1
|
Abo El-Souad SMS, Ramadan MA, Zahran D. Synthesis and application of Cobalt-Silver nanohybrid for antimicrobial wastewater treatment and agricultural productivity enhancement. Sci Rep 2025; 15:16321. [PMID: 40348883 PMCID: PMC12065837 DOI: 10.1038/s41598-025-99333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
1- This work emphasises the potential of Co@Ag-NPs as an efficient antimicrobial agent. The scientific community has recently shown silver nanohybrids to maintain plural consistency and their potential applications in wastewater treatment. Where these nanohybrids showed highly removing capacity of the three main contaminants (pesticides, microorganisms, and heavy metals) from waste water. The ability of silver and cobalt nanohybrids to inhibit bacteria and fungi that cause illnesses both in vitro and in vivo has made them an outstanding antimicrobial agent. Cobalt-silver nanohybrid particles (Co@AgNPs) have antibacterial properties against both Gram-positive and Gram-negative bacteria, including those that are resistant to multiple drugs. Co@AgNPs have several simultaneous modes of action, and when combined with organic chemicals or medicines that fight bacteria, they have demonstrated a synergistic effect on infections. Because of their unique properties, silver and cobalt nanohybrids can be used in medical and healthcare goods to effectively treat or prevent infections. The preparation and characterization of highly stable cobalt silver nanohybrid (Co@Ag) have been reported. Out of the water samples, four bacterial and seven fungal isolates are identified. Various concentrations of Co@Ag, ranging from 10- 1 to 10- 3, have been seen to impact and produce varying diameters of inhibition zones in bacterial isolates Shigella, Salmonella, E. coli, Pseudomonas aeruginosa and fungal isolates Aspergillus flavus var columnaris, and Aspergillus awamori. Water samples treated with Co@Ag nanoparticles when plated on LB and Czapek Dox agar did not show any growth of bacteria and fungi after five and seven days of incubation, respectively. Furthermore, data demonstrated that shoot and root length and germination percentage of wheat seeds irrigated by treated water increased progressively from 7.5 cm to 9.2 cm, from 9 cm to 11 cm and from 90 to 100%, respectively, as Co@Ag concentrations were elevated from 0 to 10 and 20 mg/l.
Collapse
Affiliation(s)
- Sayed M S Abo El-Souad
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Marwa A Ramadan
- Department of laser application in metrology, photochemistry and agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, 12613, Egypt
| | - D Zahran
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Bai D, Nowak M, Lu D, Wang Q, Fitzgerald M, Zhang H, MacDonald R, Xu Z, Luo L. The outcast of medicine: metals in medicine--from traditional mineral medicine to metallodrugs. Front Pharmacol 2025; 16:1542560. [PMID: 40260378 PMCID: PMC12010122 DOI: 10.3389/fphar.2025.1542560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Metals have long held a significant role in the human body and have been utilized as mineral medicines for thousands of years. The modern advancement of metals in pharmacology, particularly as metallodrugs, has become crucial in disease treatment. As the machanism of metallodurgsare increasingly uncovered, some metallodrugs are already approved by FDA and widely used in treating antitumor, antidiabetes, and antibacterial. Therefore, a thorough understanding of metallodrug development is essential for advancing future study. This review offers an in-depth examination of the evolution of mineral medicines and the applications of metallodrugs within contemporary medicine. We specifically aim to summarize the historical trajectory of metals and mineral medicines in Traditional Chinese Mineral Medicine by analyzing key historical texts and representative mineral medicines. Additionally, we discuss recent advancements in understanding metallodrugs' mechanisms, such as protein interactions, enzyme inhibition, DNA interactions, reactive oxygen species (ROS) generation, and cellular structure targeting. Furthermore, we address the challenges in metallodrug development and propose potential solutions. Lastly, we outline future directions for metallodrugs to enhance their efficacy and effectiveness. The progression of metallodrugs has broadened their applications and contributed significantly to patient health, creating good healthcare solutions for the global population.
