1
|
Wolfe AR, Narciso MHPM, Uwiera RRE, Laarman AH. Effects of ruminal short-chain fatty acid concentration and pH on histology, hematology, and inflammation in cannulated Holstein dairy calves. J Dairy Sci 2025; 108:2070-2082. [PMID: 39662804 DOI: 10.3168/jds.2024-25589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Optimizing rumen development is key to preparing calves for weaning; however, it is unclear what effect rumen development has on calf health via ruminal infusion. This study investigated the effects of ruminal short-chain fatty acid (SCFA) concentrations and pH on hematology, gut morphology, and inflammation of liver and rumen tissues in dairy calves. Holstein calves (n = 32) had the rumen cannulated within the first week of life and at wk 2 were blocked by BW and randomly assigned in a 2 × 2 factorial arrangement of treatments. The treatments included 2 different SCFA concentrations (10 vs. 285 mM) and pH levels (5.2 vs. 6.2), yielding 4 treatment groups: low SCFA, low pH (LS-LP); low SCFA, high pH (LS-HP); high SCFA, low pH (HS-LP); and high SCFA, high pH (HS-HP). On wk 3, 5, and 7, calves underwent a 4-h reticulorumen wash procedure with a physiological buffer containing the various treatments. Blood samples were collected weekly after feeding. Rumen biopsies were taken after each infusion, and liver and rumen samples were harvested at necropsy at wk 7. Data were analyzed with repeated measures, using week, SCFA, and pH as fixed effects. Low rumen pH increased respiration rate, but no other changes in clinical parameters were observed. No differences were detected in red blood cells or platelet numbers. Total white blood cell numbers decreased in the LS-LP group from wk 5 to 7 but increased in the HS-LP group along with hemoglobin and the hematocrit during the same period. Cortisol and BHB levels were unchanged by treatment or time, whereas haptoglobin decreased over time regardless of treatment. Calf liver morphology was unaffected by treatment; ruminal tissue changes associated with epithelial cell sloughing tended to increase with low SCFA, and mucosal eosinophil infiltration increased with high SCFA. Gene expression was unchanged by treatment in both rumen (barrier function and inflammation) and liver (inflammation). Overall, the data demonstrate that stress and inflammatory responses can be affected by changing rumen environments. Notably, these changes are transient as values returned to pretreatment baseline levels after a period as short as a week.
Collapse
Affiliation(s)
- A R Wolfe
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - M H P M Narciso
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - R R E Uwiera
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - A H Laarman
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
2
|
Wang YC, Wang X, Li JZ, Huang PF, Li YL, Ding XQ, Huang J, Zhu MZ, Yin J, Dai CP, Wang QY, Yang HS. The impact of lactating Hu sheep's dietary protein levels on lactation performance, progeny growth and rumen development. Anim Biotechnol 2023; 34:1919-1930. [PMID: 35416756 DOI: 10.1080/10495398.2022.2058006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to investigate whether lactating Hu sheep's dietary protein levels could generate dynamic effects on the performance of their offspring. Twelve ewes with similar parity were fed iso-energy diets which contained different protein levels (P1: 9.82%, P2: 10.99%) (n = 6), and the corresponding offspring were divided into SP1 and SP2 (n = 12). At 60 days, half of the lambs were harvested for further study: the carcass weight (p = 0.043) and dressing percentage (p = 0.004) in the SP2 group were significantly higher than SP1. The acetic acid (p = 0.007), propionic acid (p = 0.003), butyric acid (p < 0.001) and volatile fatty acids (p < 0.001) in rumen fluid of SP2 were significantly lower than SP1. The expression of MCT2 (p = 0.024), ACSS1 (p = 0.039) and NHE3 (p = 0.006) in the rumen of SP2 was lower than SP1, while the HMGCS1 (p = 0.026), HMGCR (p = 0.024) and Na+/K+-ATPase (p = 0.020) was higher than SP1. The three dominant phyla in the rumen are Bacteroidetes, Proteobacteria and Firmicutes. The membrane transport, amino acid metabolism and carbohydrate metabolism of SP1 were relatively enhanced, the replication and repair function of SP2 was relatively enhanced. To sum up, the increase of dietary protein level significantly increased the carcass weight and dressing percentage of offspring and had significant effects on rumen volatile fatty acids, acetic acid activation and cholesterol synthesis related genes. HIGHLIGHTSIn the early feeding period, the difference in ADG of lambs was mainly caused by the sucking effect.The increase in dietary protein level of ewes significantly increased the carcass weight and dressing percentage of offspring.The dietary protein level of ewes significantly affected the volatile fatty acids (VFAs) and genes related to acetic acid activation and cholesterol synthesis in the rumen of their offspring.The membrane transport, amino acid metabolism and carbohydrate metabolism of the offspring of ewes fed with a low protein diet were relatively enhanced.The replication and repair function of the offspring of ewes fed with a high protein diet was relatively strengthened.
