1
|
Wang Y, Lv Y, Jiang X, Yu X, Wang D, Liu D, Liu X, Sun Y. Long non-coding RNA NORAD regulates megakaryocyte differentiation and proplatelet formation via the DUSP6/ERK signaling pathway. Biochem Biophys Res Commun 2024; 715:150004. [PMID: 38678784 DOI: 10.1016/j.bbrc.2024.150004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Megakaryopoiesis and platelet production is a complex process that is underpotential regulation at multiple stages. Many long non-coding RNAs (lncRNAs) are distributed in hematopoietic stem cells and platelets. lncRNAs may play important roles as key epigenetic regulators in megakaryocyte differentiation and proplatelet formation. lncRNA NORAD can affect cell ploidy by sequestering PUMILIO proteins, although its direct effect on megakaryocyte differentiation and thrombopoiesis is still unknown. In this study, we demonstrate NORAD RNA is highly expressed in the cytoplasm during megakaryocyte differentiation. Interestingly, we identified for the first time that NORAD has a strong inhibitory effect on megakaryocyte differentiation and proplatelet formation from cultured megakaryocytes. DUSP6/ERK1/2 pathway is activated in response to NORAD knockdown during megakaryocytopoiesis, which is achieved by sequestering PUM2 proteins. Finally, compared with the wild-type control mice, NORAD knockout mice show a faster platelet recovery after severe thrombocytopenia induced by 6 Gy total body irradiation. These findings demonstrate lncRNA NORAD has a key role in regulating megakaryocyte differentiation and thrombopoiesis, which provides a promising molecular target for the treatment of platelet-related diseases such as severe thrombocytopenia.
Collapse
Affiliation(s)
- Yong Wang
- College of Pharmacy, Binzhou Medical University, China
| | - Yan Lv
- College of Life Science, Yantai University, China
| | - Xiaoli Jiang
- College of Pharmacy, Binzhou Medical University, China
| | - Xin Yu
- College of Pharmacy, Binzhou Medical University, China
| | - Delong Wang
- College of Pharmacy, Binzhou Medical University, China
| | - Desheng Liu
- College of Pharmacy, Binzhou Medical University, China
| | - Xiangyong Liu
- College of Pharmacy, Binzhou Medical University, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, China.
| |
Collapse
|
2
|
Lin C, Xiong J, Chen Y, Zheng H, Li M. Overexpression of CENPU promotes cancer growth and metastasis and is associated with poor survival in patients with nasopharyngeal carcinoma. Transl Cancer Res 2024; 13:2812-2824. [PMID: 38988917 PMCID: PMC11231766 DOI: 10.21037/tcr-23-2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
Background Centromere protein U (CENPU) is key for mitosis in the carcinogenesis of cancers. However, the roles of CENPU have not been inspected in nasopharyngeal carcinoma (NPC). Thus, we aimed to explore the functions and mechanisms of CENPU in NPC. Methods Expression of CENPU was evaluated by real-time quantitative polymerase chain reaction, western blotting and immunohistochemistry. The biological functions of CENPU were evaluated in vitro and in vivo. Gene chip analysis, ingenuity pathway analysis, and coimmunoprecipitation experiments were used to explore the mechanisms of CENPU. Results CENPU was highly expressed in NPC. High expression of CENPU was associated with advanced tumor, node and metastasis (TNM) stage and poor overall survival. Cox regression analysis demonstrated that CENPU expression was an independent prognostic factor in NPC. Knockdown of CENPU inhibited proliferation and migration in vitro and in vivo. Knockdown of CENPU upregulated dual specificity phosphatase 6 (DUSP6) expression. The expression of CNEPU was inversely correlated with the expression of DUSP6 in NPC tissues. Mechanistic studies confirmed that CENPU increased the activation of the ERK1/2 and p38 signaling pathways by suppressing the expression of DUSP6. Conclusions CENPU acts as an oncogene in NPC by interacting with DUSP6, and may represent a promising prognostic biomarker for patients with NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuebing Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Huiping Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Meifang Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
3
|
Guo B, Liu J, Han X, Li Y, Tian X, Jin X, Wei Z, Liu S. Value of DUSP6 in peripheral blood mononuclear cells in predicting adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:359-366. [PMID: 38970509 PMCID: PMC11208400 DOI: 10.11817/j.issn.1672-7347.2024.230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.
