1
|
da Silva Soares TL, de Paula Soares Valente J, Santos FLC, Kelles KR, da Silva Soares T, Mercadante MEZ. A systematic review and meta-analysis: relationship between residual feed intake and traits related to methane emissions in cattle. Trop Anim Health Prod 2025; 57:171. [PMID: 40227437 DOI: 10.1007/s11250-025-04423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the relationship between RFI (residual feed intake) and traits related to methane emissions in cattle. Searches were performed in PubMed and Web of Science using keywords in English. The selected studies compared traits related to methane emissions between animals with divergent RFI and/or the correlation between traits related to methane emissions and RFI. Meta-analysis was performed for traits showing three or more uncorrelated results. After application of the exclusion and inclusion criteria, 27 studies were included in the present review. Meta-analysis of the comparison of means was possible for seven traits and meta-analysis of phenotypic correlations for three traits. CH4 emission (g/day) was significantly lower in negative RFI animals and was positively correlated with RFI, indicating that animals with lower dry matter intake without affecting production traits (low RFI) emit less CH4 into the environment. However, the results for the other traits evaluated were inconclusive due to insufficient data for meta-analysis. Meta-analyses clearly demonstrated that cattle with lower RFI emit less enteric methane. The primary reason why more efficient animals emit less enteric methane appears to be the reduced availability of substrate for fermentation. Therefore, genetic selection of cattle for feed efficiency, beyond reducing feed costs within the production system, plays a critical role in promoting environmentally sustainable production.
Collapse
Affiliation(s)
- Tainara Luana da Silva Soares
- School of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Sao Paulo, 14884 - 900, Brazil.
| | - Júlia de Paula Soares Valente
- School of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Sao Paulo, 14884 - 900, Brazil
| | - Fernanda Larissa Cesar Santos
- School of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Sao Paulo, 14884 - 900, Brazil
| | - Kelvin Rodrigues Kelles
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Norsvin, Hamar, Norway
| | - Taiana da Silva Soares
- Department of Agricultural Science, Federal University of ViçOsa, Viçosa, Minas Gerais, 36570 - 000, Brazil
| | - Maria Eugênia Zerlotti Mercadante
- School of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Sao Paulo, 14884 - 900, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Sao Paulo, 14160 - 970, Brazil
| |
Collapse
|
2
|
Callegaro S, Niero G, Penasa M, Finocchiaro R, Invernizzi G, Cassandro M. Greenhouse gas emissions, dry matter intake and feed efficiency of young Holstein bulls. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Simone Callegaro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Italy
| | - Giovanni Niero
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Italy
| | - Mauro Penasa
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Italy
| | - Raffaella Finocchiaro
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana, Cremona, Italy
| | - Guido Invernizzi
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università di Milano, Milano, Italy
| | - Martino Cassandro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Italy
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana, Cremona, Italy
| |
Collapse
|
3
|
Smith PE, Waters SM, Kenny DA, Kirwan SF, Conroy S, Kelly AK. Effect of divergence in residual methane emissions on feed intake and efficiency, growth and carcass performance, and indices of rumen fermentation and methane emissions in finishing beef cattle. J Anim Sci 2021; 99:6379086. [PMID: 34598276 PMCID: PMC8598385 DOI: 10.1093/jas/skab275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Residual expressions of enteric emissions favor a more equitable identification of an animal's methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.
