1
|
Dalto DB, Audet I, Roy C, Villeneuve G, Matte JJ, Lapointe J. Different vitamin D supplementation strategies impact serum vitamin D concentrations and the mRNA expression of genes related to vitamin D metabolism, mitochondria respiration, redox balance, and immune system in weanling piglets. J Anim Sci 2025; 103:skaf024. [PMID: 39901732 PMCID: PMC11912839 DOI: 10.1093/jas/skaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/05/2025] Open
Abstract
This study compared the effects of different vitamin D supplementation strategies to pre- and postweaning piglets on vitamin D metabolism and health-related parameters. Sixty Yorkshire-Landrace × Duroc suckling piglets were selected at the first day of age and randomly assigned to one of two vitamin D supplementation strategies (n = 30 pigs per treatment): CTR-oral saline at days 2, 8, and 21 of age and, from weaning (day 21), in-feed supplementation with 2,000 IU of vitamin D as cholecalciferol; and VD-oral 25-hydroxycholecalciferol (25(OH)D3) solution at days 2, 8, and 21 of age plus 15-min exposure to UVB light every second day from day 14 until day 21 and, from weaning, in-feed supplementation with 2,000 IU of vitamin D as 25(OH)D3. Piglets were slaughtered (n = 10 pigs per treatment/day) at days 21 (before start in-feed experimental diets), and 28 and 35 and blood and tissues samples (jejunum, liver, and kidney) were collected. Body weight (BW), concentrations of serum 25(OH)D3 and jejunum, liver, and kidney mRNA expression of genes related to vitamin D, antioxidant system, and immune defense were measured. Body weight was not affected by treatments (P ≥ 0.34). Serum 25(OH)D3 concentrations were greater for VD piglets at day 21, 28, and 35 (P < 0.01). No effect of treatment was detected (P ≥ 0.14) for mRNA expression in the jejunum mucosa. In the liver of VD piglets, mRNA expressions of genes related to the antioxidant system were lower at day 21 (NDUFB2) and at day 28 (BNIP3, GPX4, and MSRA) (P ≤ 0.10). The mRNA analysis in kidney during the overall period detected higher expression of genes related to the mitochondria oxidative phosphorylation (COX17, NDUFB2, and NDUFB6) in VD groups compared with CTR (P ≤ 0.09). The expression of CYP27B1 in kidney was higher at day 28 and CYP24A1 was lower at day 21 but higher at day 35 for VD animals. In conclusion, during the preweaning period, dietary 25(OH)D3 supplementation combined with UVB exposure was effective in increasing serum 25(OH)D3 concentrations at weaning, whereas in the postweaning period, dietary 25(OH)D3 supplementation at 2,000 IU/kg was more efficient then dietary cholecalciferol at similar levels. The overall results indicate that 2,000 IU of vitamin D/kg of diet, independently of source, may be enough to improve the vitamin D status of postweaning piglets. However, the use of dietary 25(OH)D3 may promote a better modulation of vitamin D metabolism and redox balance.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Isabelle Audet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Caroline Roy
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Geneviève Villeneuve
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Jérôme Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| |
Collapse
|
2
|
Okafor PC, Jimongkolkul N, Khongpradit A, Ahiwichai W, Homwong N. Enhancement of selectivity, 25-hydroxyvitamin D3 level, alkaline phosphatase activity and reproductive performance in gilts and primiparous sows using 14-epimer of 25-hydroxyvitamin D3. Vet Anim Sci 2024; 24:100352. [PMID: 38699218 PMCID: PMC11064612 DOI: 10.1016/j.vas.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Selecting breed-worthy gilts as sow replacements is essential for continuity of pig production cycle. Though vitamin D3 (VD3) is known to enhance reproductive performance of multiparous sows, there is still a knowledge gap on its impact in developing gilts and primiparous sows. This study was aimed to quantify plasma 25-hydroxyvitamin D3 (25(OH)D3), serum alkaline phosphatase (ALP), and examine the reproductive performance of primiparous sows fed diets supplemented with regular VD3, and its 25(OH)D3 epimers. The study sample comprised 10-week-old replacement gilts (50 % Landrace x 50 % Yorkshire, N = 180) assigned in a randomized complete block design to three treatments [2,000 IU/kg of VD3 (T1), 25 µg/kg of 14‑epi-25(OH)D3, half dose (T2), and 50 µg/kg of 25(OH)D3 (T3)] equilibrated to 2,000 IU/kg in base diets. Selections occurred at 22, 27 and 35 weeks of age, respectively. Plasma 25(OH)D3, serum alkaline phosphatase (ALP), bone structure and reproductive performance were analyzed. Dietary treatments influenced carpus (P = 0.023), fore view stance (P = 0.017), infantile vulva (P = 0.014), inverted (P = 0.048), and prominent teat (P < 0.001). Post-partum 25(OH)D3 concentration and ALP activity were elevated by day 25 (P < 0.001). Treatment diets also influenced total born (P < 0.001), born alive (P = 0.048), and still born (P = 0.049). Two factors affect circulating 25(OH)D3 and ALP activity: physiological changes in sows during lactation, and dietary 25(OH)D3 intake. 14‑epi-25(OH)D3 is a potent metabolite for improving maturation of reproductive organs in developing gilts. It also reduces still birth in primiparous sows.