Collapse
Affiliation(s)
- Baozhu Guo
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000.
| | - Junfen Liu
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Xiaoli Han
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Yaqi Li
- Department of Chronic Disease Management, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000, China
| | - Xiaomin Tian
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Xin Jin
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Zhifeng Wei
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000.
| | - Shengjun Liu
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| |
Collapse
|
4
|
Chen Y, Zheng S, Zhao X, Zhang Y, Yu S, Wei J. Unveiling the protective effects of BMSCs/anti-miR-124-3p exosomes on LPS-induced endometrial injury. Funct Integr Genomics 2024; 24:32. [PMID: 38363406 DOI: 10.1007/s10142-024-01303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
Researchers have reported that miR-124-3p is highly expressed in patients with chronic endometritis. However, the underlying mechanism of miR-124-3p in the development of endometritis remains unclear. This study constructed an in vitro endometrial cell injury model by treating HEECs with 2 μg/mL LPS for 48 h. Then, 1 mg/kg LPS was injected into both sides of the mouse uterus to construct an in vivo endometrial injury model. The expression of miR-124-3p in human endometrial epithelial cells (HEECs) was assessed using RT‒qPCR. Exosomes were separated from bone marrow-derived mesenchymal stem cells (BMSCs) and cocultured with HEECs. A dual-luciferase reporter assay was performed to confirm the relationship between miR-124-3p and DUSP6. The results indicated that LPS inhibited HEEC viability in a time- and dose-dependent manner. The miR-124-3p inhibitor reversed the LPS-induced apoptosis and inhibition of HEEC viability. In addition, miR-124-3p could be transferred from BMSCs to HEECs by exosomes. Exosomes were derived from BMSCs treated with an NC inhibitor (BMSCs/NC Exo) or miR-124-3p inhibitor (BMSCs/anti-miR-124-3p Exo). In addition, BMSCs/anti-miR-124-3p Exo abolished the LPS-induced inhibition of HEEC viability and proliferation by inducing HEEC apoptosis. Moreover, BMSCs/anti-miR-124-3p Exo alleviated the LPS-induced inflammation of HEECs by upregulating DUSP6 and downregulating p-p65 and p-ERK. Furthermore, in an LPS-induced in vivo endometrial injury model, BMSCs/anti-miR-124-3p Exo increased the expression level of DUSP6 and decreased the expression levels of p-p65 and p-ERK. BMSCs/anti-miR-124-3p Exo protected against LPS-induced endometrial damage in vitro and in vivo by upregulating DUSP6 and downregulating p-p65 and p-ERK1/2. This study showed that BMSCs/anti-miR-124-3p Exo might be a potential alternative for the treatment of endometritis.
Collapse
Grants
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shan Zheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiumei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Suchai Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
5
|
Wu X, Wang J, Kang Y, Wang Q, Qu J, Sun X, Ji D, Li Y. miR-133a-3p regulates the growth of hair follicle stem cells in white goats from the Yangtze River Delta. Anim Biotechnol 2023; 34:4559-4568. [PMID: 36752211 DOI: 10.1080/10495398.2023.2172422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The Yangtze River Delta white goats are the sole goat breed producing brush hair of high quality. Owing to the particularities of its wool production, a higher demand is placed on breeding efforts for this animal. Studies on the developmental mechanisms of the aligned hair follicle stem cells (HFSCs) provide a theoretical basis for molecular breeding. In the present study, HFSCs were isolated using the technique of immunohistochemistry from the cervical spinal skin tissue samples from the fetal sheep, and the miR-133a-3p expression was confirmed using quantitative reverse-transcription PCR (RT-qPCR) and western blotting experiments from the isolated HFSCs. Additionally, the effects on the proliferation and apoptosis of HFSCs were detected using flow cytometry and 5-ethynyl-2'-deoxyuridine assays, along with other methods, following the overexpression of miR-133a-3p or its inhibition. The experimental results revealed that miR-133a-3p overexpressed could inhibit the proliferation of HFSCs and promote apoptosis by specifically targeting DUSP6. While the miR-133a-3p knockdown could promote the proliferation but inhibit the apoptosis of the HFSCs. Meanwhile, the miR-133a-3p knockdown experiments showed opposite outcomes. These results illustrate the presence of a relevant network between DUSP6 and miR-133a-3p, which regulates the production of superior-quality brush hair.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Yan Kang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Yoo DH, Im YS, Oh JY, Gil D, Kim YO. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep 2023; 13:5683. [PMID: 37029196 PMCID: PMC10082014 DOI: 10.1038/s41598-023-32567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.