Collapse
Affiliation(s)
- Yan-Can Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jian-Zhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng-Fei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ya-Li Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xue-Qin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun-Peng Dai
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Qi-Ye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Huan-Sheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Hiltz RL, McCurdy DE, Moreland S, Klanderman K, Laarman AH. Effects of weaning on regulators of volatile fatty acid absorption and intracellular pH in Holstein calves. JDS COMMUNICATIONS 2021; 2:324-328. [PMID: 36337096 PMCID: PMC9623740 DOI: 10.3168/jdsc.2021-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/10/2021] [Indexed: 06/16/2023]
Abstract
This study examined the effects of changes in rumen fermentation during the weaning transition on abundance of transporters involved in volatile fatty acid (VFA) absorption or intracellular pH homeostasis. Holstein bull calves (n = 27) were assigned to 1 of 3 treatment groups in a randomized, complete block design: 2 preweaning groups [animals fed milk only (PRE-M) or milk, calf starter, and hay (PRE-S)] and 1 postweaning group (animals fed milk, starter, and hay with a 2-wk weaning transition; POST-S). Calves were euthanized at 42 d of age (PRE-M and PRE-S) or at 63 d of age (POST-S), and rumen epithelium and rumen fluid samples were collected. Rumen fluid was analyzed for VFA concentration, and rumen epithelium was analyzed for the abundance of VFA transporter monocarboxylate transporter isoform 1 (MCT1) and the intracellular pH regulators sodium bicarbonate co-transporter 1 (NBC1) and sodium-proton exchanger 3 (NHE3) protein. Preweaning, total VFA concentrations tended to increase and NBC1 abundance increased with starter intake. Between pre- and postweaning, total VFA concentrations increased but NHE3 protein abundance decreased. In calves, rumen epithelial development during the weaning transition appears to show more pronounced changes in intracellular pH homeostasis than in VFA transport capacity.
Collapse
Affiliation(s)
- Rebecca L. Hiltz
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | - Dana E. McCurdy
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | | | | | - Anne H. Laarman
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| |
Collapse
|
4
|
Moreira GM, Aguiar GL, Meneses JAM, Luz MHD, Monteiro MGBB, Lara L, Ladeira MM, Souza JCD, Duarte MDS, Gionbelli MP. The course of pregnancy changes general metabolism and affects ruminal epithelium activity pattern in Zebu beef heifers. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Zhao C, Bobe G, Wang Y, Zhang X, Zhao Z, Zhang S, Sun G, Yuan X, Li X, Liu G. Potential Role of SLC5A8 Expression in the Etiology of Subacute Ruminal Acidosis. Front Vet Sci 2020; 7:394. [PMID: 32850999 PMCID: PMC7406710 DOI: 10.3389/fvets.2020.00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022] Open
Abstract
Rumen fluid of cows with subacute ruminal acidosis (SARA) has high concentrations of short chain fatty acids (SCFA). However, the mechanism of SCFA accumulation is unknown. The solute-linked carrier 5a8 (SLC5A8) plays a key role in the transportation and absorption of SCFA in the intestinal epithelium. The objective of the current study was to investigate (1) SLC5A8 gene and protein expression in various parts of the bovine gastrointestinal tract, (2) the effect of SCFA on SLC5A8 expression in rumen epithelial cells, and (3) SLC5A8 gene and protein expression in SARA and healthy cows. A total of 10 dairy cows, 84 ± 26 days in milk and in their second to fourth parity were allocated to control (n = 5) and SARA groups (n = 5). Three cows from the control group and three calves (1-day-old, female, 45–50 kg, healthy, fasting) were chosen to collect a total of 10 sections of digestive tract, from rumen to rectum, and then bovine ruminal epithelial cells were isolated from the three calves. Gene and protein expression of SLC5A8 was detected in all tested regions of the gastrointestinal tract in calves and adult cows by Western blot and quantitative real-time PCR and were both highest in the rumen. Gene and protein expression of SLC5A8 was more than 50% lower in the rumen epithelium of SARA vs. control cows and was partly restored after therapy of SARA cows. Compared with SCFA concentrations typical for control cows (60 mM acetate, 30 mM propionate, and 20 mM butyrate), gene and protein expression of SLC5A8 in rumen epithelium was lower at elevated SCFA concentrations typical for SARA cows (90 mM acetate, 40 mM propionate, and 30 mM butyrate), specifically for elevated concentrations of propionate or butyrate in contrast to elevated concentrations of acetate increased gene and protein expression of SLC5A8 in rumen epithelium. In conclusion, the elevated concentrations of propionate and butyrate inhibit ruminal absorption of SCFA via downregulation of SLC5A8 in SARA cows; the expression of SLC5A8 plays an important role in the etiology of SARA.