Collapse
Affiliation(s)
- Prester C.John Okafor
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Nattanit Jimongkolkul
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Wunwinee Ahiwichai
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- National Swine Research and Training Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Galiot L, Audet I, Ouattara B, Lo Verso L, Bissonnette N, Guy B, Litta G, Talbot G, Lessard M, Lapointe J, Guay F, Matte JJ. Effects of sources and routes of administration of vitamins A, D and copper on postnatal status of these micronutrients in piglets. Transl Anim Sci 2023; 8:txad138. [PMID: 38304120 PMCID: PMC10833445 DOI: 10.1093/tas/txad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Twenty-six nulliparous sows were fed conventional gestation and lactation diets supplemented (N = 13) or not (N = 13) with extra daily supplements of 25-hydroxy-cholecalciferol (25-OH-D3; 4 ĸIU), β-carotene (24 ĸIU), and copper (Cu)-proteinate (45 mg) from day 90 of gestation to 21 d of lactation (L21). In each litter, 10 piglets were divided into 5 pairs received, at 2 (L2) and 8 d (L8) of age, one of the five combinations of micronutrient sources and routes of administration (N = 260 piglets total). These neonatal treatments (N = 26 pairs or 52 piglets each) consisted of oral vitamin D3, retinol acetate and CuSO4 (T1); oral 25-OH-D3, β-carotene, and Cu proteinate (T2); exposure to ultraviolet light (UVB), oral retinol palmitate and Cu gluconate (T3); intramuscular vitamin D3 and retinyl propionate and oral Cu acetate (T4); oral saline (CTRL). Oral or intramuscular provisions corresponded to 12 mg of Cu and 70 and 12 ĸIU of vitamins A and D, respectively. Blood samples were collected from all piglets at L2, L8, and L21 for determination of serum Cu, retinol, and 25-OH-D3. Body weight was measured at birth, L2, L8, and L21. Piglets were weaned at L21, and liver and blood samples were collected 2 d later to evaluate oxidative enzymes in blood and liver and hepatic ATP concentrations and expression of genes associated with antioxidant status. Sow treatments had marginal or no impacts on Cu, retinol, 25-OH-D3, or antioxidant status in piglet blood serum and liver. However, when supplements were given to piglets, hepatic Cu was 38% greater in for all treated piglets compared to CTRL (P < 0.01), hepatic retinol was 3 times higher in T1 than in CTRL (P < 0.01) and intermediate for other treatments whereas serum 25-OH-D3 was markedly increased with T2 and T3 at L8 and L21, respectively, compared to CTRL (Piglet treatment × Age interaction, P < 0.01). Concerning antioxidant activities, glutathione peroxidase, and superoxide dismutase were increased (P < 0.03) in plasma of T2 piglets whereas the highest values (P < 0.03) for indicators of oxidative damage to proteins were observed in T4 piglets. The study revealed that oral Cu proteinate from T2, oral retinol acetate from T1, oral 25-hydroxy-cholecalciferol from T2, and UVB light exposure from T3 were the most efficient ways of increasing the postnatal status of these micronutrients in suckling piglets and this may have some impacts on their peri-weaning antioxidant status.
