteria. The aim of this study was to show the antimicrobial potential of Lactiplantibacillus plantarum LP17L/1 isolated from stored ewe’s milk lump cheese. Lpb. plantarum LP17L/1 is a non-hemolytic, non-biofilm-forming strain, susceptible to antibiotics. It contains genes for 10 bacteriocins—plantaricins and exerted active bacteriocin with in vitro anti-staphylococcal and anti-listerial effect. It does not produce damaging enzymes, but it produces β-galactosidase. It also sufficiently survives in Balb/c mice without side effects which indicate its safety. Moreover, a reduction in coliforms in mice jejunum was noted. LP17L/1 is supposed to be a promising additive for Slovak local dairy products.
Collapse
Affiliation(s)
- Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
- Correspondence:
| | - Martin Tomáška
- Dairy Research Institute, a.s., Dlhá 95, 010 01 Žilina, Slovakia;
| | - Maria Joao Fraqueza
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Tecnica, 1300-477 Lisbon, Portugal;
| | - Renáta Szabóová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Eva Bino
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Emília Dvorožňáková
- Parasitological Institute of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
| |
Collapse
|
10
|
Dvorožňáková E, Vargová M, Hurníková Z, Lauková A, Revajová V. Modulation of lymphocyte subpopulations in the small intestine of mice treated with probiotic bacterial strains and infected with Trichinella spiralis. J Appl Microbiol 2022; 132:4430-4439. [PMID: 35304938 DOI: 10.1111/jam.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
AIMS To study the local intestinal lymphocyte immunity in mice with trichinellosis affected by probiotic bacteria. METHODS AND RESULTS Enterococcus faecium CCM8558, E. durans ED26E/7, Limosilactobacillus fermentum CCM7421 and Lactiplantibacillus plantarum 17L/1 were administered daily (109 CFU.ml-1 ) and mice were infected with Trichinella spiralis (400 larvae) on 7th day of treatment. T. spiralis infection significantly inhibited lymphocyte subpopulations from 5 to 25 days post infection (dpi). L. fermentum CCM7421 and L. plantarum 17L/1 restored the CD4+T cell numbers in the epithelium and lamina propria at control level from 11 dpi. All strains stimulated the CD8+T cells numbers in infected mice, which were restored in the lamina propria on 11 dpi and in the epithelium only on 32 dpi. B cells (CD19+) inhibition after T. spiralis infection was not affected by treatment till 25dpi. CONCLUSIONS The strain-specific immunomodulatory effect of tested bacteria was confirmed. L. fermentum CCM7421 and L. plantarum 17L/1 showed the greatest immunomodulatory potential on CD4+ and CD8+T lymphocytes in trichinellosis. E. faecium CCM8558 and E. durans ED26E/7 activated only CD8+T cells in the lamina propria. SIGNIFICANCE AND IMPACT OF STUDY Positive modulation of the gut lymphocyte immunity in T. spiralis infection with bacterial strains showed their beneficial effect in the host's antiparasitic defense.
Collapse
Affiliation(s)
- Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Miroslava Vargová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic.,University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovak Republic
| | - Viera Revajová
- University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
11
|
Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens 2022; 11:pathogens11030296. [PMID: 35335620 PMCID: PMC8949586 DOI: 10.3390/pathogens11030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Nematodes of the genus Trichinella are among the most widespread parasites of domestic and wild omnivores and predatory animals. The present study aimed to evaluate the antiparasitic effect of Lactobacillus casei ATCC 393 (original) and L. paracasei CNCM in CD-1 mice experimentally infected with Trichinella britovi. Four groups of 20 mice (10 females and 10 males/group) were used, with two control (C) groups and two experimental (E) groups, in which each animal received a daily oral dose of 100 µL of 105 CFU/mL probiotics in Ringer’s solution. On day 7, all mice (except the negative control group) were infected orally with Trichinella (100 larvae/animal) as well as the two probiotics. On day 9 post-infection (p.i.), 10 mice/group were euthanized, and the presence of adult parasites in the intestinal content and wall was tested. On day 32 p.i., 10 mice/group were euthanized, then trichinoscopy and artificial digestion were performed to assess the muscle infection with T. britovi. On day 9 p.i., the experimental group pretreated with L. casei ATCC 393 (6.3 ± 3.03) showed a significantly lower number of adult parasites in the intestinal wall compared with the positive control group (24.6 ± 4.78). Additionally, a significantly lower adult parasite count in the intestinal wall was registered in female mice pretreated with L. paracasei CNCM (7.4 ± 4.71) compared to female mice from the positive control (29.0 ± 5.17). No statistically relevant results were obtained concerning the male mice or the data obtained at 32 days p.i., irrespective of mice gender.