Collapse
Affiliation(s)
- Chenxu Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gerd Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Yazhou Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinyue Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhibo Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiqi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guoquan Sun
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - Xue Yuan
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
McCurdy DE, Wilkins KR, Hiltz RL, Moreland S, Klanderman K, Laarman AH. Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves. J Dairy Sci 2019; 102:8874-8882. [PMID: 31351719 DOI: 10.3168/jds.2019-16652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.
Collapse
Affiliation(s)
- D E McCurdy
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | - K R Wilkins
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | - R L Hiltz
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | | | | | - A H Laarman
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330; Department of Animal, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G2P5.
| |
Collapse
|
7
|
Petri RM, Wetzels SU, Qumar M, Khiaosa-Ard R, Zebeli Q. Adaptive responses in short-chain fatty acid absorption, gene expression, and bacterial community of the bovine rumen epithelium recovered from a continuous or transient high-grain feeding. J Dairy Sci 2019; 102:5361-5378. [PMID: 31005320 DOI: 10.3168/jds.2018-15691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
The feeding of high-grain diets to dairy cows commonly results in lowered pH and ruminal dysbiosis, characterized by changes in absorption dynamics of short-chain fatty acids (SCFA) across the reticuloruminal wall, epithelial function, and the epithelial bacteria community structure. Therefore, the present study evaluated the effect of high-grain feeding persistence on the absorption kinetics of reticuloruminal SCFA, gene expression in the rumen epithelium, and the associated shifts in the epithelial bacteria in cows recovering from either a long-term continuous high-grain feeding model or a long-term transient high-grain feeding model. In a crossover study design, 8 nonlactating Holstein cows were fed 60% concentrate either continuously for 4 wk (continuous) or with a 1-wk break in the second week of the high-grain feeding (transient). After the high-grain feeding, all animals were fed a diet of 100% forage (recovery) for an additional 8 wk. Rumen papilla biopsies and SCFA absorption measurements were taken at the start of the trial (baseline), after the 4-wk high-grain feeding (49 d), after 2-wk recovery forage feeding (63 d), and after 8-wk recovery forage (105 d). Absorption of SCFA was determined in vivo using the washed and isolated reticulorumen technique. Rumen papillae biopsies were used for adherent bacterial DNA and host RNA extraction. The epithelial bacteria were determined using Illumina MiSeq (Microsynth AG, Balgach, Switzerland) sequencing of the 16S rRNA gene. No significant effects of the high-grain feeding model were seen for bacterial diversity. However, bacterial diversity increased with time spent in the recovery forage feeding period regardless of feeding model. The relative abundance of Acidobacteria phyla and Acetivibrio spp. increased when animals were fed a transient high-grain feeding model. A trend toward increased CLDN4 expression was observed in the continuous model. Furthermore, there were interactions between feeding model and sampling day for gene targets CD14, DRA, NHE2, NHE3, and MCT2. When comparing length of recovery, in the continuous model increased relative absorption of SCFA was sustained at 63 d but dropped to baseline measurements at 105 d. A similar pattern was found with the transient model but it did not reach significance. The only gene target that was found to significantly correlate to relative absorption of SCFA was DRA (correlation coefficient ≤ -0.41). Whereas, genera Alkalibaculum, Anaerorhabdus, Coprococcus, and Dethiobacter all showed positive correlations to gene targets for pH regulation (NHE2 and NHE3) and SCFA uptake (MCT1) but negative correlations to SCFA absorption. We conclude that while the rumen absorption and epithelial bacteria were able to recover to baseline levels after 8 wk of forage feeding, the time needed for re-establishment of homeostasis in host gene expression is longer, especially when high-grain feeding is interrupted.
Collapse
Affiliation(s)
- R M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Veterinaerplatz 1, 1210 Vienna, Austria; Animal Gut Health Research Cluster, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - S U Wetzels
- Institute of Animal Nutrition and Functional Plant Compounds, Veterinaerplatz 1, 1210 Vienna, Austria; Animal Gut Health Research Cluster, Veterinaerplatz 1, 1210 Vienna, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M Qumar
- Institute of Animal Nutrition and Functional Plant Compounds, Veterinaerplatz 1, 1210 Vienna, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Veterinaerplatz 1, 1210 Vienna, Austria; Animal Gut Health Research Cluster, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Veterinaerplatz 1, 1210 Vienna, Austria; Animal Gut Health Research Cluster, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
8
|
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 2019; 102:1866-1882. [DOI: 10.3168/jds.2018-15243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
9
|
Abstract
Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.