Collapse
Affiliation(s)
- Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Michal Nowak
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Qiaochu Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | | | - Hui Zhang
- Institute of Traditional Chinese Medicine, European University of Chinese Medicine, Horsens, Denmark
| | - Remy MacDonald
- Department of Statistics, George Mason University, Virginia, VA, United States
| | - Ziwen Xu
- Department of Nursing, The University of Melbourne, Parkville, VIC, Australia
| | - Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Hernandez-Urquizo DV, Claudio Rizo JA, Cabrera-Munguía DA, Caldera-Villalobos M, León-Campos MI, Enríquez-Medrano FJ, Elizalde-Herrera LE. Antibacterial collagen-guar gum hydrogels with zeolitic imidazolate framework-67 (ZIF-67): an innovative platform for advanced wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-26. [PMID: 40168277 DOI: 10.1080/09205063.2025.2486859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
The current challenge in developing wound healing dressings lies in achieving antibacterial effects while avoiding cytotoxicity to cells that are crucial for the healing process. Addressing this challenge, Zeolitic Imidazolate Framework-67 (ZIF-67), a cobalt-containing metal-organic framework (MOF), has emerged as a promising additive due to cobalt's broad-spectrum antimicrobial effects. This study developed semi-interpenetrating polymer network (semi-IPN) hydrogels by incorporating 1-3 wt.% ZIF-67 into collagen-guar gum matrices, resulting in biocomposites with tunable structural and functional properties. These biocomposites exhibit a fibrillar-granular morphology, uniform cobalt ion distribution on a semi-crystalline surface, and strong antibacterial activity against Escherichia coli (E. coli). At 3 wt.%, ZIF-67 accelerates gelation, strengthens crosslinking interactions, and enhances the storage modulus, thermal stability, and hydrolytic resistance of the hydrogels. Furthermore, biocomposites with 1 wt.% ZIF-67 also function as in-situ curcumin delivery systems, offering controlled release under physiological conditions and significant biodegradation in the presence of collagenase. In vitro tests demonstrate that the chemical composition of these hydrogels, regardless of ZIF-67 content, effectively supports monocyte and fibroblast metabolic activity, promotes cell proliferation, and increases interleukin-10 (IL-10) secretion by human monocytes. Additionally, the absence of hemolytic effects in human blood further underscores the safety and suitability of these hydrogel biocomposites for advanced wound treatment applications.
Collapse
Affiliation(s)
| | - Jesús A Claudio Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, México
| | | | | | - Maria I León-Campos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, México
| | | | | |
Collapse
|
4
|
Jain G, Chaurasia R, Kaur BP, Chowdhury OP, Roy H, Gupta RR, Biswas B, Chakrabarti S, Mukherjee M. Unleashing the antibacterial potential of ZIFs and their derivatives: mechanistic insights. J Mater Chem B 2025; 13:3270-3291. [PMID: 39935286 DOI: 10.1039/d4tb02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Antibiotic resistance presents an alarming threat to global health, with bacterial infections now ranking among the leading causes of mortality. To address this escalating challenge, strategies such as antibiotic stewardship, development of antimicrobial therapies, and exploration of alternative treatment modalities are imperative. Metal-organic frameworks (MOFs), acclaimed for their outstanding biocompatibility and in vivo biodegradability, are promising avenues for the synthesis of novel antibiotic agents under mild conditions. Among these, zeolitic imidazolate frameworks (ZIFs), a remarkable subclass of MOFs, have emerged as potent antibacterial materials; the efficacy of which stems from their porous structure, metal ion content, and tunable functionalized groups. This could be further enhanced by incorporating or encapsulating metal ions, such as Cu, Fe, Ti, Ag, and others. This perspective aims to underscore the potential of ZIFs as antibacterial agents and their underlying mechanisms including the release of metal ions, generation of reactive oxygen species (ROS), disruption of bacterial cell walls, and synergistic interactions with other antibacterial agents. These attributes position ZIFs as promising candidates for advanced applications in combating bacterial infections. Furthermore, we propose a novel approach for synthesizing ZIFs and their derivatives, demonstrating exceptional antibacterial efficacy against Escherichia coli and Staphylococcus aureus. By highlighting the benefits of ZIFs and their derivatives as antibacterial agents, this perspective emphasizes their potential to address the critical challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Geetika Jain
- Amity Institute of Nanotechnology, Amity University, Noida, UP 201313, India
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Radhika Chaurasia