Collapse
Affiliation(s)
- Lucie Galiot
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Audet
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Bazoumana Ouattara
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Luca Lo Verso
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Bertrand Guy
- DNP R&D Analytics, DSM Nutritional Products Ltd., Kaiseraugst, 4303, Switzerland
| | - Gilberto Litta
- DNP R&D Analytics, DSM Nutritional Products Ltd., Kaiseraugst, 4303, Switzerland
| | - Guylaine Talbot
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Martin Lessard
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Jérôme Lapointe
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Jacques Matte
- Agriculture and Agri-Food Canada, Centre de recherche et de développement de Sherbrooke, Sherbrooke, QC, J0B 1L0, Canada
| |
Collapse
|
4
|
Grundmann SM, Herrero-Encinas J, Most E, Piecha AM, Krüger K, Eder K. Effect of supplementation of vitamin D 3 or vitamin D 2 on serum concentrations of free and total 25-hydroxyvitamin D and the expression of genes involved in immune function in peripheral blood mononuclear cells of weaned pigs. Arch Anim Nutr 2023:1-17. [PMID: 37335004 DOI: 10.1080/1745039x.2023.2219176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
The present study aimed to compare the effects of vitamin D2 and vitamin D3 supplementation on concentrations of total and free 25(OH)D in plasma and the expression of genes involved in the innate immune system in peripheral blood mononuclear cells (PBMC) in weaned pigs. Five groups of pigs (with an initial body weight of around 9 kg) received basal diets supplemented with either 500 (control group), 1000 or 2000 IU vitamin D3/kg diet or 1000 or 2000 IU vitamin D2/kg diet for a period of 4 weeks. Vitamin D supplementation did not influence feed intake, body weight gain, feed conversion ratio, apparent total tract digestibility of calcium and phosphorus, and serum concentrations of calcium, inorganic phosphate and parathyroid hormone. Supplementation of vitamin D3 led to a dose-dependent increase of the concentrations of total and free 25(OH)D in serum. In contrast, pigs supplemented with 1000 or 2000 IU vitamin D2/kg diet did not have higher concentrations of total and free 25(OH)D in serum than the control group. The ratio of free/total 25(OH)D in serum was not influenced by vitamin D3 supplementation, whereas the group supplemented with 2000 IU vitamin D2/kg diet had a higher free/total 25(OH)D ratio than the groups supplemented with 1000 or 2000 IU vitamin D3/kg diet. Genes involved in vitamin D signalling (CYP27B1, VDR), as well as pro-inflammatory and immune regulatory genes (TLR4, TNF, IL1B and TGFB1) and genes encoding porcine protegrins (NPG1, NPG4), proteins belonging to the group of antimicrobial peptides, in PBMC were not different among groups supplemented with vitamin D3 or vitamin D2 and the control group. Therefore, the study indicates that supplementation of vitamin D2 causes much lower levels of total 25(OH)D than supplementation of vitamin D3 and that supplementation of vitamins D2 or D3 at moderate levels does not have an impact on the innate immune function in healthy pigs.
Collapse
Affiliation(s)
- Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Javier Herrero-Encinas
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Aileen M Piecha
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karsten Krüger
- Institute of Sports Science, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Álvarez-Delgado C, Ruedas-Torres I, Sánchez-Carvajal JM, Priego-Capote F, Castillo-Peinado L, Galán-Relaño Á, Moreno PJ, Díaz-Bueno E, Lozano-Buenestado B, Rodríguez-Gómez IM, Carrasco L, Pallarés FJ, Gómez-Laguna J. Impact of supplementation with dihydroxylated vitamin D 3 on performance parameters and gut health in weaned Iberian piglets under indoor/outdoor conditions. Porcine Health Manag 2023; 9:15. [PMID: 37316951 DOI: 10.1186/s40813-023-00307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Vitamin D may improve innate antimicrobial response and the integrity of the intestinal mucosal barrier representing an alternative to antibiotics for improving pig health. Therefore, benefits of dietary supplementation with a product based on vitamin D3 metabolite-rich plant extracts were assessed in 252 purebred Iberian piglets for a period of 60 days. The study group received 1,25 dihydroxyvitamin D (1,25(OH)2D) (100 ppm) in the conventional feed, which already included vitamin D (2000 IU in the starter and 1000 IU in the adaptation diets, respectively). Average daily gain (ADG), feed conversion ratio (FCR) and coefficient of variation of body weight (CV-BW) were assessed along the study. Blood samples, from 18 animals of the study group and 14 animals of the control group, were collected at selected time points to determine white blood cell count, concentration of vitamin D3 and its metabolites, and IgA and IgG in serum. Histopathology, morphometry, and immunohistochemistry (IgA and FoxP3) from small intestine samples were performed on days 30 and 60 of the study from 3 animals per group and time point. RESULTS The ADG (493 vs 444 g/day) and FCR (2.3 vs 3.02) showed an improved performance in the supplemented animals. Moreover, the lower CV-BW indicated a greater homogeneity in the treated batches (13.17 vs 26.23%). Furthermore, a mild increase of IgA and in the number of regulatory T cells in the small intestine were observed in treated pigs. CONCLUSIONS These results highlight the benefits of this supplementation and encourage to develop further studies along other production stages.
