1
|
Ha JL, Kaser E, Guan T, Mayberry TG, Smith LA, D'mello K, Bai Q, Wakefield MR, Dong L, Fang Y. Up and away with cervical cancer: IL-29 is a promising cytokine for immunotherapy of cervical cancer due to its powerful upregulation of p18, p27, and TRAILR1. Med Oncol 2024; 41:65. [PMID: 38281234 DOI: 10.1007/s12032-023-02276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Cervical cancer is one of the most common types of female cancers worldwide. IL-29 is an interesting cytokine in the IFNλ family. Its role in the pathogenesis of neoplasia is complicated and has been studied in other cancers, such as lung cancer, gastric cancer, and colorectal cancer. IL-29 has been previously reported to promote the growth of pancreatic cancer. However, the direct role of IL-29 in cervical cancer has not been studied yet. This study was performed to investigate the direct effect on cervical cancer cell growth. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the effects of IL-29 on cell survival, proliferation, and apoptosis of a well-studied cervical cancer cell line, SiHa. We further investigated the potential molecular mechanisms by using RT-PCR and IHC. We found that the percentage of colonies of SiHa cells was decreased in the presence of IL-29. This was consistent with a decreased OD value of cancer cells. Furthermore, the relative caspase-3 activity in cancer cells increased in the presence of IL-29. The anti-proliferative effect of IL-29 on cancer cells correlated with increased expression of the anti-proliferative molecules p18 and p27. The pro-apoptotic effect of IL-29 on cancer cells correlated with increased expression of the pro-apoptotic molecule TRAILR1. IL-29 inhibits cervical cancer cell growth by inhibiting cell proliferation and promoting cell apoptosis. Thus, IL-29 might be a promising cytokine for immunotherapy of cervical cancer.
Collapse
Affiliation(s)
- Jackie L Ha
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Erin Kaser
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Tianyun Guan
- Department of Obstetrics and Gynecology, the Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Trenton G Mayberry
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Department of Surgery and Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Luke A Smith
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Department of Surgery and Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Kyle D'mello
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Department of Emergency Medicine, University of Texas Health Science Center at San Antonio-UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Qian Bai
- The Department of Surgery and Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- The Department of Surgery and Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Lijun Dong
- Department of Obstetrics and Gynecology, the Nanhua Hospital Affiliated to Nanhua University, Hengyang, China.
| | - Yujiang Fang
- The Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- The Department of Surgery and Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Farooqi AA, Venera R, Kapanova G, Tanbayeva G, Akhmetova G, Kudabayev Y, Turgambayeva A. TRAIL-mediated signaling in bladder cancer: realization of clinical efficacy of TRAIL-based therapeutics in medical oncology. Med Oncol 2023; 40:236. [PMID: 37432489 DOI: 10.1007/s12032-023-02078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Bladder cancer is a therapeutically challenging disease and wealth of knowledge has enabled researchers to develop a clear understanding of mechanisms which underlie carcinogenesis and metastasis. Excitingly, research over decades has unveiled wide-ranging mechanisms which serve as central engine in progression of bladder cancer. Loss of apoptosis, drug resistance, and pro-survival signaling are some of the highly studied cellular mechanisms. Therefore, restoration of apoptosis in resistant cancers is a valuable and attractive strategy. Discovery of TRAIL-mediated signaling cascade is an intriguing facet of molecular oncology. In this review, we have provided an overview of the translational and foundational advancements in dissecting the genomic and proteomic cartography of TRAIL signaling exclusively in the context of bladder cancer. We have also summarized how different natural products sensitized drug-resistant bladder cancer cells to TRAIL-mediated apoptosis. Interestingly, different death receptors that activate agonistic antibodies have been tested in various phases of clinical trials against different cancers. Certain clues of scientific evidence have provided encouraging results about efficacy of these agonistic antibodies (lexatumumab and mapatumumab) against bladder cancer cell lines. Therefore, multipronged approaches consisting of natural products, chemotherapeutics, and agonistic antibodies will realistically and mechanistically provide proof-of-concept for the translational potential of these combinatorial strategies in well-designed clinical trials.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, Almaty, 71 al-Farabi Ave, 050040, Almaty, Kazakhstan
- Scientific Center of Anti-infectious Drugs, Kazakhstan, 75 a al-Faraby Ave, 050040, Almaty, Kazakhstan
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, Almaty, 71 al-Farabi Ave, 050040, Almaty, Kazakhstan
| | - Gulshara Akhmetova
- Scientific Center of Anti-infectious Drugs, Kazakhstan, 75 a al-Faraby Ave, 050040, Almaty, Kazakhstan
| | | | - Assiya Turgambayeva
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| |
Collapse
|
3
|
Ma L, Wei HL, Wang KJ, Meng XY, Ni SQ, Zhou C, Li Y, Yu R, Ma Q. Rhein promotes TRAIL-induced apoptosis in bladder cancer cells by up-regulating DR5 expression. Aging (Albany NY) 2022; 14:6642-6655. [PMID: 35985770 PMCID: PMC9467405 DOI: 10.18632/aging.204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) combined with sensitizer is a potential method to reverse TRAIL-resistance in tumor cells. Rhein (RH) is a monomer extracted from Chinese herbs that has been reported to show anti-tumor effects in a variety of tumor cells, but the role of RH in TRAIL-induced anti-tumor effects in bladder cancer cells has not been reported. In this study, we found that the combined treatment of a non-toxic concentration of RH with TRAIL significantly inhibited the proliferation and induced apoptosis in both TRAIL sensitive and resistant bladder cancer cell lines. Furthermore, we found that RH promoted bladder cancer cell apoptosis by up-regulating DR5 expression. Our findings provide potential value in the clinical treatment of bladder cancer.