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bani Preet Kaur
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | | | - Hiranmay Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Richa Rani Gupta
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Sandip Chakrabarti
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Monalisa Mukherjee
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| |
Collapse
|
5
|
Liu Y, Murphy K, Fernandes N, Moore RET, Pennisi I, Williams R, Rehkämper M, Larrouy-Maumus G. Transition metal homoeostasis is key to metabolism and drug tolerance of Mycobacterium abscessus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:25. [PMID: 39359892 PMCID: PMC11442307 DOI: 10.1038/s44259-024-00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the major challenges humans are facing this century. Understanding the mechanisms behind the rise of AMR is therefore crucial to tackling this global threat. The presence of transition metals is one of the growth-limiting factors for both environmental and pathogenic bacteria, and the mechanisms that bacteria use to adapt to and survive under transition metal toxicity resemble those correlated with the rise of AMR. A deeper understanding of transition metal toxicity and its potential as an antimicrobial agent will expand our knowledge of AMR and assist the development of therapeutic strategies. In this study, we investigate the antimicrobial effect of two transition metal ions, namely cobalt (Co2+) and nickel (Ni2+), on the non-tuberculous environmental mycobacterium and the opportunistic human pathogen Mycobacterium abscessus. The minimum inhibitory concentrations of Co2+ and Ni2+ on M. abscessus were first quantified and their impact on the bacterial intracellular metallome was investigated. A multi-omics strategy that combines transcriptomics, bioenergetics, metabolomics, and phenotypic assays was designed to further investigate the mechanisms behind the effects of transition metals. We show that transition metals induced growth defect and changes in transcriptome and carbon metabolism in M. abscessus, while the induction of the glyoxylate shunt and the WhiB7 regulon in response to metal stresses could be the key response that led to higher AMR levels. Meanwhile, transition metal treatment alters the bacterial response to clinically relevant antibiotics and enhances the uptake of clarithromycin into bacterial cells, leading to increased efficacy. This work provides insights into the tolerance mechanisms of M. abscessus to transition metal toxicity and demonstrates the possibility of using transition metals to adjuvant the efficacy of currently using antimicrobials against M. abscessus infections.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Katy Murphy
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Ivana Pennisi
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Williams
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Singh D, Sharma P, Pant S, Dave V, Sharma R, Yadav R, Prakash A, Kuila A. Ecofriendly fabrication of cobalt nanoparticles using Azadirachta indica (neem) for effective inhibition of Candida-like fungal infection in medicated nano-coated textile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46575-46590. [PMID: 37286837 DOI: 10.1007/s11356-023-28061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This study involves the formulation of cobalt nanoparticles by means of ethanolic Azadirachta indica (neem) extract (CoNP@N). Later, the formulated buildup was incorporated into cotton fabric in order to mitigate antifungal infection. Optimization of the formulation was carried out by considering the effect of plant concentration, temperature, and revolutions per minute (rpm) used, through design of the experiment (DOE), response surface methodology (RSM), and ANOVA of the synthetic procedure. Hence, graph was potted with the aid of effecting parameters and the related factors (size of particle and zeta potential). Further characterization of nanoparticles was performed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was considered for the detection of functional groups. The structural property of CoNP@N was calculated with the aid of powder X-ray diffraction (PXRD). The surface property was measured with the use of a surface area analyzer (SAA). The values of Inhibition concentration (IC50) and zone of inhibition (ZOI), were calculated, so as to determine the antifungal property against both the strains (Candida albicans, MTCC 227and Aspergillus niger, MTCC 8652). The further nano-coated cloth was subjected to a durability test, and hence the cloth was washed (through the purpose of time 0; 10; 25; and 50 washing cycles), and then its anti-fungal operation to a couple of strains was retained. Primarily, 51 μg/ml of cobalt nanoparticles incorporated on the cloth was retained but after 50 washing cycles in 500 ml of purified water, the cloth showed more efficiency contrary to C. albicans than towards A. niger.