Collapse
Affiliation(s)
- Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - José M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
- Institute of Virology and Immunology (IVI), Bern, Switzerland
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Nanochemistry University Institute (IUNAN), Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Laura Castillo-Peinado
- Department of Analytical Chemistry, Nanochemistry University Institute (IUNAN), Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Córdoba, Spain
| | - Ángela Galán-Relaño
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | | | | | | | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Campus of Rabanales, 14071, Cordoba, Spain
| |
Collapse
|
6
|
Sow Nutrition, Uterine Contractions, and Placental Blood Flow during the Peri-Partum Period and Short-Term Effects on Offspring: A Review. Animals (Basel) 2023; 13:ani13050910. [PMID: 36899765 PMCID: PMC10000096 DOI: 10.3390/ani13050910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The birth process is a crucial event for piglet survival. Along with increasing litter sizes, not only has the duration of parturition increased, but placental blood flow per piglet has reduced and placental area per piglet has become smaller, making these piglets more susceptible for hypoxia. Diminishing the risk of piglet hypoxia by either reducing the total duration of parturition or increasing fetal oxygenation may reduce the incidence of stillbirth and early post-partum mortality. This review discusses options to do so by nutritionally supporting the sow in the final pre-partum period, after discussing the role of uterine contractions and placental blood flow. Providing sufficient energy seems to be a logical first step, but also other nutrients needed for uterine contractions, such as calcium, or enhancing uterine blood flow by using nitrate seem promising. These nutrient requirements may depend on litter size.
Collapse
|
7
|
Lütke-Dörhoff M, Schulz J, Westendarp H, Visscher C, Wilkens MR. Effects of maternal and offspring treatment with two dietary sources of vitamin D on the mineral homeostasis, bone metabolism and locomotion of offspring fed protein- and phosphorus-reduced diets. Arch Anim Nutr 2023; 77:42-57. [PMID: 36757473 DOI: 10.1080/1745039x.2023.2172310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The present study aims to compare the effects of maternal and offspring treatment with 25-hydroxycholecalciferol (25-OHD3) and vitamin D3 on vitamin D status, mineral homoeostasis, bone metabolism and locomotion in the offspring. Either vitamin D3 (50 μg/kg diet) or 25-OHD3 (50 μg/kg diet) was supplemented to the gestation and lactation diets of 49 multiparous sows and/or to the diets of their growing offspring. Treatment of the sows did not affect plasma concentrations of 25-OHD3 of the offspring. Pigs fed 25-OHD3 had higher plasma concentrations of 25-OHD3 than pigs that received vitamin D3 during rearing and fattening. However, neither plasma concentrations of calcium, phosphate and bone markers during the observation period nor bone ash and bone mineral density at slaughter were clearly affected by the treatment. Maternal and offspring treatment with 25-OHD3 instead of vitamin D3 resulted in a slight reduction in the prevalence of leg swelling. In addition, more pigs walked with even steps and normal stride length. Further studies are needed to test whether the slight effects observed in the present experiment are reproducible and of relevance for animal health and welfare. In that case, the underlying mechanisms should be revealed in order to take advantage of potentially beneficial influences especially under certain feeding regimes.
Collapse
Affiliation(s)
- Michael Lütke-Dörhoff
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.,Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Heiner Westendarp
- Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Mirja R Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Babazadeh D, Razavi SA, Abd El-Ghany WA, F Cotter P. Vitamin D Deficiency in Farm Animals: A Review. FARM ANIMAL HEALTH AND NUTRITION 2022; 1:10-16. [DOI: 10.58803/fahn.v1i1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
One of the most effective vitamins in the musculoskeletal structure and immune system of farm animals is Vitamin D. The widespread risk of Vitamin D deficiency states is known widely resulting in autoimmune diseases, diabetes, rickets, metabolic bone diseases, and cancers. The aim of this review is to address the subject of Vitamin D deficiency in farm animals and the role of vitamin D in health and deficiency states. Although Vitamin D deficiency is generally defined as < 20 ng/mL in serum, but this level remains to be discussed. Vitamin D synthesis in the skin is the major source of Vitamin D in the body and is influenced by genetic and several environmental factors, such as length of sun exposure, season, and latitude. Sun exposure might be limited during winter in some areas, such as northern latitudes. Thus, food sources can play essential roles in supplying the demand for vitamin D. Some animal species have more sensitivity to Vitamin D deficiency due to their different metabolism, homeostasis, and adaptation to specific diets and environments. Farm animal species, such as cattle, pigs, llamas, Alpacas, small ruminants, and broiler chickens are more sensitive to Vitamin D deficiency. However, some farm animal species including horses and donkeys usually have a low risk of Vitamin D deficiency. Therefore, the management of Vitamin D deficiency and its consequences are critical in some species. The inclusion of Vitamin D in the body of farm animals depended on farming practices, sun exposure in different seasons, and the content of diets. Due to the diversity of species, regulation of many ongoing processes in animals’ bodies, the complexity of Vitamin D metabolism, and different metabolites, more studies are necessary to find the vital roles of vitamin D in the prevention and control of diseases in farm animals.