Collapse
|
12
|
Revajová V, Benková T, Karaffová V, Levkut M, Selecká E, Dvorožňáková E, Ševčíková Z, Herich R, Levkut M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life (Basel) 2022; 12:life12020201. [PMID: 35207488 PMCID: PMC8878764 DOI: 10.3390/life12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Immune response of day-old chicks infected with Salmonella Enteritidis PT4 and preventive administration of Enterococcus faecium AL41 were studied using hematology and flow cytometry of immunocompetent cells in blood, cecum, bursa and spleen for 11 days, and included 220 animals divided into four groups (n = 55). E. faecium AL41 was administered for 7 days to EF and EFSE groups and on day 4 SE and EFSE groups were infected with Salmonella Enteritidis. Values of monocytes at 4 dpi significantly increased in EFSE and lymphocytes at 7 dpi in EF groups. Blood CD3, CD4, CD8 and IgM lymphocytes improved in EF and EFSE groups and IgA in EF group at 4 dpi. Phagocytic activity of probiotic groups was improved in both samples. Cecal IEL and LPL lymphocytes showed at 7 dpi stimulation of CD3, CD4 and CD8 subpopulations in probiotic groups, especially in EFSE group, IgA IEL and IgA with IgM LPL in EF groups. Bursa Fabricii at 7 dpi presented overstimulation of IgG subpopulation in SE group, spleen CD3 and CD8 in EF and EFSE groups. E. faecium AL41 revealed the protective effect and positive influence on the local and systemic immune response in Salmonella Enteritidis PT4 infected chickens.
Collapse
Affiliation(s)
- Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Terézia Benková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Correspondence: ; Tel.: +421-905871840
| | - Martin Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Selecká
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia;
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Mikuláš Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Institute of Neuroimmunology, Slovak Academy of Science, 845 10 Bratislava, Slovakia
| |
Collapse
|
13
|
Slovak Local Ewe's Milk Lump Cheese, a Source of Beneficial Enterococcus durans Strain. Foods 2021; 10:foods10123091. [PMID: 34945639 PMCID: PMC8701886 DOI: 10.3390/foods10123091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Slovak ewe's milk lump cheese is produced from unpasteurized ewe's milk without any added culture. Because of the traditional processing and shaping by hand into a lump, this cheese was given the traditional specialty guaranteed (TSG) label. Up till now, there have existed only limited detailed studies of individual microbiota and their benefits in ewe's milk lump cheese. Therefore, this study has been focused on the beneficial properties and safety of Enterococcus durans strains with the aim to contribute to basic dairy microbiology but also for further application potential and strategy. The total enterococcal count in cheeses reached 3.93 CFU/g (log 10) ± 1.98 on average. Based on a MALDI-TOF mass spectrometry evaluation, the strains were allotted to the species E. durans (score, 1.781-2.245). The strains were gelatinase and hemolysis-negative (γ-hemolysis) and were mostly susceptible to commercial antibiotics. Among the strains, E. durans ED26E/7 produced the highest value of lactase enzyme β-galactosidase (10 nmoL). ED26E/7 was absent of virulence factor genes such as Hyl (hyaluronidase), IS 16 element and gelatinase (GelE). To test safety, ED26E/7 did not cause mortality in Balb/c mice. Its partially purified bacteriocin substance showed the highest inhibition activity/bioactivity against Gram-positive indicator bacteria: the principal indicator Enterococcus avium EA5 (102,400 AU/mL), Staphylococcus aureus SA5 and listeriae (25,600 AU/mL). Moreover, 16 staphylococci (out of 22) were inhibited (100 AU/mL), and the growth of 36 (out of 51) enterococcal indicators was as well. After further technological tests, E. durans ED26E/7, with its bacteriocin substance, can be supposed as a promising additive to dairy products.