Collapse
Affiliation(s)
- Devsuni Singh
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Prashansa Sharma
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Home Science, Mahila Mahavidyala, Banaras Hindu University, Varanasi, 221005, India
| | - Suman Pant
- Department of Clothing & Textile, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, 824236, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- National Forensic Science University, Tripura Campus, Agartala, 799006, India
| | - Anand Prakash
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| |
Collapse
|
7
|
Balogun SA, Abolarinwa TO, Adesanya FA, Ateba CN, Fayemi OE. Spectroscopic and antibacterial activities of cobalt and nickel nanoparticles: a comparative analysis. J Anal Sci Technol 2024; 15:33. [DOI: 10.1186/s40543-024-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/19/2024] [Indexed: 01/06/2025] Open
Abstract
AbstractThis study aimed to compare the spectroscopy, morphological, electrocatalytic properties, and antibacterial activities of cobalt nanoparticles (CoNPs) with nickel nanoparticles (NiNPs). Cobalt nanoparticles and NiNPs were prepared via a chemical reduction approach and characterized utilizing transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. The result from XRD and TEM analysis revealed that the synthesized nanoparticles exhibit face-centered cubic with smooth spherical shape, having average particles size of 12 nm (NiNPs) and 18 nm (CoNPs). The electrochemical properties of the nanoparticles were examined via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results showed that GCE-Ni (35.6 μA) has a higher current response compared to GCE-Co (10.5 μA). The EIS analysis revealed that GCE-Ni (1.39 KΩ) has faster electron transport capability compared to GCE-Co (2.99 KΩ) as indicated in their Rct values. The power density of the synthesized nanoparticles was obtained from their "knee" frequency (f°) values, with GCE-Ni (3.16 Hz) having higher f° values compared to GCE-Co (2.00 Hz). The antibacterial activity of the nanoparticles was evaluated against multidrug-resistant Escherichia coli O157, Escherichia coli O177, Salmonella enterica, Staphylococcus aureus, and Vibrio cholerae. The result from the antibacterial study revealed that at low concentrations both CoNPs and NiNPs have significant antibacterial activities against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae. NiNPs showed better antibacterial activities at low concentrations of 61.5, 61.5, 125, 61.5, and 125 µg/mL compared to CoNPs with minimum inhibitory concentrations of 125, 125, 250, 61.5, and 125 µg/mL against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae, respectively. These promising antibacterial activities emphasize the potential of CoNPs and NiNPs as effective antibacterial agents, which could aid in the development of novel antibacterial medicines.
Collapse
|
8
|
Franco Machado J, Cordeiro S, Duarte JN, Costa PJ, Mendes PJ, Garcia MH, Baptista PV, Fernandes AR, Morais TS. Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents. Inorg Chem 2024; 63:5783-5804. [PMID: 38502532 PMCID: PMC10988555 DOI: 10.1021/acs.inorgchem.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.
Collapse
Affiliation(s)
- João Franco Machado
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Joana N. Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI
− Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J. Mendes
- LAQV-REQUIMTE
(Polo de Évora), Escola de Ciências e Tecnologia, Universidade de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Maria Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Tânia S. Morais
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Zheng X, Yang Q, Xia J, Cheng R, Li H, Zheng J. Resistance differences of representative model microorganisms in different disinfection processes: ZIF-67, UVC and ozone. WATER CYCLE 2024; 5:259-265. [DOI: 10.1016/j.watcyc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Thanaraj S, Mitthun ANK, Geetha Sravanthy P, Carmelin DS, Surya M, Saravanan M. Green Synthesis of Aluminum Oxide Nanoparticles Using Clerodendrum phlomidis and Their Antibacterial, Anti-inflammatory, and Antioxidant Activities. Cureus 2024; 16:e52279. [PMID: 38357054 PMCID: PMC10864816 DOI: 10.7759/cureus.52279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Clerodendrum phlomidis plays a significant role in many indigenous medical systems, and it can be mostly found in Southeast Asia. The objective of the study was to synthesize and characterize the biosynthesized aluminum oxide nanoparticles (AlO-NPs) using C. phlomidis and analyze their antibacterial (bactericidal), antioxidant, and anti-inflammatory activities. METHODS The extract was prepared by the autoclave-assisted method, and the AlO-NPs were synthesized by the green synthesis method. The biosynthesized AlO-NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The antibacterial property was assessed by the Kirby-Bauer well diffusion method, and the antioxidant activity was checked by DPPH (2,2-diphenyl-1-picrylhydrazyl) activity compared with the control L-ascorbic acid. Anti-inflammatory activity was evaluated by an albumin denaturation assay, and diclofenac was used as a control. IBM SPSS Statistics for Windows, Version 