Collapse
Affiliation(s)
- Paul E Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland.,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland
| | - David A Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland
| | - Stuart F Kirwan
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, G€N€ IR€LAND Progeny Test Centre, Tully, Kildare Town, County Kildare, Ireland
| | - Alan K Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Sakamoto LS, Souza LL, Gianvecchio SB, de Oliveira MHV, Silva JAIIDV, Canesin RC, Branco RH, Baccan M, Berndt A, de Albuquerque LG, Mercadante MEZ. Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS One 2021; 16:e0257964. [PMID: 34648502 PMCID: PMC8516271 DOI: 10.1371/journal.pone.0257964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Enteric methane (CH4) emissions are a natural process in ruminants and can result in up to 12% of energy losses. Hence, decreasing enteric CH4 production constitutes an important step towards improving the feed efficiency of Brazilian cattle herds. The aim of this study was to evaluate the relationship between performance, residual feed intake (RFI), and enteric CH4 emission in growing Nellore cattle (Bos indicus). Performance, RFI and CH4 emission data were obtained from 489 animals participating in selection programs (mid-test age and body weight: 414±159 days and 356±135 kg, respectively) that were evaluated in 12 performance tests carried out in individual pens (n = 95) or collective paddocks (n = 394) equipped with electronic feed bunks. The sulfur hexafluoride tracer gas technique was used to measure daily CH4 emissions. The following variables were estimated: CH4 emission rate (g/day), residual methane emission and emission expressed per mid-test body weight, metabolic body weight, dry matter intake (CH4/DMI), average daily gain, and ingested gross energy (CH4/GE). Animals classified as negative RFI (RFI<0), i.e., more efficient animals, consumed less dry matter (P <0.0001) and emitted less g CH4/day (P = 0.0022) than positive RFI animals (RFI>0). Nonetheless, more efficient animals emitted more CH4/DMI and CH4/GE (P < 0.0001), suggesting that the difference in daily intake between animals is a determinant factor for the difference in daily enteric CH4 emissions. In addition, animals classified as negative RFI emitted less CH4 per kg mid-test weight and metabolic weight (P = 0.0096 and P = 0.0033, respectively), i.e., most efficient animals could emit less CH4 per kg of carcass. In conclusion, more efficient animals produced less methane when expressed as g/day and per kg mid-test weight than less efficient animals, suggesting lower emissions per kg of carcass produced. However, it is not possible to state that feed efficiency has a direct effect on enteric CH4 emissions since emissions per kg of consumed dry matter and the percentage of gross energy lost as CH4 are higher for more efficient animals.
Collapse
Affiliation(s)
| | - Luana Lelis Souza
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | | | | | | | | - Renata Helena Branco
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP, Brazil
| | | | | | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | | |
Collapse
|
5
|
Response to Climate Change: Evaluation of Methane Emissions in Northern Australian Beef Cattle on a High Quality Diet Supplemented with Desmanthus Using Open-Circuit Respiration Chambers and GreenFeed Emission Monitoring Systems. BIOLOGY 2021; 10:biology10090943. [PMID: 34571820 PMCID: PMC8465627 DOI: 10.3390/biology10090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The beef industry in Northern Australia is characterized by an extensive grazing system in dry tropical rangelands defined by climate change indices of very low rainfall, a prolonged dry season and feeds of low nutritive value. In response, beef cattle need to be more efficient in converting the available drought-tolerant feeds to muscle, in an attempt to minimize greenhouse gas emissions. This study addressed the problem of reducing methane emissions from tropical beef cattle with the goal of decreasing the impact of climate change and greenhouse gas emissions in Northern Australia. The primary objective was to compare the effect of supplementing tropical beef cattle with both good quality lucerne and poor quality hay with increasing levels of different Desmanthus cultivars on in vivo methane emission. The results showed that in tropical beef cattle on high-quality diets, irrespective of cultivar and emission evaluation method, Desmanthus does not reduce methane emissions. Abstract The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments—the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0%, 15%, 30% and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions.