Collapse
|
14
|
Chavarro-Tulcán I, Arias-Sosa LA, Rojas AL. Evaluation of metabolic syndromes and parasitic infection in Muscovy ducks under different management conditions. Trop Anim Health Prod 2021; 53:493. [PMID: 34599403 PMCID: PMC8486373 DOI: 10.1007/s11250-021-02944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Proper health management is essential for productivity in duck farming. However, there is limited information on the effect of management conditions on rates of metabolic problems and parasitic infections in anatids. We evaluated the rates of metabolic syndromes and gastrointestinal parasite involvement in Muscovy ducks up to 12 weeks of age, under 3 management conditions: backyard, organized, and organized with probiotics. Individuals under organized management developed 2 metabolic problems: ascites, which was rare (3.5%), fatal, and affected both males and females, and angel wing syndrome, which was more frequent (10.6%), has low impact on general health, and only affected males. The treatments do not have a significant effect on the development of ascites, but only individuals in controlled conditions presented this syndrome, and due to its low prevalence, further studies with a larger sample size are required. The risk of angel wing syndrome increased significantly with probiotic supplementation. Regarding to parasitic infection, the improvement of sanitary management and the use of probiotics supplementation reduced the occurrence of coccidiosis. Similarly organized management with probiotic supplementation showed a protective effect on helminthiasis by reducing the frequency of Heterakis gallinarum and greatly reducing the helminth egg load. Coccidiosis and helminthiasis infections were not significantly correlated with the final weight of the ducks. Therefore, organized management and the use of probiotics seems to reduce the impact of parasitic infection, although it increases the risk of developing metabolic syndrome.
Collapse
Affiliation(s)
- Isabel Chavarro-Tulcán
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Av. Central del Norte, 39-115, 150003, Tunja, Boyacá, Colombia
| | - Luis Alejandro Arias-Sosa
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Av. Central del Norte, 39-115, 150003, Tunja, Boyacá, Colombia.
| | - Alex L Rojas
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Av. Central del Norte, 39-115, 150003, Tunja, Boyacá, Colombia
| |
Collapse
|
15
|
Saracino MP, Vila CC, Baldi PC, González Maglio DH. Searching for the one(s): Using Probiotics as Anthelmintic Treatments. Front Pharmacol 2021; 12:714198. [PMID: 34434110 PMCID: PMC8381770 DOI: 10.3389/fphar.2021.714198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Helminths are a major health concern as over one billion people are infected worldwide and, despite the multiple efforts made, there is still no effective human vaccine against them. The most important drugs used nowadays to control helminth infections belong to the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins and milbemycins) families. However, in the last 20 years, many publications have revealed increasing anthelmintic resistance in livestock which is both an economical and a potential health problem, even though very few have reported similar findings in human populations. To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on plant extracts or probiotics have been developed. Probiotics are defined by the Food and Agriculture Organization as live microorganisms, which, when consumed in adequate amounts, confer a health benefit to the host. It has been proven that probiotic microbes have the ability to exert an immunomodulatory effect both at the mucosa and the systemic level. The immune response against gastrointestinal helminths is characterized as a type 2 response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated macrophages. The oral administration of probiotics may contribute to controlling gastrointestinal helminth infections since it has been demonstrated that these microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune response, among other effects on the host immune system. Here we review the current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a complement to traditional anthelmintic treatments. Considering all research papers reviewed, we may conclude that the effect generated by probiotics on helminth infection depends not only on the parasite species, their stage and localization but also on the administration scheme.
Collapse
Affiliation(s)
- Maria Priscila Saracino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Celeste Vila
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo César Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Salgado-Caxito M, Benavides JA, Munita JM, Rivas L, García P, Listoni FJP, Moreno-Switt AI, Paes AC. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev Vet Med 2021; 190:105316. [PMID: 33725561 DOI: 10.1016/j.prevetmed.2021.105316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R E. coli) in dogs has been reported worldwide and can reduce the effectiveness of treatments against bacterial infections. However, the drivers that influence faecal carriage of ESC-R E. coli in dogs are poorly understood. The aims of this study were to estimate the prevalence of ESC-R E. coli among dogs prior to their admission to a veterinary teaching hospital and to identify risk factors associated with the faecal carriage of ESC-R E. coli. Rectal swabs (n = 130) were collected from dogs and screened for ESC-R E. coli using MacConkey agar supplemented with cefotaxime (2 μg/mL). E. coli species was confirmed by MALDI-TOF and screening of extended-spectrum beta-lactamase (ESBL) genes was conducted by multiplex PCR. Questionnaires were completed by each dog's owner to test several human and dog characteristics associated with ESC-R E. coli. The prevalence of faecal carriage of ESC-R E. coli was 9.2 % and 67 % of ESC-R E. coli isolates harboured ESBL genes including CTX-M alone or in combination with TEM. All ESC-R E. coli isolates were resistant to ceftriaxone, cefpodoxime, and cefotaxime and were susceptible to cefoxitin and carbapenems. The likelihood of carrying ESC-R E. coli was 15 times higher (OR = 14.41 [95 % CI: 1.80-38.02], p < 0.01) if the dog was treated with antibiotics 3-12 months prior to sampling and 8 times higher (OR = 7.96 [95 % CI: 2.96-92.07], p < 0.01) if the dog had direct contact with livestock, but 15 times lower (OR = 0.07 [95 % CI: 0.01-0.32], p < 0.01) if the dog was dewormed during the previous year. Our findings confirm the faecal carriage of ESC-R E. coli in subclinical dogs and call for further investigation regarding the impact of deworming on antibiotic-resistant bacteria in companion animals.