Collapse
Affiliation(s)
- Liang Ma
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Hong-Ling Wei
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang 315010, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang 315010, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang 315010, China
| | - Sai-Qi Ni
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang 315010, China
| | - Cheng Zhou
- Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Rui Yu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qi Ma
- Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang 315010, China.,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| |
Collapse
|
4
|
Sepúlveda C, Núñez O, Torres A, Guzmán L, Wehinger S. Antitumor Activity of Propolis: Recent Advances in Cellular Perspectives, Animal Models and Possible Applications. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- César Sepúlveda
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Olinda Núñez
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Alejandra Torres
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Luis Guzmán
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Deng Y, Bi R, Guo H, Yang J, Du Y, Wang C, Wei W. Andrographolide Enhances TRAIL-Induced Apoptosis via p53-Mediated Death Receptors Up-Regulation and Suppression of the NF-кB Pathway in Bladder Cancer Cells. Int J Biol Sci 2019; 15:688-700. [PMID: 30745855 PMCID: PMC6367587 DOI: 10.7150/ijbs.30847] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective chemotherapeutic agent that specifically impairs cancer cells while sparing normal cells; however, some cancer cells develop resistance to TRAIL. Here, we identified Andrographolide, a diterpenoid lactone derived from a traditional herbal medicine Andrographis paniculata, as an ideal sensitizer for TRAIL to overcome bladder cancer. Our results showed that combination treatment of Andro and TRAIL retarded growth, attenuated proliferation, decreased colony formation, inhibited migration and promoted caspases-mediated apoptosis in T24 cells. Additionally, the sensitization by Andro is achieved through up-regulation of death receptors (DR4 and DR5) of TRAIL in a p53-dependent manner. Crucially, Andro is also capable of inactivating NF-κB signaling pathway via transcriptional down-regulation p65/RelA, which is further contributed to enhancement of TRAIL-mediated cytotoxicity. These results indicated that non-toxic doses of Andrographolide sensitized bladder cancer cells to TRAIL-mediated apoptosis, suggesting it as an effective therapeutic agent for TRAIL resistant human bladder cancers.
Collapse
Affiliation(s)
- Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China.,Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Ran Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China.,Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yujun Du
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| |
Collapse
|
6
|
El Zawily AM, Toosi BM, Freywald T, Indukuri VV, Vizeacoumar FJ, Leary SC, Freywald A. The intrinsically kinase-inactive EPHB6 receptor predisposes cancer cells to DR5-induced apoptosis by promoting mitochondrial fragmentation. Oncotarget 2018; 7:77865-77877. [PMID: 27788485 PMCID: PMC5363627 DOI: 10.18632/oncotarget.12838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023] Open
Abstract
Death Receptor 5 (DR5) is a promising target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, the therapeutic usefulness of DR5 agonists is currently limited by the frequent resistance of malignant tumours to its activation. The identification of molecular mechanisms that determine outcomes of DR5 action is therefore crucial for improving the efficiency of DR5-activating reagents in cancer treatment. Here, we provide evidence that an intrinsically kinase-inactive member of the Eph group of receptor tyrosine kinases, EPHB6, induces marked fragmentation of the mitochondrial network in breast cancer cells of triple-negative origin, lacking expression of the estrogen, progesterone and HER2 receptors. Remarkably, this response renders cancer cells more susceptible to DR5-mediated apoptosis. EPHB6 action in mitochondrial fragmentation proved to depend on its ability to activate the ERK-DRP1 pathway, which increases the frequency of organelle fission. Moreover, DRP1 activity is also essential to the EPHB6-mediated pro-apoptotic response that we observe in the context of DR5 activation. These findings provide the first description of a member of the receptor tyrosine kinase family capable of producing a pro-apoptotic effect through the activation of ERK-DRP1 signaling and subsequent mitochondrial fragmentation. Our observations are of potential practical importance, as they imply that DR5-activating therapeutic approaches should be applied in a more personalized manner to primarily treat EPHB6-expressing tumours. Finally, our findings also suggest that the EPHB6 receptor itself may represent a promising target for cancer therapy, since EPHB6 and DR5 co-activation should support more efficient elimination of cancer cells.
