1
|
Hwang SJ, Yeo D, Song YS, Choi Y, Youn HJ, Lee HJ. An aqueous extract from Artemisia capillaris inhibits acute gastric injury through mucosal stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1255-1262. [PMID: 34358346 DOI: 10.1002/jsfa.11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Artemisia capillaris is among the most abundantly used traditional medicines, utilized in East Asia to treat diverse illnesses, including gastrointestinal tract diseases. We previously reported that an aqueous extract of A. capillaris (AEAC) inhibited gastric inflammation induced by HCl/ethanol via reactive oxygen species scavenging and NF-κB downregulation. To date, the pharmacological potential of AEAC for promoting mucosal integrity has not been studied. RESULTS Here, we report that a single treatment with AEAC increased mucus production, and repeated administration of AEAC abolished HCl/ethanol-induced mucosal injury in vivo. Single- and multiple-dose AEAC treatments measurably increased the expression of mucosal stabilizing factors in vivo, including mucin (MUC) 5 AC, MUC6, and trefoil factor (TFF) 1 and TFF2 (but not TFF3). AEAC also induced mucosal stabilizing factors in both SNU-601 cells and RGM cells through phosphorylation of extracellular signal-regulated kinases. CONCLUSION Taken together, our results suggest that AEAC protects against HCl/ethanol-induced gastritis by upregulating MUCs and TFFs and stabilizing the mucosal epithelium. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dahee Yeo
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Ye-Seul Song
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youngbin Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyun-Joo Youn
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
2
|
Coates MS, Alton EWFW, Rapeport GW, Davies JC, Ito K. Pseudomonas aeruginosa induces p38MAP kinase-dependent IL-6 and CXCL8 release from bronchial epithelial cells via a Syk kinase pathway. PLoS One 2021; 16:e0246050. [PMID: 33524056 PMCID: PMC7850485 DOI: 10.1371/journal.pone.0246050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) infection is a major cause of airway inflammation in immunocompromised and cystic fibrosis (CF) patients. Mitogen-activated protein (MAP) and tyrosine kinases are integral to inflammatory responses and are therefore potential targets for novel anti-inflammatory therapies. We have determined the involvement of specific kinases in Pa-induced inflammation. The effects of kinase inhibitors against p38MAPK, MEK 1/2, JNK 1/2, Syk or c-Src, a combination of a p38MAPK with Syk inhibitor, or a novel narrow spectrum kinase inhibitor (NSKI), were evaluated against the release of the proinflammatory cytokine/chemokine, IL-6 and CXCL8 from BEAS-2B and CFBE41o- epithelial cells by Pa. Effects of a Syk inhibitor against phosphorylation of the MAPKs were also evaluated. IL-6 and CXCL8 release by Pa were significantly inhibited by p38MAPK and Syk inhibitors (p<0.05). Phosphorylation of HSP27, but not ERK or JNK, was significantly inhibited by Syk kinase inhibition. A combination of p38MAPK and Syk inhibitors showed synergy against IL-6 and CXCL8 induction and an NSKI completely inhibited IL-6 and CXCL8 at low concentrations. Pa-induced inflammation is dependent on p38MAPK primarily, and Syk partially, which is upstream of p38MAPK. The NSKI suggests that inhibiting specific combinations of kinases is a potent potential therapy for Pa-induced inflammation.