Collapse
Affiliation(s)
- Marília Salgado-Caxito
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil; Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.
| | - Julio A Benavides
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jose M Munita
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Lina Rivas
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando J P Listoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Andrea I Moreno-Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile; Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio C Paes
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
17
|
Probiotic Bacteria can Modulate Murine Macrophage's Superoxide Production in Trichinella Spiralis Infection. Helminthologia 2020; 57:226-234. [PMID: 32855610 PMCID: PMC7425235 DOI: 10.2478/helm-2020-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 01/20/2023] Open
Abstract
The effect of probiotic strains (Enterococcus faecium EF55, E. faecium CCM7420, E. faecium CCM8558, E. durans ED26E/7, Lactobacillus fermentum CCM7421, L. plantarum 17L/1) on the production of superoxide anion (O2-) in peritoneal macrophages of Trichinella spiralis infected mice was examined. E. faecium EF55 and E. faecium CCM8558 strains increased the O2-production prior to parasitic infection,at the day7of application.A significant inhibition of the O2- production caused by T. spiralis infection on day 5 post infection (p.i.) was prevented by all examined strains. Lactobacilli stimulated metabolic activity of macrophages during intestinal and early muscular phase (from day 5 to 25 p.i.) of trichinellosis. Enterococci increased the O2- production in early intestinal phase (day 5 p.i.) and during the muscular phase of trichinellosis (days 25 and 32 p.i.). Respected increase in macrophage’s metabolic activity induced by probiotic treatment in the intestinal phase of trichinellosis augmented the host antiparasite defence (damage and killing of newborn larvae with reactive oxygen species from macrophages).
Collapse
|
18
|
Pogány Simonová M, Chrastinová Ľ, Lauková A. Autochtonous Strain Enterococcus faecium EF2019(CCM7420), Its Bacteriocin and Their Beneficial Effects in Broiler Rabbits-A Review. Animals (Basel) 2020; 10:ani10071188. [PMID: 32674281 PMCID: PMC7401553 DOI: 10.3390/ani10071188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
The present review evaluates and compares the effects achieved after application of rabbit-derived bacteriocin-producing strain Enterococcus faecium CCM7420 with probiotic properties and its bacteriocin Ent7420. The experiments included varying duration of application (14 and 21 days), form of application (fresh culture and lyophilized form), combination with herbal extract and application of the partially purified enterocin-Ent7420, produced by this strain. Results from these studies showed that E. faecium CCM7420 strain was able to colonize the gastrointestinal tract (caecum) of rabbits (in the range < 1.0-6.7 log cycle, respectively 3.66 log cycle on average), to change the composition of intestinal microbiota (increased lactic acid bacteria, reduced counts of coliforms, clostridia and staphylococci), to modulate the immunity (significant increase of phagocytic activity), morphometry (enlargement absorption surface in jejunum, higher villi height:crypt depth (VH:CD) ratio), physiological (serum biochemistry; altered total proteins, glucose and triglycerides levels) and parasitological (Eimeria sp. oocysts) parameters and to improve weight gains (in the range 4.8-22.0%, respectively 11.2% on average), feed conversion ratio and meat quality (physicochemical traits and mineral content).
Collapse
Affiliation(s)
- Monika Pogány Simonová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Kosice, Slovakia
- Correspondence: (M.P.S.); (A.L.); Tel.: +421-55-792-2964 (M.P.S.); +421-55-792-2964 (A.L.)
| | - Ľubica Chrastinová
- Institute for Nutrition, National Agricultural and Food Centre, Hlohovecká 2, 951 41 Nitra-Lužianky, Slovakia;
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 04001 Kosice, Slovakia
- Correspondence: (M.P.S.); (A.L.); Tel.: +421-55-792-2964 (M.P.S.); +421-55-792-2964 (A.L.)
| |
Collapse
|