Collapse
Affiliation(s)
- Amr M El Zawily
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.,Faculty of Science, Damanhour University, Damanhour, 22516, Egypt
| | - Behzad M Toosi
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK, S7N 5E5, Canada
| | - Vijaya V Indukuri
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK, S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada
| |
Collapse
|
7
|
Dilshara MG, Jayasooriya RGPT, Molagoda IMN, Jeong JW, Lee S, Park SR, Kim GY, Choi YH. Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca 2+-CaMKII-Sp1 pathway. Oncotarget 2017. [PMID: 29535810 PMCID: PMC5828202 DOI: 10.18632/oncotarget.23129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, IAP-1, and IAP-2 were inhibited as well. Silibinin also triggered TRAIL-induced apoptosis in A549 cells through upregulation of death receptor 5 (DR5). Pretreatment with DR5/Fc chimeric protein and DR5-targeted small interfering RNA (siRNA) significantly blocked silibinin/TRAIL-mediated apoptosis in A549 cells. Furthermore, silibinin increased the production of reactive oxygen species (ROS), which led to the induction of TRAIL-mediated apoptosis through DR5 upregulation. Antioxidants such as N-acetyl-L-cysteine and glutathione reversed the apoptosis-inducing effects of TRAIL. Silibinin further induced endoplasmic reticulum (ER) stress as was indicated by the increase in ER marker proteins such as PERK, eIF2α, and ATF-4, which stimulate the expression of CCAAT/enhancer binding protein homologous protein (CHOP). CHOP-targeted siRNA eliminated the induction of DR5 and resulted in a significant decrease in silibinin/TRAIL-mediated apoptosis. We also found that silibinin/TRAIL-induced apoptosis was accompanied with intracellular influx of Ca2+, which was stimulated by ER stress and the Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA). Ca2+/calmodulin-dependent protein kinase (CaMKII) inhibitor, K252a, blocked silibinin/TRAIL-induced DR5 expression along with TRAIL-mediated apoptosis. Accordingly, we showed that ROS/ER stress-induced CaMKII activated Sp1, which is an important transcription factor for DR5 expression. Our results showed that silibinin enhanced TRAIL-induced apoptosis by upregulating DR5 expression through the ROS-ER stress-CaMKII-Sp1 axis.
Collapse
Affiliation(s)
| | | | | | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
8
|
Novel Structurally Related Flavones Augment Cell Death Induced by rhsTRAIL. Int J Mol Sci 2017; 18:ijms18061211. [PMID: 28587286 PMCID: PMC5486034 DOI: 10.3390/ijms18061211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) was identified as a powerful activator of apoptosis in tumor cells and one of the most promising candidates for cancer therapy with no toxicity against normal tissues. However, many tumor cells are resistant to TRAIL-induced apoptosis. The aim of this work was to analyze the improvement of the anticancer effect of rhsTRAIL (recombinant human soluble TRAIL) by nine flavones: 5-Hydroxyflavone, 6-Hydroxyflavone, 7-Hydroxyflavone and their new synthetic derivatives 5-acetoxyflavone, 5-butyryloxyflavone, 6-acetoxyflavone, 6-butyryloxyflavone, 7-acetoxyflavone and 7-butyryloxyflavone. We examined the cytotoxic and apoptotic effects of rhsTRAIL enhanced by novel structurally-related flavones on SW480 and SW620 colon cancer cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, the lactate dehydrogenase assay and annexin V-FITC fluorescence staining. We observed a slight difference in the activities of the flavones that was dependent on their chemical structure. Our study indicates that all nine flavones significantly augment cell death by rhsTRAIL (cytotoxicity range 36.8 ± 1.7%–91.4 ± 1.7%; apoptosis increase of 33.0 ± 0.7%–78.5 ± 0.9%). Our study demonstrates the potential use of tested flavones in TRAIL-based anticancer therapy and prevention.
Collapse
|
9
|
Kang KH, Han MH, Jeong JW, Park C, Lee SH, Lee HW, Hong SH, Choi YH, Hong SH. Bufalin sensitizes human bladder carcinoma cells to TRAIL-mediated apoptosis. Oncol Lett 2017; 14:853-859. [PMID: 28693242 PMCID: PMC5494769 DOI: 10.3892/ol.2017.6223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has garnered interest as it is relatively non-toxic to normal cells, but selectively induces apoptotic cell death in multiple types of transformed or malignant cells. Bufalin is the major digoxin-like immunoreactive component of Sum Su, which is obtained from the skin and parotid venom gland of the toad. Bufalin is known to inhibit cell proliferation and induce apoptosis in a variety of cancer cells. The present study investigated whether bufalin promoted TRAIL-induced apoptotic cell death. In the present study, a combined treatment using bufalin and TRAIL significantly increased TRAIL-mediated inhibition of cell viability and increased apoptosis in T24 human bladder cancer cells. The apoptotic effects were associated with the upregulation of death receptor proteins and the downregulation of cellular Fas-associated death domain-like interleukin-1β-converting enzyme inhibitory protein and X-linked inhibitor of apoptosis protein. Furthermore, the data revealed that bufalin and TRAIL activated caspase-3, −8 and −9 and subsequently increased the degradation of poly (ADP-ribose) polymerase. Taken altogether, the nontoxic doses of bufalin and TRAIL sensitized T24 cells to TRAIL-mediated apoptosis. Therefore, bufalin may provide an effective therapeutic strategy for the safe treatment of human bladder cancers that are resistant to TRAIL.