Collapse
Affiliation(s)
- Matthew S. Coates
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| | - Eric W. F. W. Alton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Garth W. Rapeport
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| |
Collapse
|
3
|
Kost-Alimova M, Sidhom EH, Satyam A, Chamberlain BT, Dvela-Levitt M, Melanson M, Alper SL, Santos J, Gutierrez J, Subramanian A, Byrne PJ, Grinkevich E, Reyes-Bricio E, Kim C, Clark AR, Watts AJ, Thompson R, Marshall J, Pablo JL, Coraor J, Roignot J, Vernon KA, Keller K, Campbell A, Emani M, Racette M, Bazua-Valenti S, Padovano V, Weins A, McAdoo SP, Tam FW, Ronco L, Wagner F, Tsokos GC, Shaw JL, Greka A. A High-Content Screen for Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for Rapid Repurposing for Acute Lung Injury. Cell Rep Med 2020; 1:100137. [PMID: 33294858 PMCID: PMC7691435 DOI: 10.1016/j.xcrm.2020.100137] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhigyan Satyam
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Moran Dvela-Levitt
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Seth L. Alper
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jean Santos
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juan Gutierrez
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Choah Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Abbe R. Clark
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J.B. Watts
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jamie Marshall
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Juliana Coraor
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Roignot
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A. Vernon
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith Keller
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alissa Campbell
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Silvana Bazua-Valenti
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Astrid Weins
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen P. McAdoo
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Frederick W.K. Tam
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Luciene Ronco
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - George C. Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Alimova M, Sidhom EH, Satyam A, Dvela-Levitt M, Melanson M, Chamberlain BT, Alper SL, Santos J, Gutierrez J, Subramanian A, Grinkevich E, Bricio ER, Kim C, Clark A, Watts A, Thompson R, Marshall J, Pablo JL, Coraor J, Roignot J, Vernon KA, Keller K, Campbell A, Emani M, Racette M, Bazua-Valenti S, Padovano V, Weins A, McAdoo SP, Tam FW, Ronco L, Wagner F, Tsokos GC, Shaw JL, Greka A. A High Content Screen for Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for Rapid Repurposing for Acute Lung Injury during the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.30.180380. [PMID: 32637960 PMCID: PMC7337390 DOI: 10.1101/2020.06.30.180380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Drug repurposing is the only method capable of delivering treatments on the shortened time-scale required for patients afflicted with lung disease arising from SARS-CoV-2 infection. Mucin-1 (MUC1), a membrane-bound molecule expressed on the apical surfaces of most mucosal epithelial cells, is a biochemical marker whose elevated levels predict the development of acute lung injury (ALI) and respiratory distress syndrome (ARDS), and correlate with poor clinical outcomes. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce MUC1 protein abundance. Our screen identified Fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo , Fostamatinib reduced MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro , SYK inhibition by Fostamatinib promoted MUC1 removal from the cell surface. Our work reveals Fostamatinib as a repurposing drug candidate for ALI and provides the rationale for rapidly standing up clinical trials to test Fostamatinib efficacy in patients with COVID-19 lung injury.
Collapse
Affiliation(s)
- Maria Alimova
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eriene-Heidi Sidhom
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Abhigyan Satyam
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moran Dvela-Levitt
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Melanson
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Seth L. Alper
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean Santos
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Juan Gutierrez
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | | | - Choah Kim
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Abbe Clark
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrew Watts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Thompson
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie Marshall
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Juliana Coraor
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Roignot
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine A. Vernon
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Keller
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alissa Campbell
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Matthew Racette
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Silvana Bazua-Valenti
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Valeria Padovano
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Astrid Weins
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen P. McAdoo
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Frederick W.K. Tam
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Lucienne Ronco
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Florence Wagner
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - George C. Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian L. Shaw
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Na HG, Kim YD, Choi YS, Bae CH, Song SY. Allethrin and prallethrin stimulates MUC5AC expression through oxidative stress in human airway epithelial cells. Biochem Biophys Res Commun 2018; 503:316-322. [PMID: 29885834 DOI: 10.1016/j.bbrc.2018.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 11/23/2022]
Abstract
Pyrethroids, including allethrin and prallethrin, have been widely used as major components of the common commercial insecticides. The toxicity of allethrin and prallethrin were well established that it interfered with the way that the nerves and brain function. However, limited information was available regarding respiratory effects in humans following inhalation exposure to allethrin and prallethrin. Therefore, we demonstrated effect of allethrin and prallethrin, and the mechanism involved, on the mucin expressions in human airway epithelial cells. In human airway NCI-H292 epithelial cells, the effects of allethrin and prallethrin and its signaling pathway for airway mucin, especially MUC5AC, were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, and enzyme-linked immunosorbent assay (ELISA). The mechanism of allethrin and prallethrin-induced MUC5AC expression in airway epithelial cells was studied in terms of reactive oxygen species (ROS) by flow cytometry analysis. Allethrin and prallethrin significant increased MUC5AC expression in human airway NCI-H292 epithelial cells. We also demonstrated allethrin and prallethrin induced a marked rise of ROS production. In addition, NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) inhibited allethrin and prallethrin-induced MUC5AC expression. These results are first to describe that allethrin and prallethrin-induced MUC5AC expression through ROS in human airway epithelial cells.