Collapse
Affiliation(s)
- Dae Hoon Yoo
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Young Sam Im
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Ji Young Oh
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Dayeon Gil
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Yong-Ou Kim
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea.
- Center for National Stem Cell and Regenerative Medicine 202, Osongsaengmyung 2-Ro, Heundeok-Gu, Cheongju, Chungcheongbuk-Do, 28160, Republic of Korea.
| |
Collapse
|
7
|
Suppression of EZH2 inhibits TGF-β1-induced EMT in human retinal pigment epithelial cells. Exp Eye Res 2022; 222:109158. [PMID: 35780904 DOI: 10.1016/j.exer.2022.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-β1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-β1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-β1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.
Collapse
|
8
|
Travaglino A, Raffone A, Gencarelli A, Micheli M, Franco L, Zullo F, Mollo A, Di Spiezio Sardo A, Bifulco G, Insabato L. Dusp6 immunohistochemistry is associated with the response of atypical endometrial hyperplasia and early endometrial cancer to conservative treatment. Int J Gynaecol Obstet 2021; 158:742-747. [PMID: 34837386 DOI: 10.1002/ijgo.14050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Dual-specificity phosphatase 6 (Dusp6) was proposed as a predictive marker of response of atypical endometrial hyperplasia (AEH) and early endometrial cancer (EEC) to conservative treatment. However, its predictive accuracy has never been calculated. We aimed to define it in conservatively treated AEH and EEC. METHODS All patients <45 years with AEH or EEC and conservatively treated with hysteroscopic resection + LNG-IUD insertion from 2007 to 2018 were retrospectively assessed. Dusp6 immunohistochemical expression was assessed and dichotomized as "strong" vs "weak". Relative risk (RR) for "no regression" and "recurrence" or AEH/EEC was calculated. Predictive accuracy was calculated as sensitivity, specificity, positive and negative predictive values (PPV, NPV) and area under the curve (AUC) on receiver operating characteristic curve. RESULTS Thirty-six women were included. Weak Dusp6 immunohistochemical expression was significantly associated with increased risk of resistance to treatment, with a RR = 16 (P = 0.0074); predictive accuracy analysis showed sensitivity = 80%, specificity = 90%, PPV = 57.1%, NPV = 96.4%, AUC = 0.85. A weak Dusp6 expression was not significantly associated with the risk of recurrence after an initial regression (RR = 0.4; P = 0.53). CONCLUSION Weak Dusp6 expression appears as a significant predictor of resistance of AEH/EEC to fertility-sparing treatment, with moderate predictive accuracy. Weak Dusp6 expression is significantly associated with resistance of atypical endometrial hyperplasia or early endometrial cancer to fertility-sparing treatment, with moderate predictive accuracy.
Collapse
Affiliation(s)
- Antonio Travaglino
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Annarita Gencarelli
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Laura Franco
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Fulvio Zullo
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Mollo
- Gynecology and Obstetrics Unit, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Attilio Di Spiezio Sardo
- Gynecology and Obstetrics Unit, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy.,Gynecology and Obstetrics Unit, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
10
|
Upregulation of fibroblast growth factor 2 contributes to endometriosis through SPRYs/DUSP6/ERK signaling pathway. Acta Histochem 2021; 123:151749. [PMID: 34224989 DOI: 10.1016/j.acthis.2021.151749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Previous studies report that fibroblast growth factor 2 (FGF2) modulates Sproutys (SPRYs)/dual specificity phosphatase 6 (DUSP6)/extracellular signal-regulated kinase (ERK) signaling pathway in endometrial glandular epithelial cells. However, its role in endometriosis remains unclear. The expression patterns and localization of related proteins in endometrium patients' samples were determined using quantitative reverse transcription PCR, Western blotting, and immunohistochemistry, respectively. Human endometrial stromal cells (HESCs) were isolated and transfected with small interfering RNA (siRNA) targeting FGF2 (FGF2-siRNA). Cell viability was determined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. It was found that FGF2 mRNA and protein levels were increased in the ectopic endometrium, whilst the mRNA and protein levels of SPRYs/DUSP6/ERK signaling pathway related-genes were dysregulated. Spearman's rank correlation analysis revealed a negative correlation between FGF2 and SPRYs/DUSP6 signaling pathway-related proteins. In vitro study demonstrated that FGF2 silencing suppressed cell proliferation. Our results suggest that FGF2 upregulation might contribute to endometriosis via the regulation of the SPRYs/DUSP6/ERK signaling pathway.