Collapse
|
9
|
Lütke-Dörhoff M, Schulz J, Westendarp H, Visscher C, Wilkens MR. Dietary supplementation of 25-hydroxycholecalciferol as an alternative to cholecalciferol in swine diets: A review. J Anim Physiol Anim Nutr (Berl) 2022; 106:1288-1305. [PMID: 36045590 DOI: 10.1111/jpn.13768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
25-hydroxycholecalciferol (25-OHD3 ) formed via hepatic hydroxylation from vitamin D, cholecalciferol, represents the precursor of the biologically active vitamin D hormone, 1,25-dihydroxyvitamin D. Due to a higher absorption rate and the omission of one hydroxylation, dietary supplementation of 25-OHD3 instead of vitamin D3 is considered to be more efficient as plasma concentrations of 25-OHD3 are increased more pronounced. The present review summarises studies investigating potential beneficial effects on mineral homeostasis, bone metabolism, health status and performance in sows, piglets and fattening pigs. Results are inconsistent. While most studies could not demonstrate any or only a slight impact of partial or total replacement of vitamin D3 by 25-OHD3 , some experiments indicated that 25-OHD3 might alter physiological processes when animals are challenged, for example, by a restricted mineral supply.
Collapse
Affiliation(s)
- Michael Lütke-Dörhoff
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.,Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Heiner Westendarp
- Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Mirja R Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Fuller JC, Rathmacher JA, Castro FF, Chaves RF, Mohr M. Supplementing sows with the leucine metabolite beta-hydroxy-beta-methylbutyrate and vitamin D3 improves piglet birth weights that may lead to increased weaning weights. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.953854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous university studies demonstrated that supplementing sows with calcium beta-hydroxy-beta-methylbutyrate (CaHMB) in late gestation and/or lactation improved piglet weights through weaning. Two studies were conducted at commercial farrowing operations to test if the results would translate to commercial operations. Sows in both trials were randomized to receive either 3 g/day CaHMB plus 500 IU/day vitamin D3 (HMB/D) or a calcium carbonate containing control top-dressed to the feed from day 104 of gestation through weaning. Sows were randomly assigned to either HMB/D (n = 41 trial 1 and n = 26 trial 2) or control (n = 46 trial 1 and n = 26 trial 2). Data were analyzed using a general linear model with main effects of group, treatment, and group by treatment interaction. Treatment with HMB/D had no effect on sow weights, lactational weight loss, and stillborn or mummified piglets. In trial 1, the control group had an increased number of live born piglets, which at 24 h tended to be greater, and no difference in liveborn or 24-h piglet numbers was seen in trial 2. In trial 1, HMB/D increased piglet live birth (P < 0.03) and 24-h weights (1,490 ± 30.1 vs. 1,390 ± 28.8 g in HMB/D and control piglets, respectively, P < 0.02). Farm practices were to equalize piglet numbers across sows by cross-fostering. After cross-fostering, the 24-h average piglet weights were not different, and further advantages to supplementation were not observed (P = 0.21). In trial 2, birth and 24-h weights of the piglets from HMB/D-supplemented sows were increased (P < 0.0001). Piglets from sows supplemented with HMB/D were 9.7% heavier at birth and 9.2% heavier at 24 h (1,549 ± 22.0 and 1,419 ± 21.2 in HMB/D and control, respectively). A difference was observed in weaning age (P < 0.0001), and weaning weights were adjusted to 21-day weights (5,426 ± 103.5 and 5,205 ± 99.5 for HMB/D and control piglets, respectively, P = 0.12). Analysis by group showed that HMB/D tended to increase weaning weights in younger sows (second and third parity), 5,432 ± 150.7 and 5,074 ± 142.7 in HMB/D and control piglets, respectively (P < 0.09). In conclusion, these results agree with previous university studies demonstrating that CaHMB supplementation increased early piglet weights with a tendency to improve weaning weights.
Collapse
|
11
|
Comparative Study of the Effects of Two Dietary Sources of Vitamin D on the Bone Metabolism, Welfare and Birth Progress of Sows Fed Protein- and Phosphorus-Reduced Diets. Animals (Basel) 2022; 12:ani12131678. [PMID: 35804577 PMCID: PMC9265063 DOI: 10.3390/ani12131678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the influence of two dietary sources of vitamin D on the vitamin D status, bone metabolism, welfare and birth progress of gestating and lactating sows, forty-nine multiparous sows were randomly assigned to one of two diets: “CON” (n = 25; 50 μg vitamin D3/kg feed) and “HYD” (n = 24; 50 μg 25-hydroxycholecalciferol/kg feed). The basal diets were protein- and phosphorus-reduced. The trial started on day 3 ante insemination of the sows and ended with weaning of the piglets on day 28 postpartum. Dietary supplementation of 25-hydroxycholecalciferol resulted in improved maternal vitamin D status (p < 0.001), fewer gait changes (p < 0.01) and longer standing time after feeding (day 5 ante partum; p < 0.05) compared to vitamin D3. However, the bone markers CrossLaps and osteocalcin were not affected. Overall, the present results suggest that sows fed 25-hydroxycholecalciferol instead of vitamin D3 showed improved locomotion and stance strength. However, this outcome is probably not related to altered bone metabolism. The underlying mechanisms must be investigated in further studies.