Collapse
Affiliation(s)
- Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Na HG, Kim YD, Bae CH, Choi YS, Jin HJ, Shin KC, Song SY. High Concentration of Insulin Induces MUC5AC Expression via Phosphoinositide 3 Kinase/AKT and Mitogen-activated Protein Kinase Signaling Pathways in Human Airway Epithelial Cells. Am J Rhinol Allergy 2018; 32:350-358. [PMID: 29943626 DOI: 10.1177/1945892418782223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Insulin is involved in a glucose homeostatic regulation and a cellular metabolism via phosphorylation of phosphoinositide 3 kinase (PI3K) pathway and mitogen-activated protein kinase (MAPK) pathway. Hyperinsulinemia reduces insulin sensitivity and is an obvious potential factor affecting airway inflammation in chronic airway diseases. MUC5AC is a major secreted mucin, which plays a critical role in inflammatory response in the respiratory tract. However, the relationship between insulin and MUC5AC expression has not been studied. Objective This study investigated the effect and the brief signaling pathway of high concentration of insulin (HI) on MUC5AC expression in human airway epithelial cell. Methods In NCI-H292 cells and primary cultures of normal nasal epithelial cells, the effect and signaling pathway of HI on MUC5AC expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with several specific inhibitors and small interfering RNA (siRNA). Results HI significantly increased MUC5AC expression and activated PI3K/AKT, extracellular signal-related kinase 1/2 (ERK1/2) and p38 MAPKs. The specific PI3K and AKT inhibitor as well as knockdown of AKT1 and AKT2 by the respective siRNAs significantly blocked HI-mediated expression of MUC5AC. Meanwhile, the specific ERK1/2 MAPK and p38 MAPK inhibitor as well as knockdown of ERK1, ERK2, and p38 MAPK by the respective siRNAs also attenuated HI-induced expression of MUC5AC. Conclusion The results of this study suggest that HI induces MUC5AC expression via PI3K/AKT and MAPK signaling pathways in human airway epithelial cells.
Collapse
Affiliation(s)
- Hyung Gyun Na
- 1 Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- 1 Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- 2 Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Chang Hoon Bae
- 1 Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- 1 Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyun Jung Jin
- 2 Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
- 3 Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Kyeong-Cheol Shin
- 2 Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
- 3 Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- 1 Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Bae CH, Na HG, Choi YS, Song SY, Kim YD. Clusterin Induces MUC5AC Expression via Activation of NF-κB in Human Airway Epithelial Cells. Clin Exp Otorhinolaryngol 2018; 11:124-132. [PMID: 29316784 PMCID: PMC5951062 DOI: 10.21053/ceo.2017.00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Clusterin (CLU) is known as apolipoprotein J, and has three isoforms with different biological functions. CLU is associated with various diseases such as Alzheimer disease, atherosclerosis, and some malignancies. Recent studies report an association of CLU with inflammation and immune response in inflammatory airway diseases. However, the effect of CLU on mucin secretion of airway epithelial cells has not yet been understood. Therefore, the effect and brief signaling pathway of CLU on MUC5AC (as a major secreted mucin) expression were investigated in human airway epithelial cells. METHODS In the tissues of nasal polyp and normal inferior turbinate, the presence of MUC5AC and CLU was investigated using immunohistochemical stain and Western blot analysis. In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the effect and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway of CLU on MUC5AC expression were investigated using immunohistochemical stain, reverse transcription-polymerase chain reaction, real-time polymerase chain reaction, enzyme immunoassay, and Western blot analysis. RESULTS In the nasal polyps, MUC5AC and CLU were abundantly present in the epithelium on immunohistochemical stain, and nuclear CLU (nCLU) was strongly detected on Western blot analysis. In human NCI-H292 airway epithelial cells or the primary cultures of normal nasal epithelial cells, recombinant nCLU increased MUC5AC expression, and significantly activated phosphorylation of NF-κB. And BAY 11-7085 (a specific NF-κB inhibitor) and knockdown of NF-κB by NF-κB siRNA (small interfering RNA) significantly attenuated recombinant nCLU-induced MUC5AC expression. CONCLUSION These results suggest that nCLU induces MUC5AC expression via the activation of NF-κB signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Korea