Collapse
|
6
|
McGinn SM, Coulombe JF, Beauchemin KA. Technical note: validation of the GreenFeed system for measuring enteric gas emissions from cattle. J Anim Sci 2021; 99:6149109. [PMID: 33624792 DOI: 10.1093/jas/skab046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
There are knowledge gaps in animal agriculture on how to best mitigate greenhouse gas emissions while maintaining animal productivity. One reason for these gaps is the uncertainties associated with methods used to derive emission rates. This study compared emission rates of methane (CH4) and carbon dioxide (CO2) measured by a commercially available GreenFeed (GF) system with those from (1) a mass flow controller (MFC) that released known quantities of gas over time (i.e., emission rate) and (2) a respiration chamber (RC). The GF and MFC differed by only 1% for CH4 (P = 0.726) and 3% for CO2 (P = 0.013). The difference between the GF and RC was 1% (P = 0.019) for CH4 and 2% for CO2 (P = 0.007). Further investigation revealed that the difference in emission rate for CO2 was due to a small systematic offset error indicating a correction factor could be applied. We conclude that the GF system accurately estimated enteric CH4 and CO2 emission rates of cattle over a short measurement period, but additional factors would need to be considered in determining the 24-hr emission rate of an animal.
Collapse
Affiliation(s)
- Sean M McGinn
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Jean-Franҫois Coulombe
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
7
|
da Silva DC, Ribeiro Pereira LG, Mello Lima JA, Machado FS, Ferreira AL, Tomich TR, Coelho SG, Maurício RM, Campos MM. Grouping crossbred Holstein x Gyr heifers according to different feed efficiency indexes and its effects on energy and nitrogen partitioning, blood metabolic variables and gas exchanges. PLoS One 2020; 15:e0238419. [PMID: 32915803 PMCID: PMC7485853 DOI: 10.1371/journal.pone.0238419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were: i) to classify animals into groups of high and low feed efficiency (FE) using three FE indexes (Residual feed intake (RFI), Residual weight gain (RG) and Feed conversion efficiency (FCE)), and ii) to evaluate whether crossbreed Holstein x Gyr heifers divergent for FE indexes exhibit differences in nutrient intake and digestibility, energy partitioning, heat production, methane emissions, nitrogen partitioning and blood parameters. Thirty-five heifers were housed in a tie-stall, received ad libitum TMR (75:25, corn silage: concentrate) and were ranked and classified into high (HE) or low efficiency (LE) for RFI, RG and FCE. The number of animals for each HE group were 13 (< 0.5 standard deviation (SD) for RFI, 11 for RG and 11 for FCE (> 0.5 SD) and for the LE were 10 (> 0.5 SD) for RFI, 11 for RG and 12 for FCE (< 0.5 SD). Gas exchanges (O2 consumption, CO2 and CH4 production) in open-circuit respiratory chambers and whole tract digestibility trial was performed. A completely randomized experimental design was used and the data were analyzed by ANOVA and correlation study. High efficiency animals for RFI produced less CO2, consumed less O2 and had lower heat production (HP). Methane production was positively correlated with RFI. High efficiency RG had higher O2 consumption and CO2 production in relation to LE-RG. High efficiency FCE had greater NFC digestibility, higher positive energy balance (EB) and excreted (11.4 g/d) less nitrogen in urine. High efficiency RG and FCE groups emitted less CH4 per kg of weight gain than LE animals. Animals HE for RFI and FCE had lower β-hydroxybutyrate and higher glucose concentrations, respectively. The differences in intake, digestibility, energy and nitrogen partition, CH4 emission, blood metabolic variables and heat production between the HE and LE groups varied according to the efficiency indexes adopted. The HP (kcal/d/BW0.75) was lower for HE animals for RFI and FCE indexes.