Collapse
|
11
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Xanthoulea S, Konings GFJ, Saarinen N, Delvoux B, Kooreman LFS, Koskimies P, Häkkinen MR, Auriola S, D'Avanzo E, Walid Y, Verhaegen F, Lieuwes NG, Caiment F, Kruitwagen R, Romano A. Pharmacological inhibition of 17β-hydroxysteroid dehydrogenase impairs human endometrial cancer growth in an orthotopic xenograft mouse model. Cancer Lett 2021; 508:18-29. [PMID: 33762202 DOI: 10.1016/j.canlet.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Endometrial cancer (EC) is the most common gynaecological tumor in developed countries and its incidence is increasing. Approximately 80% of newly diagnosed EC cases are estrogen-dependent. Type 1 17β-hydroxysteroid dehydrogenase (17β-HSD-1) is the enzyme that catalyzes the final step in estrogen biosynthesis by reducing the weak estrogen estrone (E1) to the potent estrogen 17β-estradiol (E2), and previous studies showed that this enzyme is implicated in the intratumoral E2 generation in EC. In the present study we employed a recently developed orthotopic and estrogen-dependent xenograft mouse model of EC to show that pharmacological inhibition of the 17β-HSD-1 enzyme inhibits disease development. Tumors were induced in one uterine horn of athymic nude mice by intrauterine injection of the well-differentiated human endometrial adenocarcinoma Ishikawa cell line, modified to express human 17β-HSD-1 in levels comparable to EC, and the luciferase and green fluorescent protein reporter genes. Controlled estrogen exposure in ovariectomized mice was achieved using subcutaneous MedRod implants that released either the low active estrone (E1) precursor or vehicle. A subgroup of E1 supplemented mice received daily oral gavage of FP4643, a well-characterized 17β-HSD-1 inhibitor. Bioluminescence imaging (BLI) was used to measure tumor growth non-invasively. At sacrifice, mice receiving E1 and treated with the FP4643 inhibitor showed a significant reduction in tumor growth by approximately 65% compared to mice receiving E1. Tumors exhibited metastatic spread to the peritoneum, to the lymphovascular space (LVI), and to the thoracic cavity. Metastatic spread and LVI invasion were both significantly reduced in the inhibitor-treated group. Transcriptional profiling of tumors indicated that FP4643 treatment reduced the oncogenic potential at the mRNA level. In conclusion, we show that 17β-HSD-1 inhibition represents a promising novel endocrine treatment for EC.
Collapse
Affiliation(s)
- Sofia Xanthoulea
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands.
| | - Gonda F J Konings
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - Niina Saarinen
- Forendo Pharma Ltd., Turku, Finland; Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling (TCDM), University of Turku, Finland
| | - Bert Delvoux
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - Loes F S Kooreman
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Pathology, Maastricht University Medical Centre, the Netherlands
| | | | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elisabetta D'Avanzo
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - Youssef Walid
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - Frank Verhaegen
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands
| | - Natasja G Lieuwes
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; MAASTRO Lab, Maastricht University Medical Centre, the Netherlands
| | - Florian Caiment
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Toxicogenomics, Maastricht University Medical Centre, the Netherlands
| | - Roy Kruitwagen
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| | - Andrea Romano
- GROW - School for Oncology & Developmental Biology, Maastricht University, the Netherlands; Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, the Netherlands
| |
Collapse
|
13
|
Landscape of transcription and expression regulated by DNA methylation related to age of donor and cell passage in adipose-derived mesenchymal stem cells. Aging (Albany NY) 2020; 12:21186-21201. [PMID: 33130636 PMCID: PMC7695361 DOI: 10.18632/aging.103809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are pluripotent stromal cells that can differentiate into a variety of cell types, including skin cells. High-throughput sequencing was performed on cells of different ages and cell passage, obtaining their methylation, mRNA expression, and protein profile data. The stemness of each sample was then calculated using the TCGAbiolinks package in R. Co-expression modules were identified using WGCNA, and a crosstalk analysis was performed on the corresponding modules. The ClusterProfile package was used for the functional annotation of module genes. Finally, the regulatory network diagram was visualized using the Cytoscape software. First, a total of 16 modules were identified, where 3 modules were screened that were most relevant to the phenotype. 29 genes were screened in combination of the RNA seq, DNA methylation seq and protein iTRAQ. Finally, a comprehensive landscape comprised of RNA expression, DNA methylation and protein profiles of age relevant ADSCs was constructed. Overall, the different omics of ADSCs were comprehensively analyzed in order to reveal mechanisms pertaining to their growth and development. The effects of age, cell passage, and stemness on the therapeutic effect of ADSCs were explored. Additionally, a theoretical basis for selecting appropriate ADSC donors for regenerative medicine was provided.