| |
Collapse
|
8
|
Kwak S, Kim YD, Na HG, Bae CH, Song SY, Choi YS. Resistin upregulates MUC5AC/B mucin gene expression in human airway epithelial cells. Biochem Biophys Res Commun 2018; 499:655-661. [PMID: 29604272 DOI: 10.1016/j.bbrc.2018.03.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Adipokines, a group of proteins including leptin, visfatin, resistin, and adiponectin, are produced by adipocytes. Among adipokines, resistin is implicated in insulin resistance and inflammatory response modulation. Mucus hypersecretion has been greatly linked to airway diseases, such as asthma, chronic obstructive pulmonary disease, and rhinosinusitis. Increasing evidence has indicated that adipokines, such as leptin and visfatin, play important regulatory roles in various biological processes involved in mucus secretion. However, the effects of resistin on mucin expression in human airway epithelial cells, as well as the underlying mechanisms, have not been investigated yet. We showed that resistin affected mucin expression in human airway epithelial cells via the mitogen-activated protein kinase/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Resistin increased MUC5AC and MUC5B expression in NCI-H292 and primary human nasal epithelial cells. Additionally, it significantly increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and NF-κB. ERK1/2 and p38 specific inhibitors significantly attenuated resistin-induced MUC5AC/5B expression; however, NF-κB inhibitor reduced resistin-induced MUC5AC, but not MUC5B, expression. Knockdown of ERK1, ERK2, and p38 by ERK1, ERK2, and p38 small interfering RNA (siRNA), respectively, significantly blocked resistin-induced MUC5AC and MUC5B mRNA expression. In addition, NF-κB siRNA attenuated resistin-induced MUC5AC, but not MUC5B, expression. These results suggested that resistin induced MUC5AC and MUC5B expression via activation of different signaling pathways in human airway epithelial cells.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Medical Science, College of Medicine, Graduate School of Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Bae CH, Choi YS, Na HG, Song SY, Kim YD. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells. Am J Rhinol Allergy 2018; 32:87-93. [PMID: 29644902 DOI: 10.1177/1945892418762844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. OBJECTIVE The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. METHODS Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). RESULTS IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. CONCLUSION These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Chang Hoon Bae
- From the 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea, and
| | - Yoon Seok Choi
- From the 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea, and
| | - Hyung Gyun Na
- From the 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea, and
| | - Si-Youn Song
- From the 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea, and
| | - Yong-Dae Kim
- From the 1 Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea, and
- 2 Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
10
|
Plantamajoside Inhibits Lipopolysaccharide-Induced MUC5AC Expression and Inflammation through Suppressing the PI3K/Akt and NF-κB Signaling Pathways in Human Airway Epithelial Cells. Inflammation 2018; 41:795-802. [DOI: 10.1007/s10753-018-0733-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
|
12
|
Rotenberg BW. Inverted papilloma: The stubbornly persistent tumor of the sinonasal cavity. Am J Rhinol Allergy 2016; 30:77-8. [PMID: 26980387 DOI: 10.2500/ajra.2016.30.4309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|