Collapse
Affiliation(s)
- Kyung-Hwa Kang
- Department of Physiology, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea, Seocheon, South Chungcheong 325-902, Republic of Korea
| | - Jin-Woo Jeong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC; Dongeui University, Busan 614-714, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Science and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Sang-Hyup Lee
- Department of Korean Medical Classics, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Hai Woong Lee
- Department of Public Health, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC; Dongeui University, Busan 614-714, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
10
|
Mielczarek-Palacz A, Sikora J, Kondera-Anasz Z. Assessment of concentrations of sTRAIL ligand and its receptors sTRAIL-R1 and sTRAIL-R2 - markers monitoring the course of the extrinsic pathway of apoptosis induction: potential application in ovarian cancer diagnostics. Arch Med Sci 2017; 13:624-628. [PMID: 28507579 PMCID: PMC5420616 DOI: 10.5114/aoms.2015.53144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/22/2015] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION TNF-related apoptosis-inducing ligand (TRAIL) together with its receptors are involved in activation of the extrinsic pathway of apoptosis. Due to the special role of the apoptosis pathway in pathogenesis of ovarian cancers, the aim of the study was to assess concentrations of sTRAIL, sTRAIL-R1 and sTRAIL-R2 in serum of affected women. MATERIAL AND METHODS The study group included 85 women with diagnosed ovarian tumors: 35 women with ovarian serous cystadenoma, 15 women with ovarian teratoma and 35 women with serous cystadenocarcinoma. The control group consisted of 30 healthy women. Concentrations of studied parameters were measured by ELISA methods. RESULTS Serum levels of all studied parameters were higher in serum of women with ovarian tumors than in the controls, but their concentrations varied depending on the clinical diagnosis. The highest concentration of TRAIL was found in serum of women with ovarian cancer, the highest sTRAIL-R1 level in serum of women with ovarian mature teratoma, and the highest sTRAIL-R2 level in serum of women with ovarian serous cystadenoma. CONCLUSIONS The state of immunosuppression accompanying neoplastic disease depends on the extrinsic pathway of apoptosis induction in the TRAIL/TRAIL-R system. Determination of TRAIL-R1 and TRAIL-R2 levels may prove to be useful in ovarian tumor differential diagnostics, which requires further research.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Immunology and Serology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Justyna Sikora
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Immunology and Serology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| | - Zdzisława Kondera-Anasz
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Immunology and Serology, Medical University of Silesia, Katowice, Sosnowiec, Poland
| |
Collapse
|
11
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
12
|
Warat M, Sadowski T, Szliszka E, Król W, Czuba ZP. The role of selected flavonols in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 (TRAIL-R1) expression on activated RAW 264.7 macrophages. Molecules 2015; 20:900-12. [PMID: 25580686 PMCID: PMC6272728 DOI: 10.3390/molecules20010900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/05/2015] [Indexed: 02/05/2023] Open
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R) are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of TRAIL-R1 on murine RAW264.7 macrophages in the presence of selected flavonols: galangin, kaempferol, kaempferide and quercetin, which differ from their phenyl ring substituents, were studied. The expression of TRAIL-R1 death receptors on non-stimulated and lipopolysaccharide (LPS)-stimulated macrophages was determined using flow cytometry. The results suggested that compounds being tested can modulate TRAIL-R1 expression and can enhance TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Monika Warat
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Chair and Department of Microbiology and Immunology, Jordana 19, 41-808 Zabrze, Poland.
| | - Tadeusz Sadowski
- School of Public Health in Bytom, Medical University of Silesia in Katowice, Toxicology and Drug Addiction Division, Communal Department of Hygiene and Sanitary Supervision, Medyków 18, 40-752 Katowice, Poland.
| | - Ewelina Szliszka
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Chair and Department of Microbiology and Immunology, Jordana 19, 41-808 Zabrze, Poland.
| | - Wojciech Król
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Chair and Department of Microbiology and Immunology, Jordana 19, 41-808 Zabrze, Poland.
| | - Zenon P Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Chair and Department of Microbiology and Immunology, Jordana 19, 41-808 Zabrze, Poland.