Collapse
|
10
|
Pederzolli RLA, Van Kessel AG, Campbell J, Hendrick S, Wood KM, Penner GB. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers. J Anim Sci 2018; 96:108-125. [PMID: 29385473 PMCID: PMC6140865 DOI: 10.1093/jas/skx049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to determine effect of ruminal acidosis (RA) and low feed intake [LFI] on the regional barrier function of the gastrointestinal tract. Twenty-one Holstein steers were fed for ad libitum intake for 5 d (control [CON]), fed at 25% of ad libitum intake for 5 d (LFI), or provided 2 d of ad libitum intake followed by 1-d of feed restriction (25% of ad libitum intake), 1 d where 30% of ad libitum dry matter intake (DMI) was provided as pelleted barley followed by the full allocation (RA) and fed for ad libitum intake the following day. Tissues and digesta from the rumen, omasum, duodenum, jejunum, ileum, cecum, proximal, and distal colon were collected. Permeability was assessed using the mucosal-to-serosal flux of inulin (JMS-inulin) and mannitol (JMS-mannitol). Digesta pH was 0.81, 0.63, and 0.42 pH units less for RA than CON in the rumen, cecum, and proximal colon; while, LFI had pH that was 0.47 and 0.36 pH units greater in the rumen and proximal colon compared to CON. Total ruminal short-chain fatty acid (SCFA) concentration were less for LFI (92 mM; P = 0.010) and RA (87 mM; P = 0.007) than CON (172 mM) steers. In the proximal colon, the proportion of butyrate (P = 0.025 and P = 0.022) and isobutyrate (P = 0.019 and P = 0.019) were greater, and acetate (P = 0.028 and P = 0.028) was less for LFI and RA, respectively, when compared to CON steers. Ruminal papillae length, width, perimeter, and surface area were 1.21 mm, 0.78 mm, 3.84 mm, and 11.15 mm2 less for LFI than CON; while, RA decreased papillae width by 0.52 mm relative to CON. The JMS-mannitol was less for LFI steers than CON in the proximal colon (P = 0.041) and in the distal colon (P = 0.015). Increased gene expression for claudin 1, occludin, tight-cell junction protein 1 and 2, and toll-like receptor 4 were detected for LFI relative to CON in the rumen, jejunum, and proximal colon. For RA steers, expression of toll-like receptor 4 in the rumen, and occludin and tight-cell junction protein 1 were greater in the jejunum than CON. An acute RA challenge decreased pH in the rumen and large intestine but did not increase tissue permeability due to increases in the expression of genes related to barrier function within 1 d of the challenge. Steers exposed to LFI for 5 d had reduced ruminal SCFA concentrations, smaller ruminal papillae dimensions, and increased tissue permeability in the proximal and distal colon despite increases for genes related to barrier function and immune function.
Collapse
Affiliation(s)
- Rae-Leigh A Pederzolli
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katie M Wood
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Stumpff F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch 2018; 470:571-598. [PMID: 29305650 DOI: 10.1007/s00424-017-2105-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Fermentative organs such as the caecum, the colon, and the rumen have evolved to produce and absorb energy rich short chain fatty acids (SCFA) from otherwise indigestible substrates. Classical models postulate diffusional uptake of the undissociated acid (HSCFA). However, in net terms, a major part of SCFA absorption occurs with uptake of Na+ and resembles classical, coupled electroneutral NaCl transport. Considerable evidence suggests that the anion transporting proteins expressed by epithelia of fermentative organs are poorly selective and that their main function may be to transport acetate-, propionate-, butyrate- and HCO3- as the physiologically relevant anions. Apical uptake of SCFA thus involves non-saturable diffusion of the undissociated acid (HSCFA), SCFA-/HCO3- exchange via DRA (SLC26A3) and/or SCFA--H+ symport (MCT1, SLC16A1). All mechanisms lead to cytosolic acidification with stimulation of Na+/H+ exchange via NHE (SLC9A2/3). Basolaterally, Na+ leaves via the Na+/K+-ATPase with recirculation of K+. Na+ efflux drives the transport of SCFA- anions through volume-regulated anion channels, such as maxi-anion channels (possibly SLCO2A1), LRRC8, anoctamins, or uncoupled exchangers. When luminal buffering is inadequate, basolateral efflux will increasingly involve SCFA-/ HCO3- exchange (AE1/2, SCL4A1/2), or efflux of SCFA- with H+ (MCT1/4, SLC16A1/3). Furthermore, protons can be basolaterally removed by NHE1 (SCL9A1) or NBCe1 (SLC4A4). The purpose of these transport proteins is to maximize the amount of SCFA transported from the tightly buffered ingesta while minimizing acid transport through the epithelium. As known from the rumen for many decades, a disturbance of these processes is likely to cause severe colonic disease.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|