Collapse
|
14
|
Zuchegna C, Di Zazzo E, Moncharmont B, Messina S. Dual-specificity phosphatase (DUSP6) in human glioblastoma: epithelial-to-mesenchymal transition (EMT) involvement. BMC Res Notes 2020; 13:374. [PMID: 32771050 PMCID: PMC7414695 DOI: 10.1186/s13104-020-05214-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specificity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the development and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. Results We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithelial markers. Vimentin, N-Cadherin, E-Cadherin and fibronectin were measured with and without DUSP6 over-expression, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM. Overall, our data unveil the DUSP6 involvement in invasive mesenchymal-like properties in GBM.
Collapse
Affiliation(s)
- Candida Zuchegna
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
15
|
The Interplay of Tumor Stroma and Translational Factors in Endometrial Cancer. Cancers (Basel) 2020; 12:cancers12082074. [PMID: 32726992 PMCID: PMC7463731 DOI: 10.3390/cancers12082074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecologic malignancy which continues to have a poor prognosis in advanced stages due to current therapeutic limitations. A significant mechanism of chemoresistance in EC has been shown to also be the enhancement of epithelial to mesenchymal transition (EMT) and the subsequent obtainment of stem cell-like characteristics of EC. Current evidence on EMT in EC however fails to explain the relationship leading to an EMT signaling enhancement. Our review therefore focuses on understanding eukaryotic translation initiation factors (eIFs) as key regulators of the translational process in enhancing EMT and subsequently impacting higher chemoresistance of EC. We identified pathways connected to the development of a microenvironment for EMT, inducers of the process specifically related to estrogen receptors as well as their interplay with eIFs. In the future, investigation elucidating the translational biology of EC in EMT may therefore focus on the signaling between protein kinase RNA-like ER kinase (PERK) and eIF2alpha as well as eIF3B.
Collapse
|
16
|
Chen L, Wang Y, Luan H, Ma G, Zhang H, Chen G. DUSP6 protects murine podocytes from high glucose‑induced inflammation and apoptosis. Mol Med Rep 2020; 22:2273-2282. [PMID: 32705203 PMCID: PMC7411363 DOI: 10.3892/mmr.2020.11317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications that can occur in patients with diabetes, and without effective and timely therapeutic intervention, can gradually progress to renal failure. Previous studies have focused on investigating the pathogenesis of DN; however, the role of dual‑specificity phosphatase 6 (DUSP6) in DN is not completely understood. Therefore, the present study aimed to investigate the role of dual‑specificity phosphatase 6 (DUSP6) in DN. DN model mice were established and the expression levels of DUSP6 in the kidney tissues and high glucose (HG)‑induced murine podocytes (MPC5 cells) were determined using immunohistochemistry, reverse transcription‑quantitative PCR and western blotting. In addition, the levels of reactive oxygen species (ROS) and inflammatory cytokines in MPC5 cells were analyzed using commercial assay kits or ELISA kits, respectively, and flow cytometric analysis was performed to analyze the rate of cell apoptosis. The present study indicated that DUSP6 expression levels were significantly decreased in DN model mice compared with control mice, and in HG‑induced MPC5 cells compared with normal glucose‑induced MPC5 cells. DUSP6 overexpression enhanced MPC5 cell viability and increased protein expression levels of cell markers, such as synaptopodin and nephrin, compared with the negative control group. DUSP6 overexpression also reduced the levels of ROS and inflammatory cytokines, including interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α secreted by MPC5 cells under HG conditions. Moreover, compared with the HG group, cell apoptosis was inhibited by DUSP6 overexpression under HG conditions, which was further indicated by decreased expression levels of cleaved caspase‑3 and Bax. Thus, these findings indicated that DUSP6 mediated the protection against HG‑induced inflammatory response.