| |
Collapse
|
13
|
Chandrasekaran S, Marshall JR, Messing JA, Hsu JW, King MR. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS One 2014; 9:e111487. [PMID: 25343626 PMCID: PMC4208846 DOI: 10.1371/journal.pone.0111487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022] Open
Abstract
TNF-alpha-related-apoptosis-inducing-ligand (TRAIL) has been explored as a therapeutic drug to kill cancer cells. Cancer cells in the circulation are subjected to apoptosis-inducing factors. Despite the presence of these factors, cells are able to extravasate and metastasize. The homotypic and heterotypic cell-cell interactions in a tumor are known to play a crucial role in bestowing important characteristics to cancer cells that leave the primary site. Spheroid cell culture has been extensively used to mimic these physiologically relevant interactions. In this work, we show that the breast cancer cell lines BT20 and MCF7, cultured as 3D tumor spheroids, are more resistant to TRAIL-mediated apoptosis by downregulating the expression of death receptors (DR4 and DR5) that initiate TRAIL-mediated apoptosis. For comparison, we also investigated the effect of TRAIL on cells cultured as a 2D monolayer. Our results indicate that tumor spheroids are enriched for CD44hiCD24loALDH1hi cells, a phenotype that is predominantly known to be a marker for breast cancer stem cells. Furthermore, we attribute the TRAIL-resistance and cancer stem cell phenotype observed in tumor spheroids to the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway. We show that inhibition of the COX-2/PGE2 pathway by treating tumor spheroids with NS-398, a selective COX-2 inhibitor, reverses the TRAIL-resistance and decreases the incidence of a CD44hiCD24lo population. Additionally, we show that siRNA mediated knockdown of COX-2 expression in MCF7 cells render them sensitive to TRAIL by increasing the expression of DR4 and DR5. Collectively, our results show the effect of the third-dimension on the response of breast cancer cells to TRAIL and suggest a therapeutic target to overcome TRAIL-resistance.
Collapse
Affiliation(s)
- Siddarth Chandrasekaran
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jocelyn R. Marshall
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - James A. Messing
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jong-Wei Hsu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Drutovic D, Chripkova M, Pilatova M, Kruzliak P, Perjesi P, Sarissky M, Lupi M, Damia G, Broggini M, Mojzis J. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumour Biol 2014; 35:9967-75. [PMID: 25008568 DOI: 10.1007/s13277-014-2289-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/26/2014] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world, with 1.2 million new cancer cases annually. Chalcones are secondary metabolite precursors of flavonoids that exhibit diverse biological activities, including antioxidant and antitumor activities. The aim of this study was to investigate the antiproliferative effect of new synthetic chalcone derivatives on HCT116 cells. (E)-2-(2',4'-dimethoxybenzylidene)-1-tetralone (Q705) was found to be the most active (IC50 = 3.44 ± 0.25 μM). Based on these results, this compound was chosen for further analysis of its biochemical and molecular mechanisms. Our results showed that Q705 inhibited the growth and clonogenicity of HCT116 cells. The results of a flow cytometric analyses suggested that this compound caused a significant cell cycle arrest in G2/M phase and increased the proportion of cells in the subG0/G1 phase, marker of apoptosis. Q705-induced apoptosis was confirmed by TdT-mediated dUTP nick end labelling (TUNEL) assay. Treatment of HCT116 cells with this chalcone significantly increased the caspase-3,-7 activity and resulted in cleavage of poly-ADP-ribose polymerase (PARP). Changes in the nuclear morphology such as chromatin condensation were also observed. These effects were associated with a decreased expression of bcl-xL and increased overall ratio of bax/bcl-xL mRNA levels. Immunofluorescence and qRT-PCR analysis revealed that Q705 induced H2AX histone modifications characteristic of DNA damage, disruption of microtubule organization and downregulation of tubulins. In summary, these results suggest that the cyclic chalcone analogue Q705 has potential as a new compound for colorectal cancer therapy.
Collapse
Affiliation(s)
- David Drutovic
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Warat M, Szliszka E, Korzonek-Szlacheta I, Król W, Czuba ZP. Chrysin, apigenin and acacetin inhibit tumor necrosis factor-related apoptosis-inducing ligand receptor-1 (TRAIL-R1) on activated RAW264.7 macrophages. Int J Mol Sci 2014; 15:11510-22. [PMID: 24979133 PMCID: PMC4139796 DOI: 10.3390/ijms150711510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022] Open
Abstract
Expression level of Tumor Necrosis Factor—related apoptosis—inducing ligand (TRAIL) receptors is one of the most important factors of TRAIL-mediated apoptosis in cancer cells. We here report for the first time data concerning TRAIL-R1 and TRAIL-R2 receptor expression on RAW264.7 macrophages. Three substances belonging to flavones: chrysin, apigenin and acacetin which differ from their substituents at the 4' position in the phenyl ring were used in assays because of the variety of biological activities (e.g., anticancer activity) of the polyphenol compounds. The expression of TRAIL-R1 and TRAIL-R2 death receptors on non-stimulated and LPS (lipopolysaccharide)-stimulated macrophages was determined using flow cytometry. We demonstrate that RAW264.7 macrophages exhibit TRAIL-R1 surface expression and that the tested compounds: chrysin, apigenin and acacetin can inhibit TRAIL-R1 death receptor expression level on macrophages.
