1
|
Plucińska K, Mody N, Dekeryte R, Shearer K, Mcilroy GD, Delibegovic M, Platt B. High-fat diet exacerbates cognitive and metabolic abnormalities in neuronal BACE1 knock-in mice - partial prevention by Fenretinide. Nutr Neurosci 2022; 25:719-736. [PMID: 32862802 DOI: 10.1080/1028415x.2020.1806190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: The β-site APP-cleaving enzyme 1 (BACE1) is a rate-limiting step in β-amyloid (Aβ) production in Alzheimer's disease (AD) brains, but recent evidence suggests that BACE1 is also involved in metabolic regulation. Here, we aimed to assess the effects of highfat diet (HFD) on metabolic and cognitive phenotypes in the diabetic BACE1 knock-in mice (PLB4) and WT controls; we additionally examined whether these phenotypes can be normalized with a synthetic retinoid (Fenretinide, Fen) targeting weight loss.Methods: Five-month old male WT and PLB4 mice were fed either (1) control chow diet, (2) 45%-saturated fat diet (HFD), (3) HFD with 0.04% Fen (HFD + Fen) or (4) control chow diet with 0.04% Fen (Fen) for 10 weeks. We assessed basic metabolic parameters, circadian rhythmicity, spatial habituation (Phenotyper) and working memory (Y-maze). Hypothalami, forebrain and liver tissues were assessed using Western blots, qPCR and ELISAs.Results: HFD feeding drastically worsened metabolism and induced early mortality (-40%) in otherwise viable PLB4 mice. This was ameliorated by Fen, despite no effects on glucose intolerance. In HFD-fed WT mice, Fen reduced weight gain, glucose intolerance and hepatic steatosis. The physiological changes induced in WT and PLB4 mice by HFD (+/-Fen) were accompanied by enhanced cerebral astrogliosis, elevated PTP1B, phopsho-eIF2α and altered hypothalamic transcription of Bace1, Pomc and Mc4r. Behaviourally, HFD feeding exacerbated spatial memory deficits in PLB4 mice, which was prevented by Fen and linked with increased full-length APP, normalized brain Aβ*56 oligomerization and astrogliosis.Conclusions: HFD induces early mortality and worsened cognition in the Alzheimer's-like BACE1 mice- partial prevention was achieved with Fenretinide, without improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Kaja Plucińska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Integrative Physiology and Environmental Influences, University of Copenhagen, Copenhagen, Denmark
| | - Nimesh Mody
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruta Dekeryte
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Kirsty Shearer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Wang L, Jin GF, Yu HH, Lu XH, Zou ZH, Liang JQ, Yang H. Protective effects of tenuifolin isolated from Polygala tenuifolia Willd roots on neuronal apoptosis and learning and memory deficits in mice with Alzheimer's disease. Food Funct 2019; 10:7453-7460. [PMID: 31664284 DOI: 10.1039/c9fo00994a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The roots of Polygala tenuifolia Willd have a long history of being used as a traditional Chinese medicine for the treatment of insomnia, forgetfulness, sorrow and depression. Tenuifolin (TEN) has been isolated from Polygala tenuifolia Willd roots, and this study was carried out to investigate the potential beneficial effects of TEN on neuronal apoptosis and memory deficits in a mouse model of Alzheimer's disease (AD). TEN treatment reversed spatial learning and memory deficits, as well as neuronal apoptosis in hippocampal areas, in APP/PS1 transgenic AD mice. TEN treatment protected against Aβ25-35-induced apoptosis, loss of mitochondria-membrane potential, and activation of caspases-3 and -9 in SH-SY5Y cells. TEN has potential benefit in treating learning and memory deficits in APP/PS1 transgenic AD mice, and its effects may be associated with reversing AD pathology-induced neuronal apoptosis. These insights pave the way for further analysis of the potential of TEN as an AD therapeutic agent.