Collapse
Affiliation(s)
- Liqiang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yaokun Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Haiyan Luan
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Guangyu Ma
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Guang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
17
|
Kato M, Onoyama I, Yoshida S, Cui L, Kawamura K, Kodama K, Hori E, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Dual-specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem-like cell phenotype in human endometrial cancer. Int J Cancer 2020; 147:1987-1999. [PMID: 32159851 PMCID: PMC7496376 DOI: 10.1002/ijc.32965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
The prognosis of patients with high‐grade or advanced‐stage endometrial cancer remains poor. As cancer stem‐like cells (CSCs) are thought to be associated with endometrial cancers, it is essential to investigate the molecular mechanisms that regulate endometrial CSCs. Dual‐specificity phosphatase 6 (DUSP6) functions as a negative‐feedback regulator of MAPK–ERK1/2 signaling, but its role in endometrial cancer remains unknown. We investigated whether DUSP6 is involved in cancer cell stemness using endometrial cancer cell lines and specimens from endometrial cancer patients. DUSP6 induced the expression of CSC‐related genes including ALDH1, Nanog, SOX2 and Oct4A, increased the population of cells in the G0/G1 phase, and promoted sphere formation ability. DUSP6 knockdown resulted in reduced cell invasion and metastasis, whereas DUSP6 overexpression inhibited apoptosis under serum‐free conditions. Moreover, DUSP6 decreased phosphorylated ERK1/2 and increased phosphorylated Akt levels, which potentially induces CSC features. In patients with endometrial cancers, DUSP6 expression was determined using immunohistochemistry, and based on the results, the patients were dichotomized into high‐ and low‐DUSP6‐expression groups. Progression‐free survival and overall survival were significantly shorter in the high‐DUSP6‐expression group. These results suggest that DUSP6 has potential value as a biomarker of CSCs and as a target of therapies designed to eliminate CSCs in endometrial cancer. What's new? Although cancer stem‐like cells (CSCs) are involved in human endometrial cancers, the underlying molecular mechanisms and biomarkers for CSCs in endometrial cancers remain elusive. Here, the authors found that DUSP6 plays an important role in regulating endometrial CSC phenotypes by increasing self‐renewal ability and starvation resistance. DUSP6 expression was required for inducing invasion and metastasis and resulted in ERK1/2 dephosphorylation and Akt phosphorylation, which potentially contribute to the promotion of CSC phenotypes. As DUSP6 expression was also positively associated with worse progression‐free and overall survival, DUSP6 represents a potential biomarker for endometrial CSCs and a therapeutic target in endometrial cancers.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Ichiro Onoyama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Sachiko Yoshida
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Lin Cui
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keiko Kawamura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Kodama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Emiko Hori
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yumiko Matsumura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuo Asanoma
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hideaki Yahata
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Satoru Takeda
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
18
|
Zeng K, Chen X, Xu M, Liu X, Li C, Xu X, Pan B, Qin J, He B, Pan Y, Huiling S, Xu T, Wang S. LRIG3 represses cell motility by inhibiting slug via inactivating ERK signaling in human colorectal cancer. IUBMB Life 2020; 72:1393-1403. [PMID: 32107843 DOI: 10.1002/iub.2262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Metastasis is responsible for 90% of colorectal cancer (CRC)-related deaths. In the present study, we identified a novel key regulator of CRC metastasis, leucine-rich repeats and immunoglobulin-like domains protein 3 (LRIG3), which was significantly decreased in CRC tissues and cell lines. Downregulation of LRIG3 was attributed to copy number loss and promoter hypermethylation. Low LRIG3 expression was positively correlated with metastatic clinical features and shorter survival time. Functional experiments showed that knockout of LRIG3 markedly enhanced CRC cell migration and invasion ability, whereas reintroduction of LRIG3 exerted the opposite effects. Regarding the mechanism, LRIG3 could facilitate the binding of DUSP6 to ERK1/2, resulting in the dephosphorylation of ERK1/2 and subsequently downregulation of slug, an epithelial-to-mesenchymal transition trigger, thereby constraining CRC cell motility. Importantly, LRIG3 expression was strongly negatively correlated with slug or p-ERK1/2 expression in CRC tissues. Collectively, our data suggest that LRIG3 is a novel suppressor of CRC metastasis, reactivation of LRIG3 may be a promising therapeutic approach for metastatic CRC patients.
Collapse
Affiliation(s)
- Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chenmeng Li
- School of Medicine, Southeast University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Sun Huiling
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|