Collapse
Affiliation(s)
- Monika Warat
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ewelina Szliszka
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ilona Korzonek-Szlacheta
- Department of Toxicology and Health Protection, Toxicology and Drug Addiction Division, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland.
| | - Wojciech Król
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Zenon P Czuba
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| |
Collapse
|
16
|
Ji CF, Ji YB. Laminarin-induced apoptosis in human colon cancer LoVo cells. Oncol Lett 2014; 7:1728-1732. [PMID: 24765209 PMCID: PMC3997718 DOI: 10.3892/ol.2014.1952] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/11/2014] [Indexed: 01/30/2023] Open
Abstract
A number of scientific studies have revealed that laminarin has antitumor effects. Therefore, the aim of the present study was to investigate the apoptosis of LoVo cells and the underlying mechanisms induced by laminarin. LoVo cells were treated with various concentrations of laminarin and fluorescence-inverted microscopy was used to observe the morphology of LoVo cells treated with laminarin. In addition, western blotting was performed to analyze the expression levels of death receptor (DR)4, DR5, TNF-related apoptosis-inducing ligand (TRAIL), Fas-associated protein with death domain (FADD), caspase-8, caspase-3, Bid and tBid. Flow cytometry was conducted to analyze the expressions of Bcl-2 and Bax, and spectrophotometry was performed to quantify the activity of caspases-8, -3, -6 and -7. Following the treatment of LoVo cells with laminarin for 24 h, the expression levels of DR4, DR5, TRAIL, FADD, Bid, tBid and Bax were observed to be upregulated, whereas the expression levels of pro-caspase-8, pro-caspase-3 and Bcl-2 were downregulated. In addition, the activities of casapse-8, -3, -6 and -7 were observed to increase, which was a significant difference when compared with those of the control group. Therefore, laminarin is considered to induce the apoptosis of LoVo cells, which may occur via a DR pathway, suggesting that laminarin may be a potent agent for cancer treatment.
Collapse
Affiliation(s)
- Chen-Feng Ji
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, Heilongjiang 150076, P.R. China ; Center of Research on Life Science and Environmental Science, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Yu-Bin Ji
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, Heilongjiang 150076, P.R. China ; Center of Research on Life Science and Environmental Science, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| |
Collapse
|
17
|
Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:757628. [PMID: 24324518 PMCID: PMC3845518 DOI: 10.1155/2013/757628] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/18/2013] [Indexed: 12/03/2022]
Abstract
Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P) against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.
Collapse
|
18
|
Szliszka E, Krol W. Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:731940. [PMID: 23573148 PMCID: PMC3615595 DOI: 10.1155/2013/731940] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
Epidemiological data support the concept that phenols and polyphenols in diet are safe and nontoxic, and have long-lasting beneficial effects on human health. The potential target for complementary and alternative medicine (CAM) research has been on the discovery of natural compounds that can be used in the prevention and treatment of cancer. Propolis is one of the richest sources of plant phenolics (flavonoids and phenolic acids). The ethanolic extract of propolis (EEP) and its polyphenols possess immunomodulatory, chemopreventive, and antitumor effects. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. Endogenous TRAIL plays a significant role in immunosurveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. EEP and polyphenols isolated from propolis have been shown to sensitize cancer cells to TRAIL-induced apoptosis. In this paper we demonstrate for the first time the crucial role of the main phenolics isolated from propolis in enhancing TRAIL-mediated death in tumor cells for cancer chemoprevention.
Collapse
Affiliation(s)
| | - Wojciech Krol
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41 808 Zabrze, Poland
| |
Collapse
|
19
|
Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q, Li X. microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:10. [PMID: 23442927 PMCID: PMC3764979 DOI: 10.1186/1756-9966-32-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/20/2013] [Indexed: 12/21/2022]
Abstract
Background Bladder transitional cell carcinoma greatly threatens human health all over
the world. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
shows a strong apoptosis-inducing effect on a variety of cancer cells
including bladder cancer. However, adenovirus-mediated TRAIL expression
still showed cytotoxicity to normal cells mainly due to lack of tumor
specificity. Methods To solve the problem, we applied miRNA response elements (MREs) of
miR-1, miR-133 and
miR-218 to confer TRAIL expression with specificity to
bladder cancer cells. Results Expression of miR-1, miR-133 and
miR-218 was greatly decreased in bladder cancer than
normal bladder tissue. Luciferase assay showed that application of the 3
MREs was able to restrain exogenous gene expression to within bladder cancer
cells. Subsequently, we constructed a recombinant adenovirus with TRAIL
expression regulated by MREs of miR-1,
miR-133 and miR-218, namely
Ad-TRAIL-MRE-1-133-218. qPCR, immunoblotting and ELISA assays demonstrated
that Ad-TRAIL-MRE-1-133-218 expressed in bladder cancer cells, rather than
normal bladder cells. The differential TRAIL expression also led to
selective apoptosis-inducing and growth-inhibiting effect of
Ad-TRAIL-MRE-1-133-218 on bladder cancers. Finally, bladder cancer xenograft
in mouse models further confirmed that Ad-TRAIL-MRE-1-133-218 effectively
suppressed the growth of bladder cancers. Conclusions Collectively, we demonstrated that MREs-based TRAIL delivery into bladder
cancer cells was feasible and efficient for cancer gene therapy.