Collapse
|
12
|
Zhao L, Lu W, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal VD 3 supplementation during gestation improves intestinal health and microbial composition of weaning piglets. Food Funct 2022; 13:6830-6842. [PMID: 35687102 DOI: 10.1039/d1fo04303j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D3 (VD3) has been reported to improve the reproductive performance of sows. This study was conducted to investigate the long-term effect of maternal VD3 supplementation during gestation on the intestinal health of piglets. Twenty-three Landrace × Yorkshire gilts were randomly allocated into two groups to receive one of the following two diets during gestation: basal diet (CON group, 800 IU VD3 per kg diet, n = 12) and VD3 supplemented diet (VD3 group, 2000 IU VD3 per kg diet, n = 11). All sows were then fed with the same diet during lactation. Results showed that maternal VD3 supplementation during lactation tended to decrease (p = 0.08) the body weight loss of sows during lactation compared to the CON group. Besides, the relative length and weight of the small intestine (SI) and the villus height of the duodenum and ileum in weaning piglets were much higher (p < 0.05) in the VD3 group than those in the CON group, though their body weight was not changed. Meanwhile, maternal VD3 supplementation significantly upregulated the expression levels of IGF-1, IGF-2R, VDR, GLUT-2 and CAT1 in the duodenum (p < 0.05), and increased the expression levels of IGF-1, IGF-1R, IGF-2R, VDR, Occludin, ZO-1, MUC2, PEPT1 and CAT1 (p < 0.05) in the jejunum of suckling piglets compared with the CON group. Besides, the concentration of SigA in the jejunum of suckling piglets was higher (p < 0.05) in the VD3 group than that in the CON group. In addition, maternal VD3 supplementation significantly increased the contents of short chain fatty acids and the relative abundance of Lactobacillus and Faecalibacterium (p < 0.05) in the feces of weaning piglets compared to the CON group. Moreover, the relative abundance of unidentified_Lachnospiraceae in the feces of weaning piglets tended to be higher (p = 0.05), while that of unidentified_Spirochaetaceae was lower (p < 0.05) in the VD3 group than those in the CON group. Taken together, maternal VD3 supplementation during gestation could improve the intestinal function and microbiota in suckling piglets.
Collapse
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Wei Lu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Dajiang Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| |
Collapse
|
13
|
Jahn L, Schuepbach-Regula G, Nathues H, Grahofer A. Effect of 1,25-Dihydroxyvitamin D3-Glycosides on the Farrowing Process and Piglet Vitality in a Free Farrowing System. Animals (Basel) 2022; 12:ani12050611. [PMID: 35268180 PMCID: PMC8909625 DOI: 10.3390/ani12050611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Vitamin D improves the reproductive efficiency in animals. This study aimed to examine the effects of 1,25-dihydroxyvitamin D3-gylcosides (1,25-vitD) on the farrowing process in sows and the vitality of their piglets. In total, 100 sows were allocated into two groups at insemination (‘1,25-vitD’ and ‘negative control’). The 1,25-vitD group received 260−300 mg/sow/day 1,25-vitD in their feed during the gestation period. Backfat thickness, fecal score, and the farrowing process was evaluated. The piglets were categorized into live born or stillborn, and vitality was evaluated by assessing the umbilical cord and the meconium score. The number of total-born piglets in sows of ‘1,25-vitD’ was higher and the farrowing duration was shorter than in the negative control group without showing significance in the univariable analysis. In a linear multiple regression model including the variables ‘farrowing duration’, ‘total born piglets’ and ‘1,25-vitD’ differences became evident. We found that 1,25-vitD was associated with a reduced farrowing duration (p = 0.055). Moreover, significantly more mummies (p < 0.01) and short ruptured umbilical cords (p < 0.05) were observed in the 1,25-vitD group. This study showed an effect of 1,25-vitD on the farrowing process. However, more research is needed to better describe the mechanism of 1,25-vitD in detail.
Collapse
Affiliation(s)
- Laura Jahn
- Clinic for Swine, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.J.); (H.N.)
| | - Gertraud Schuepbach-Regula
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, 3012 Bern, Switzerland;
| | - Heiko Nathues
- Clinic for Swine, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.J.); (H.N.)
| | - Alexander Grahofer
- Clinic for Swine, Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (L.J.); (H.N.)