21.0 was used for the statistical analysis. Results: An absorption peak at a wavelength of 380 nm was detected by UV-Vis spectroscopy analysis. It proves that AlO-NPs have been successfully produced by the green synthesis method. The results of the FT-IR study demonstrated the existence of numerous chemicals and functional groups in the 500-3500 cm-1 range. AlO-NPs from the plant extract were subjected to FE-SEM analysis, which revealed an aggregated or spherically cluster-like structure. The sample's elemental makeup, which revealed that it included 38% aluminum and 28% oxygen, was identified with the help of the EDX, and this verified the high purity of the AlO-NPs. The results of the antibacterial activity of AlO-NPs revealed that there was a zone of inhibition for Enterococcus faecalis; however, there was no zone of inhibition for Streptococcus mutans. The synthesized AlO-NPs exhibit strong antioxidative (DPPH activity) and anti-inflammatory (albumin denaturation assay) action. In this work, the in vitro antioxidant activity of C. phlomidis was assessed using the standard, L-ascorbic acid, as a measure of DPPH activity. At a maximum concentration of 500 µg/ml, the obtained results showed the incredible antioxidant properties of the investigated AlO-NPs synthesized from the plant extracts and demonstrated 90% inhibition. AlO-NPs that were biosynthesized showed effective anti-inflammatory activity at a higher concentration of 100 µg/ml and demonstrated 89% inhibition in contrast to the drug diclofenac sodium. CONCLUSION According to the study's findings, AlO-NPs made using a greener synthesis approach have the potential to be used in a variety of industries and are also an affordable and sustainable way to effectively act as anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Srigopika Thanaraj
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - A N K Mitthun
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - P Geetha Sravanthy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Durai Singh Carmelin
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Muthuvel Surya
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Muthupandian Saravanan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
12
|
Gallegos-Monterrosa R, Mendiola RO, Nuñez Y, Auvynet C, Kumar KM, Tang B, Ruiz-Ortega LI, Bustamante VH. Antibacterial and antibiofilm activities of ZIF-67. J Antibiot (Tokyo) 2023; 76:603-612. [PMID: 37337088 PMCID: PMC10522484 DOI: 10.1038/s41429-023-00637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/21/2023]
Abstract
Currently, antibiotic-resistant bacteria represent a serious threat to public health worldwide. Biofilm formation potentiates both virulence and antibiotic resistance of bacteria. Therefore, the discovery of new antibacterial and antibiofilm compounds is an issue of paramount importance to combat and prevent hard-to-treat bacterial infections. Zeolitic-imidazolate-frameworks (ZIFs) are metallo-organic compounds known to have various interesting chemical and biological applications, including antibacterial properties. In this study, we synthesized ZIF-67 nanoparticles, formed by imidazolate anions and cobalt cations, and found that they inhibit the growth of Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. Sub-inhibitory concentrations of ZIF-67 were also able to significantly reduce the biomass of pre-established biofilms of these pathogenic bacteria. On the other hand, the ZIF-67 nanoparticles had null or low cytotoxicity in mammalian cells at those concentrations showing antibacterial or antibiofilm activities. Thus, our results reveal the potential of ZIF-67 nanoparticles to be used against pathogenic bacteria.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Rodrigo Orozco Mendiola
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Yoselin Nuñez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Kesarla Mohan Kumar
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, PR China
| | - Leonardo I Ruiz-Ortega
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
13
|
Mishra N, Quon AS, Nguyen A, Papazyan EK, Hao Y, Liu Y. Constructing Physiological Defense Systems against Infectious Disease with Metal-Organic Frameworks: A Review. ACS APPLIED BIO MATERIALS 2023; 6:3052-3065. [PMID: 37560923 PMCID: PMC10445270 DOI: 10.1021/acsabm.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The swift and deadly spread of infectious diseases, alongside the rapid advancement of scientific technology in the past several centuries, has led to the invention of various methods for protecting people from infection. In recent years, a class of crystalline porous materials, metal-organic frameworks (MOFs), has shown great potential in constructing defense systems against infectious diseases. This review addresses current approaches to combating infectious diseases through the utilization of MOFs in vaccine development, antiviral and antibacterial treatment, and personal protective equipment (PPE). Along with an updated account of MOFs used for designing defense systems against infectious diseases, directions are also suggested for expanding avenues of current MOF research to develop more effective approaches and tools to prevent the widespread nature of infectious diseases.