Collapse
Affiliation(s)
- Youguang Zhao
- Department of Urology, General Hospital of Chengdu Military Area Command of Chinese PLA, Chengdu 610083, Sichuan Province, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Szliszka E, Jaworska D, Ksek M, Czuba ZP, Król W. Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int J Mol Sci 2012. [PMID: 23203129 PMCID: PMC3509645 DOI: 10.3390/ijms131115343] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | | | | | | | | |
Collapse
|
21
|
Szliszka E, Kostrzewa-Susłow E, Bronikowska J, Jaworska D, Janeczko T, Czuba ZP, Krol W. Synthetic flavanones augment the anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 2012; 17:11693-711. [PMID: 23027370 PMCID: PMC6268189 DOI: 10.3390/molecules171011693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as the most promising anticancer agent in the TNF superfamily because of its selective cytotoxicity against tumor cells versus normal primary cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new therapeutic strategies to overcome this resistance. Flavonoids have been shown to sensitize cancer cells to TRAIL-induced apoptosis. The aim of this study was to examine the cytotoxic and apoptotic activities of TRAIL on HeLa cancer cells in combination with two synthetic compounds: 6-hydroxyflavanone (6-HF) and its derivative 6-propionoxy-flavanone (6-PF) and to determine the mechanism by which the flavanones overcome the TRAIL-resistance. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected by annexin V-FITC fluorescence staining in flow cytometry and microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression were analysed using flow cytometry. Mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. The synthetic flavanones enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and reduction of mitochondrial membrane potential. Our study indicates that the 6-HF and 6-PF augmented the anticancer effects of TRAIL and confirm a potential use of flavanones in TRAIL-based anticancer therapy and prevention.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Jordana 19, Zabrze 41-808, Poland; (E.S.); (J.B.); (D.J.); (Z.P.C.)
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland; (E.K.-S.); (T.J.)
| | - Joanna Bronikowska
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Jordana 19, Zabrze 41-808, Poland; (E.S.); (J.B.); (D.J.); (Z.P.C.)
| | - Dagmara Jaworska
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Jordana 19, Zabrze 41-808, Poland; (E.S.); (J.B.); (D.J.); (Z.P.C.)
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland; (E.K.-S.); (T.J.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Jordana 19, Zabrze 41-808, Poland; (E.S.); (J.B.); (D.J.); (Z.P.C.)
| | - Wojciech Krol
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Jordana 19, Zabrze 41-808, Poland; (E.S.); (J.B.); (D.J.); (Z.P.C.)
- Author to whom correspondence should be addressed; ; Tel./Fax: +48-322-722-554
| |
Collapse
|
22
|
Szliszka E, Zydowicz G, Mizgala E, Krol W. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 2012; 41:818-28. [PMID: 22735465 PMCID: PMC3582787 DOI: 10.3892/ijo.2012.1527] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 12/04/2022] Open
Abstract
Naturally occurring phenolic compounds have been shown to sensitize prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. TRAIL is a potent stimulator of apoptosis in cancer cells and an important immune effector molecule in the surveillance and elimination of developing tumours. However, many cancer cells are resistant to TRAIL-mediated death. In this study, we aimed to determine the mechanisms by which TRAIL resistance can be overcome in prostate cancer cells by 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C). Artepillin C is a bioactive component of Brazilian green propolis that possesses antitumour and chemopreventive activities. TRAIL-resistant LNCaP prostate cancer cells were treated with TRAIL and artepillin C. Cytotoxicity was measured by MTT and lactate dehydrogenase (LDH) assays. Apoptosis was detected using Annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor (DR) (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Mitochondrial membrane potential (ΔΨm) was evaluated using DePsipher staining by fluorescence micro scopy. The inhibition of NF-κB (p65) activation was confirmed with the ELISA-based TransAM NF-κB kit. Caspase-8 and caspase-3 activities were determined by colorimetric protease assays. The results showed that artepillin C sensitized the TRAIL-resistant LNCaP cells by engaging the extrinsic (receptor-mediated) and intrinsic (mitochondrial) apoptotic pathways. Artepillin C increased the expression of TRAIL-R2 and decreased the activity of NF-κB. Co-treatment with TRAIL and artepillin C induced the significant activation of caspase-8 and caspase-3, as well as the disruption of ΔΨm. These findings show that prostate cancer cells can be sensitized to TRAIL-mediated immunoprevention by artepillin C and confirm the role of phenolic compounds in prostate cancer immunochemoprevention.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | | | | | | |
Collapse
|
23
|
The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 2012; 17:6449-64. [PMID: 22643355 PMCID: PMC6268812 DOI: 10.3390/molecules17066449] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022] Open
Abstract
Coumarins are a very common type of secondary plant metabolites with a broad spectrum of biological activities. Psoralidin is a naturally occurring furanocoumarin isolated from Psoralea corylifolia possessing anticancer and chemopreventive properties. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in cancer cells with no toxicity toward normal tissues. Endogenous TRAIL plays an important role in immune surveillance and defence against cancer cells. Coumarins can modulate TRAIL-mediated apoptosis in cancer cells. We examined the cytotoxic and apoptotic activities of psoralidin in combination with TRAIL on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining and mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Psoralidin enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and depolarization of mitochondrial membrane potential. Our study indicated that psoralidin augmented the anticancer effects of TRAIL and confirmed a potential use of coumarins in cancer chemoprevention.