- Correspondence: ; Tel.: +41-31684-25-68
| |
Collapse
|
14
|
Zhang L, Piao X. Use of 25-hydroxyvitamin D 3 in diets for sows: A review. ACTA ACUST UNITED AC 2021; 7:728-736. [PMID: 34466677 PMCID: PMC8379139 DOI: 10.1016/j.aninu.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Dietary supplementation with 25-hydroxyvitamin D3 (25OHD3), as an alternative source of vitamin D, is becoming increasingly popular due to its commercialization and more efficient absorbability. The addition of 25OHD3 rather than its precursor vitamin D3 can circumvent the 25-hydroxylation reaction in the liver, indicating that supplementation of 25OHD3 can rapidly improve the circulating vitamin D status of animals. Emerging experiments have reported that maternal 25OHD3 supplementation could increase sow performances and birth outcomes and promote circulating vitamin D status of sows and their offspring. Increased milk fat content was observed in many experiments; however, others demonstrated that adding 25OHD3 to lactating sow diets increased the contents of milk protein and lactose. Although an inconsistency between the results of different experiments exists, these studies suggested that maternal 25OHD3 supplementation could alter milk composition via its effects on the mammary gland. Previous studies have demonstrated that adding 25OHD3 to sow diets could improve the mRNA expressions of insulin-induced gene 1 (INSIG1) and sterol regulatory element-binding protein 1 (SREBP1) in the mammary gland cells from milk and increase the mRNA expressions of acetyl-CoA carboxylase α (ACCα) and fatty acid synthase (FAS) in the mammary gland tissue. Maternal 25OHD3 supplementation promotes skeletal muscle development of piglets before and after parturition, and improves bone properties including bone density and bone breaking force in lactating sows and their piglets. Interestingly, 25OHD3 supplementation in sow diets could improve neonatal bone development via regulation of milk fatty acid composition related to bone metabolism and mineralization. In this review, we also discuss the effects of adding 25OHD3 to sow diets on the gut bacterial metabolites of suckling piglets, and propose that butyrate production may be associated with bone health. Therefore, to better understand the nutritional functions of maternal 25OHD3 supplementation, this paper reviews advances in the studies of 25OHD3 for sow nutrition and provides references for practical application.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Guo L, Miao Z, Ma H, Sergiy M. Effects of maternal vitamin D 3 status on meat quality
and fatty acids composition in offspring pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/138652/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Abstract
Vitamin D (VD) has been reported to play multiple and significant roles in improving pig health via modulating calcium and phosphorus homeostasis, skeletal muscle development and the immune system. Apart from food, photochemical action of 7-dehydrocholesterol in the skin is the main source of this molecule for pigs. The VD from dietary intake or photosynthesized via skin can be absorbed into the liver for hydroxylation, and further hydroxylated into the hormone form of VD (1,25-dihydroxyvitamin D3 or 1,25(OH)2D3) in the kidney. As a sterol hormone, 1,25(OH)2D3 is able to bind with the VD receptor (VDR), and this ligand-receptor complex (VDR/retinoic X receptor) translocates from the cytoplasm into the nucleus to regulate gene expression, thus modulating metabolism. In this review, we summarized the recent studies regarding the non-skeletal health benefits of VD for pigs, and focused on the recent advances in the cellular and molecular mechanisms of VD that affects the immune system and reproductive health. This review provides a reference for future research and application of VD in pigs.
Collapse
|
17
|
|
18
|
Zhao L, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal cholecalciferol supplementation during gestation improves antioxidant capacities in gilts and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1961616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Dajing Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Effects of maternal vitamin D3 status on quality traits of longissimus dorsi muscle in offspring pigs during postmortem storage. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Hurst EA, Homer NZ, Mellanby RJ. Vitamin D Metabolism and Profiling in Veterinary Species. Metabolites 2020; 10:E371. [PMID: 32942601 PMCID: PMC7569877 DOI: 10.3390/metabo10090371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for vitamin D analysis in veterinary species is increasing with the growing knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating 25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of analysing other metabolites in the complex vitamin D pathway are being discovered in humans. Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS) facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites. However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of vitamin D in health and disease between humans and companion animals, there is a clear need to establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in human clinical practice. In this review, we highlight the differences in vitamin D metabolism between veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally, we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on LC-MS/MS methods.