Collapse
Affiliation(s)
- Lin Wang
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gui Fang Jin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - He Han Yu
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao Hua Lu
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhen Hua Zou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Qi Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Yang
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Plucińska K, Crouch B, Yeap JM, Stoppelkamp S, Riedel G, Platt B. Histological and Behavioral Phenotypes of a Novel Mutated APP Knock-In Mouse. J Alzheimers Dis 2019; 65:165-180. [PMID: 30040726 DOI: 10.3233/jad-180336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene mutations within amyloid precursor protein (APP or AβPP) and/or presenilin 1 (PS1) genes are determinants of familial Alzheimer's disease (fAD) and remain fundamental for experimental models. Here, we generated a neuronal knock-in mouse (PLB2APP) with mutated human APPSwe/Lon and investigated histopathology and behavioral phenotypes. Additionally, PLB2APP mice were cross-bred with a presenilin (PS1A246E) line to assess the impact of this gene combination. Immunohistochemistry determined amyloid-β (Aβ) pathology, astrogliosis (via GFAP labelling), and neuronal densities in hippocampal and cortical brain regions. One-year old PLB2APP mice showed higher levels of intracellular Aβ in CA1, dentate gyrus, and cortical regions compared to PLBWT controls. Co-expression of PS1 reduced hippocampal but elevated cortical Aβ build-up. Amyloid plaques were sparse in aged PLB2APP mice, and co-expression of PS1 promoted plaque formation. Heightened GFAP expression followed the region-specific pattern of Aβ in PLB2APP and PLB2APP/PS1 mice. Behaviorally, habituation to a novel environment was delayed in 6-month-old PLB2APP mice, and overall home-cage activity was reduced in both lines at 6 and 12 months, particularly during the dark phase. Spatial learning in the water maze was impaired in PLB2APP mice independent of PS1 expression and associated with reduced spatial navigation strategies. Memory retrieval was compromised in PLB2APP mice only. Our data demonstrate that low expression of APP is sufficient to drive histopathological and cognitive changes in mice without overexpression or excessive plaque deposition. AD-like phenotypes were altered by co-expression of PS1, including a shift from hippocampal to cortical Aβ pathology, alongside reduced deficits in spatial learning.
Collapse
Affiliation(s)
- Kaja Plucińska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Barry Crouch
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jie M Yeap
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Stoppelkamp
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Napper RMA. Total Number Is Important: Using the Disector Method in Design-Based Stereology to Understand the Structure of the Rodent Brain. Front Neuroanat 2018; 12:16. [PMID: 29556178 PMCID: PMC5844935 DOI: 10.3389/fnana.2018.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
The advantages of using design-based stereology in the collection of quantitative data, have been highlighted, in numerous publications, since the description of the disector method by Sterio (1984). This review article discusses the importance of total number derived with the disector method, as a key variable that must continue to be used to understand the rodent brain and that such data can be used to develop quantitative networks of the brain. The review article will highlight the huge impact total number has had on our understanding of the rodent brain and it will suggest that neuroscientists need to be aware of the increasing number of studies where density, not total number, is the quantitative measure used. It will emphasize that density can result in data that is misleading, most often in an unknown direction, and that we run the risk of this type of data being accepted into the collective neuroscience knowledge database. It will also suggest that design-based stereology using the disector method, can be used alongside recent developments in electron microscopy, such as serial block-face scanning electron microscopy (SEM), to obtain total number data very efficiently at the ultrastructural level. Throughout the article total number is discussed as a key parameter in understanding the micro-networks of the rodent brain as they can be represented as both anatomical and quantitative networks.