Collapse
|
24
|
Szliszka E, Czuba ZP, Kawczyk-Krupka A, Sieron-Stoltny K, Sieron A, Krol W. Chlorin-based photodynamic therapy enhances the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in bladder cancer cells. Med Sci Monit 2012; 18:BR47-53. [PMID: 22207109 PMCID: PMC3560668 DOI: 10.12659/msm.882203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Photodynamic therapy (PDT) is an attractive, emerging therapeutic procedure suitable for the treatment of non-muscle-invasive bladder cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand that belongs to the TNF superfamily of cytokines. The ability of TRAIL to selectively induce apoptosis in cancer cells but not in normal cells promotes the development of TRAIL-based cancer therapy. However, many tumor cells are resistant to TRAIL-induced apoptosis. The purpose of the study was to overcome TRAIL-resistance in bladder cancer cells by photodynamic therapy (PDT). Material/Methods Three human bladder transitional cancer cell lines – T24, 647V and SW780 – were treated with TRAIL and/or chlorin-based PDT. The cytotoxicity was measured by MTT and LDH assays and apoptosis was detected using annexin V by flow cytometry. Results Our test confirmed that T24 and 647V bladder cancer cells are resistant to TRAIL, whereas SW780 cells are sensitive to TRAIL. Then we examined the cytotoxic and apoptotic effects of TRAIL in combination with chlorin e6-polyvinylpyrrolidone (Ce6-PVP)-mediated PDT on bladder cancer cells. We showed for the first time that pretreatment with a low dose of PDT significantly sensitizes bladder cancer cells to TRAIL-induced apoptosis. Chlorin-based PDT augments the effect of TRAIL on bladder cancer cells. Conclusions PDT with Ce6-PVP photosensitizer enhances the cytotoxic and apoptotic effects of TRAIL on bladder cancer cells. The obtained results suggest that combined treatment by TRAIL and PDT may provide the basis for a new therapeutic approach to induce cell death in bladder cancer.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Chair and Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Szliszka E, Kawczyk-Krupka A, Czuba ZP, Sieron A, Krol W. Effect of ALA-mediated photodynamic therapy in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on bladder cancer cells. Cent European J Urol 2011; 64:175-9. [PMID: 24578888 PMCID: PMC3921731 DOI: 10.5173/ceju.2011.03.art18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 01/19/2011] [Accepted: 07/04/2011] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Photodynamic therapy (PDT), an alternative treatment modality for superficial bladder tumors is based on the interaction of a photosensitizer with light. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for anticancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, not all tumor cells are sensitive to TRAIL. TRAIL-resistant cancer cells can be sensitized to TRAIL induced apoptosis by anticancer agents. OBJECTIVE We investigated the combined cytotoxic effect of TRAIL and PDT with 5-aminolevulinic acid (ALA) on bladder cancer cells. MATERIALS AND METHODS THREE HUMAN BLADDER TRANSITIONAL CANCER CELL LINES: T24, 647V, and SW780 were treated with TRAIL and/or ALA-mediated PDT. Cytotoxicity was determined by MTT and LDH assay. RESULTS Our study confirmed that T24 and 647V bladder cancer cells were resistant to TRAIL, whereas SW780 cells were sensitive to TRAIL. We therefore examined the cytotoxic effect of TRAIL in combination with ALA-mediated PDT on bladder cancer cells. We showed for the first time that pretreatment with low dose of PDT significantly sensitizes bladder cancer cells to TRAIL induced cytotoxicity. CONCLUSION ALA-mediated PDT augments the cytotoxic effect of TRAIL on transitional cancer cells of bladder. The obtained results suggest that combined treatment of TRAIL and PDT may provide the basis for a new strategy to induce cytotoxicity in bladder cancer cells.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Chair and Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Chair and Clinical Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy in Bytom, Medical University of Silesia in Katowice, Poland
| | - Zenon P. Czuba
- Chair and Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Aleksander Sieron
- Chair and Clinical Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy in Bytom, Medical University of Silesia in Katowice, Poland
| | - Wojciech Krol
- Chair and Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|