Collapse
Affiliation(s)
- Emma A. Hurst
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Natalie Z. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Richard J. Mellanby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
| |
Collapse
|
21
|
Yang J, Tian G, Chen D, Zheng P, Yu J, Mao X, He J, Luo Y, Luo J, Huang Z, Yu B. Effects of dietary 25-hydroxyvitamin D 3 supplementation on growth performance, immune function and antioxidative capacity in weaned piglets. Arch Anim Nutr 2019; 73:44-51. [PMID: 31274343 DOI: 10.1080/1745039x.2018.1560113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study evaluated the effects of different doses of 25-hydroxyvitamin D3 (25(OH)D3) on growth performance, immune function and antioxidative capacity in piglets. In a 21-d trial, 35 weaned pigs were divided into five groups and diets were supplemented with 5.5 (control), 43.0, 80.5, 118.0 and 155.5 μg 25(OH)D3/kg, respectively. No treatment effects were observed for average daily gain, average daily feed intake and feed to gain ratio. Increasing dietary 25(OH)D3 levels increased serum 25(OH)D3 concentrations linearly (p < 0.01), decreased the frequency of CD3+CD4+ and CD3+CD8+ T cells (p < 0.01), and the serum level of complement component 3 (p < 0.05). Supplementation of 80.5 and 118.0 μg 25(OH)D3/kg enhanced the activity of serum glutathione peroxidase (p < 0.05) and addition of 43.0 μg 25(OH)D3/kg increased the malondialdehyde concentration (p < 0.05). Overall, feeding high-dose 25(OH)D3 to weaned pigs partly improved immune functions and the antioxidative capacity.
Collapse
Affiliation(s)
- Jiwen Yang
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Gang Tian
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Daiwen Chen
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Ping Zheng
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Jie Yu
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Xiangbing Mao
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Jun He
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Yuheng Luo
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Junqiu Luo
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Zhiqing Huang
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| | - Bing Yu
- a Institute of Animal Nutrition, Sichuan Agricultural University , Yaan , Sichuan , People's Republic of China
| |
Collapse
|
22
|
Thayer MT, Nelssen JL, Langemeier AJ, Morton JM, Gonzalez JM, Kruger SR, Ou Z, Makowski AJ, Bergstrom JR. The effects of maternal dietary supplementation of cholecalciferol (vitamin D 3) and 25(OH)D 3 on sow and progeny performance. Transl Anim Sci 2019; 3:692-708. [PMID: 32704837 PMCID: PMC7200878 DOI: 10.1093/tas/txz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
A total of 69 sows (DNA Line 200 × 400) and their progeny were used to determine if feeding a combination of vitamin D3 and 25(OH)D3 influences neonatal and sow vitamin D status, muscle fiber morphometrics at birth and weaning, and subsequent growth performance. Within 3 d of breeding, sows were allotted to one of three dietary treatments fortified with 1,500 IU/kg vitamin D3 (CON), 500 IU/kg vitamin D3 + 25 μg/kg 25(OH)D3 (DL), or 1,500 IU/kg vitamin D3 + 50 μg/kg 25(OH)D3 (DH). When pigs were sacrificed at birth, there were no treatment effects for all fiber morphometric measures (P > 0.170), except primary fiber number and the ratio of secondary to primary muscle fibers (P < 0.016). Pigs from CON fed sows had fewer primary fibers than pigs from sows fed the DH treatment (P = 0.014), with pigs from sows fed DL treatment not differing from either (P > 0.104). Pigs from CON and DL fed sows had a greater secondary to primary muscle fiber ratio compared to pigs from DH sows (P < 0.022) but did not differ from each other (P = 0.994). There were treatment × time interactions for all sow and pig serum metabolites (P < 0.001). Therefore, treatment means were compared within the time period. At all time periods, sow serum 25(OH)D3 concentrations differed for all treatments with the magnitude of difference largest at weaning (P < 0.011), where serum 25(OH)D3 concentration was always the greatest when sows were fed the DH diet. At birth, piglets from DH fed sows had greater serum 25(OH)D3 concentrations than piglets from sows fed the DL treatment (P = 0.003), with piglets from sows fed CON treatment not differing from either (P > 0.061). At weaning, serum concentrations of 25(OH)D3 in piglets from all sow treatments were different (P < 0.001), with the greatest concentration in piglets from DH sows, followed by CON, and followed by DL. There were no treatment × time interactions for any of the metabolites measured in milk and no treatment or time main effects for 24,25(OH)2D3 concentration (P > 0.068). Colostrum collected within 12 h of parturition contained less (P = 0.001) 25(OH)D3 than milk collected on day 21 of lactation. Regardless of time, concentrations of 25(OH)D3 in milk were different (P < 0.030), with the largest 25(OH)D3 concentration from DH fed sows, followed by DL, and then CON. In conclusion, combining vitamin D3 and 25(OH)D3 in the maternal diet improves the vitamin D status of the dam and progeny and it increases primary muscle fiber number at birth.
Collapse
Affiliation(s)
- Morgan T Thayer
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jim L Nelssen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Austin J Langemeier
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jodi M Morton
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - John M Gonzalez
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Stephanie R Kruger
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Zhining Ou
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | | | - Jon R Bergstrom
- DSM Nutritional Products, North America, Animal Nutrition and Health, Parsippany, NJ
| |
Collapse
|