Collapse
Affiliation(s)
- Nikita
O. Mishra
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Alisa S. Quon
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Anna Nguyen
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Edgar K. Papazyan
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yajiao Hao
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| |
Collapse
|
14
|
Raja FNS, Worthington T, Martin RA. The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination. Biomed Mater 2023; 18. [PMID: 37158047 DOI: 10.1088/1748-605x/acd03f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
With the advent of nanotechnology, there has been an extensive interest in the antimicrobial potential of metals. The rapid and widespread development of antimicrobial-resistant and multidrug-resistant bacteria has prompted recent research into developing novel or alternative antimicrobial agents. In this study, the antimicrobial efficacy of metallic copper, cobalt, silver and zinc nanoparticles was assessed againstEscherichia coli(NCTC 10538),S. aureus(ATCC 6538) along with three clinical isolates ofStaphylococcus epidermidis(A37, A57 and A91) and three clinical isolates ofE. coli(Strains 1, 2 and 3) recovered from bone marrow transplant patients and patients with cystitis respectively. Antimicrobial sensitivity assays, including agar diffusion and broth macro-dilution to determine minimum inhibitory and bactericidal concentrations (MIC/MBC) and time-kill/synergy assays, were used to assess the antimicrobial efficacy of the agents. The panel of test microorganisms, including antibiotic-resistant strains, demonstrated a broad range of sensitivity to the metals investigated. MICs of the type culture strains were in the range of 0.625-5.0 mg ml-1. While copper and cobalt exhibited no difference in sensitivity between Gram-positive and Gram-negative microorganisms, silver and zinc showed strain specificity. A significant decrease (p< 0.001) in the bacterial density ofE. coliandS. aureuswas demonstrated by silver, copper and zinc in as little as two hours. Furthermore, combining metal nanoparticles reduced the time required to achieve a complete kill.
Collapse
Affiliation(s)
- Farah N S Raja
- College of Health and Life Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Tony Worthington
- College of Health and Life Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Richard A Martin
- College of Engineering and Physical Sciences, and Aston Advanced Materials Research Centre, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
15
|
Ahmed AQ, Al-Hmedat SJAZ, Hanweet DM, Haider J. Assessing the Antifungal Activity of a Soft Denture Liner Loaded with Titanium Oxide Nanoparticles (TiO2 NPs). Dent J (Basel) 2023; 11:dj11040090. [PMID: 37185468 PMCID: PMC10137426 DOI: 10.3390/dj11040090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Aim: Soft denture lining materials are susceptible to be colonized by different microorganisms, especially by Candida albicans (C. albicans), causing denture-induced stomatitis. This study was designed to evaluate the effectiveness of incorporating titanium dioxide nanoparticles (TiO2 NPs) into a soft denture liner towards reducing microbial activity. Method: A total of 40 PEMA-TiO2 nanocomposites samples were fabricated by adding 0.0 wt.% (control), 1.0 wt.%, 1.5 wt.%, and 2 wt.% TiO2 NPs to a heat cured soft denture lining material (polyethyl methacrylate, PEMA). The prepared samples were divided into four groups (n = 10) according to the content of TiO2 NPs. The uniformity of TiO2 NPS distribution within the denture liner matrix was assessed using a Scanning Electron Microscope (SEM). The viable count of C. albicans was evaluated to test the antifungal resistance of the developed composite. Results: The SEM images showed fairly homogeneous dispersion, with patches of TiO2 NPs agglomeration within the PEMA matrix and an increasing concentration of NPs with higher NP content. The particle map and EDX analysis confirmed the evidence of the TiO2 NPs. The mean viable count results for the control (0.0 wt.%) and 1.0 wt.%, 1.5 wt.%, and 2 wt.% TiO2 groups were 139.80, 12.00, 6.20, and 1.00, respectively, with a significant difference from the control group (p < 0.05). The antifungal activity also increased with the increase in the concentration of TiO2 NPs. Conclusions: The addition of TiO2 NPs into a heat-cured soft denture liner provided antifungal activity as evidenced by the reduced colonization of C. albicans. The antimicrobial activity of the liner material increased with the increased concentration of TiO2 NPS.