Collapse
Affiliation(s)
- Ruth M A Napper
- Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Virgili J, Lebbadi M, Tremblay C, St-Amour I, Pierrisnard C, Faucher-Genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018; 72. [DOI: 10.1002/syn.22025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica Virgili
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Meryem Lebbadi
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Caroline Pierrisnard
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Audrey Faucher-Genest
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Carl Julien
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Frédéric Calon
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
6
|
Esquerda-Canals G, Martí-Clúa J, Roda AR, Villegas S. An Intracellular Amyloid-β/AβPP Epitope Correlates with Neurodegeneration in those Neuronal Populations Early Involved in Alzheimer’s Disease. J Alzheimers Dis 2017; 59:1079-1096. [DOI: 10.3233/jad-170218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gisela Esquerda-Canals
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Biologia Cellular, Protein Folding and Stability Group, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Joaquim Martí-Clúa
- Departament de Biologia Cellular, Protein Folding and Stability Group, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alejandro R. Roda
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Design-Based Stereology for Evaluation of Histological Parameters. J Mol Neurosci 2016; 61:325-342. [PMID: 27826759 DOI: 10.1007/s12031-016-0858-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Valid quantification of organ volume and total cell numbers are crucial parameters for morphometric studies. The number of a specific cell type cannot be simply deduced from the number of its profiles found in thin tissue sections, as this parameter also depends on cell volume, tissue orientation as well as tissue atrophy. Design-based stereology has become the method of choice for unbiased, reproducible total cell number quantification. Steps described in this protocol include transcardial perfusion of mice, postfixation, and cryoprotection of the region of interest (ROI), followed by the preparation of a systematically and randomly sampled series of thick sections through the entire ROI. Furthermore, it is described how to perform immuno-histochemical staining of such thick cryo-sections, followed by providing a guidance for quantification of the ROI volume, the generation of unbiased virtual counting spaces, and steps to work with these counting spaces to obtain an unbiased estimate of total cell numbers.
Collapse
|
8
|
Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis. Exp Gerontol 2015; 69:176-88. [DOI: 10.1016/j.exger.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
|
9
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
10
|
Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HWM, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DLA, Rutten BPF. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Mol Neurodegener 2014; 9:25. [PMID: 24964731 PMCID: PMC4080757 DOI: 10.1186/1750-1326-9-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Emma van Bodegraven
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Roy Lardenoije
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Konstantinos Kompotis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Mark van den Hurk
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Biojone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Samia Joca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Harry WM Steinbusch
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Diego F Mastroeni
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Paul D Coleman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Daniel LA van den Hove
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Bart PF Rutten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Wang H, Wang R, Xu S, Lakshmana MK. RanBP9 overexpression accelerates loss of pre and postsynaptic proteins in the APΔE9 transgenic mouse brain. PLoS One 2014; 9:e85484. [PMID: 24454876 PMCID: PMC3891818 DOI: 10.1371/journal.pone.0085484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/27/2013] [Indexed: 12/02/2022] Open
Abstract
There is now compelling evidence that the neurodegenerative process in Alzheimer's disease (AD) begins in synapses. Loss of synaptic proteins and functional synapses in the amyloid precursor protein (APP) transgenic mouse models of AD is well established. However, what is the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to robustly increased amyloid β peptide (Aβ) generation leading to enhanced amyloid plaque burden in a mouse model of AD. In this study we compared synaptic protein levels among four genotypes of mice, i.e., RanBP9 single transgenic (Ran), APΔE9 double transgenic (Dbl), APΔE9/RanBP9 triple transgenic (Tpl) and wild-type (WT) controls. We found significant reductions in the levels of synaptic proteins in both cortex and hippocampus of 5- and 6-months-old but not 3- or 4-months-old mice. Specifically, at 5-months of age, rab3A was reduced in the triple transgenic mice only in the cortex by 25% (p<0.05) and gap43 levels were reduced only in the hippocampus by 44% (p<0.01) compared to wild-type (WT) controls. Interestingly, RanBP9 overexpression in the Tpl mice reduced gap43 levels by a further 31% (p<0.05) compared to APΔE9 mice. RanBP9 also further decreased the levels of drebrin in the hippocampus by 32% (p<0.01) and chromogranin in the cortex by 24% (p<0.05) compared to APΔE9 mice. At 6-months of age, RanBP9 expression in the cortex led to further reduction of rab3A by 30% (p<0.05) and drebrin by 38% (p<0.01) compared to APΔE9 mice. RanBP9 also increased Aβ oligomers in the cortex at 6 months. Similarly, in the hippocampus, RanBP9 expression further reduced rab3A levels by 36% (p<0.01) and drebrin levels by 33% (p<0.01). Taken together these data suggest that RanBP9 overexpression accelerates loss of synaptic proteins in the mouse brain.
Collapse
Affiliation(s)
- Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, United States of America
| | - Ruizhi Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, United States of America
| | - Shaohua Xu
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Madepalli K. Lakshmana
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, United States of America
| |
Collapse
|