Collapse
|
16
|
Xia C, Jin X, Garalleh HA, Garaleh M, Wu Y, Hill JM, Pugazhendhi A. Optimistic and possible contribution of nanomaterial on biomedical applications: A review. ENVIRONMENTAL RESEARCH 2023; 218:114921. [PMID: 36504007 DOI: 10.1016/j.envres.2022.114921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have many advantages over bulk materials, including enhanced surface-to-volume proportion as well as magnetic traits. It has been a steady rise in research with using nanomaterials in various biomedical fields in the past few decades. Constructing nanomaterials has emerged as a leading research primary concern in order to discover specialized biomedical applications. Since, their advantageous properties including chemical stability, non-toxicity, bio - compatibility, relatively high magnetization, and strong magnetic vulnerability, nanoparticles of iron oxide had already influenced implementations in different biomedical fields. Nanomaterials can be divided up into four nanomaterials such as metallic nanomaterials, bimetallic or alloy nanomaterials, metal oxide nanomaterials, as well as magnetic nanomaterials. Hence, the purpose of this review is to conduct such in discussion on emerging advancements in nanomaterials for biomedical, with such a special emphasis upon those options of nanomaterials including metallic nanomaterials: Au and Ag, bimetallic nanomaterials: Fe-Co and Fe-Pt, and metal oxides: TiO2 and CeO2. Securing this information gap will result in a better comprehension of the contribution of nanomaterial type and subsequent huge-scale applications in aspects of both their potential and challenges.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, Jordan
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - James M Hill
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide SA, 5001, Australia
| | | |
Collapse
|
17
|
Al-Mosawi RM, Jasim HA, Haddad A. Study of the antibacterial effects of the starch-based zinc oxide nanoparticles on methicillin resistance Staphylococcus aureus isolates from different clinical specimens of patients from Basrah, Iraq. AIMS Microbiol 2023; 9:90-107. [PMID: 36891534 PMCID: PMC9988410 DOI: 10.3934/microbiol.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
This study aimed to assess the efficacy of starch-based zinc oxide nanoparticles (ZnO-NPs) against methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens in Basrah, Iraq. In this cross-sectional study, 61 MRSA were collected from different clinical specimens of patients in Basrah city, Iraq. MRSA isolates were identified using standard microbiology tests, cefoxitin disc diffusion and oxacillin salt agar. ZnO-NPs were synthesized in three different concentrations (0.1 M, 0.05 M, 0.02 M) by the chemical method using starch as the stabilizer. Starch-based ZnO-NPs were characterized using ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The antibacterial effects of particles were investigated by the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the most effective starch-based ZnO-NPs were determined using a broth microdilution assay. The UV-Vis of all concentrations of starch-based ZnO-NPs exhibited a strong absorption band at 360 nm which was characteristic of the ZnO-NPs. XRD assay confirmed the representative hexagonal wurtzite phase of the starch-based ZnO-NPs, and their purity and high crystallinity. The spherical shape with a diameter of 21.56 ± 3.42 and 22.87 ± 3.91 was revealed for the particles by FE-SEM and TEM, respectively. EDS analysis confirmed the presence of zinc (Zn) (61.4 ± 0.54%) and oxygen (O) (36 ± 0.14%). The 0.1 M concentration had the highest antibacterial effects (mean ± SD of inhibition zone = 17.62 ± 2.65 mm) followed by the 0.05 M concentration (16.03 ± 2.24 mm) and the 0.02 M concentration (12.7 ± 2.57 mm). The MIC and the MBC of the 0.1 M concentration were in the range of 25-50 µg/mL and 50-100 µg/mL, respectively. Infections caused by MRSA can be treated with biopolymer-based ZnO-NPs as effective antimicrobials.
Collapse
Affiliation(s)
- Reham M Al-Mosawi
- Department of Microbiology, Dentistry College of Basic Science, University of Basrah, Basrah, Iraq
| | | | - Athir Haddad
- Chemistry Department, College of Science, University of Basrah, Basrah, Iraq
| |
Collapse
|