Collapse
Affiliation(s)
| | | | | | - Fernanda Samarini Machado
- Brazilian Agricultural Research Corporation–Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Alexandre Lima Ferreira
- Brazilian Agricultural Research Corporation–Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Thierry Ribeiro Tomich
- Brazilian Agricultural Research Corporation–Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Sandra Gesteira Coelho
- Department of Animal Science, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Minas Gerais, Brazil
| | | | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation–Embrapa Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
8
|
Min BR, Solaiman S, Waldrip HM, Parker D, Todd RW, Brauer D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:231-246. [PMID: 33005757 PMCID: PMC7503797 DOI: 10.1016/j.aninu.2020.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
Methane gas from livestock production activities is a significant source of greenhouse gas (GHG) emissions which have been shown to influence climate change. New technologies offer a potential to manipulate the rumen biome through genetic selection reducing CH4 production. Methane production may also be mitigated to varying degrees by various dietary intervention strategies. Strategies to reduce GHG emissions need to be developed which increase ruminant production efficiency whereas reducing production of CH4 from cattle, sheep, and goats. Methane emissions may be efficiently mitigated by manipulation of natural ruminal microbiota with various dietary interventions and animal production efficiency improved. Although some CH4 abatement strategies have shown efficacy in vivo, more research is required to make any of these approaches pertinent to modern animal production systems. The objective of this review is to explain how anti-methanogenic compounds (e.g., plant tannins) affect ruminal microbiota, reduce CH4 emission, and the effects on host responses. Thus, this review provides information relevant to understanding the impact of tannins on methanogenesis, which may provide a cost-effective means to reduce enteric CH4 production and the influence of ruminant animals on global GHG emissions.
Collapse
Affiliation(s)
- Byeng R. Min
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | | | - Heidi M. Waldrip
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - David Parker
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - Richard W. Todd
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| | - David Brauer
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Bushland, TX, 79012, USA
| |
Collapse
|
9
|
Zhao Y, Nan X, Yang L, Zheng S, Jiang L, Xiong B. A Review of Enteric Methane Emission Measurement Techniques in Ruminants. Animals (Basel) 2020; 10:ani10061004. [PMID: 32521767 PMCID: PMC7341254 DOI: 10.3390/ani10061004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/28/2023] Open
Abstract
To identify relationships between animal, dietary and management factors and the resulting methane (CH4) emissions, and to identify potential mitigation strategies for CH4 production, it is vital to develop reliable and accurate CH4 measurement techniques. This review outlines various methods for measuring enteric CH4 emissions from ruminants such as respiration chambers (RC), sulphur hexafluoride (SF6) tracer, GreenFeed, sniffer method, ventilated hood, facemask, laser CH4 detector and portable accumulation chamber. The advantages and disadvantages of these techniques are discussed. In general, RC, SF6 and ventilated hood are capable of 24 h continuous measurements for each individual animal, providing accurate reference methods used for research and inventory purposes. However, they require high labor input, animal training and are time consuming. In contrast, short-term measurement techniques (i.e., GreenFeed, sniffer method, facemask, laser CH4 detector and portable accumulation chamber) contain additional variations in timing and frequency of measurements obtained relative to the 24 h feeding cycle. However, they are suitable for large-scale measurements under commercial conditions due to their simplicity and high throughput. Successful use of these techniques relies on optimal matching between the objectives of the studies and the mechanism of each method with consideration of animal behavior and welfare. This review can provide useful information in selecting suitable techniques for CH4 emission measurement in ruminants.
Collapse
Affiliation(s)
- Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Shanshan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (L.J.); (B.X.); Tel.: +86-10-8079-8101 (L.J.); +86-10-6281-1680 (B.X.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
- Correspondence: (L.J.); (B.X.); Tel.: +86-10-8079-8101 (L.J.); +86-10-6281-1680 (B.X.)
| |
Collapse
|
10
|
Auffret MD, Stewart RD, Dewhurst RJ, Duthie CA, Watson M, Roehe R. Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency. Front Microbiol 2020; 11:1229. [PMID: 32582125 PMCID: PMC7292206 DOI: 10.3389/fmicb.2020.01229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, Bos Taurus cattle offered one high concentrate diet (92% concentrate-8% straw) during two independent trials allowed us to classify 72 animals comprising of two cattle breeds as "Low" or "High" feed efficiency groups. Digesta samples were taken from individual beef cattle at the abattoir. After metagenomic sequencing, the rumen microbiome composition and genes were determined. Applying a targeted approach based on current biological evidence, 27 genes associated with host-microbiome interaction activities were selected. Partial least square analysis enabled the identification of the most significant genes and genera of feed efficiency (VIP > 0.8) across years of the trial and breeds when comparing all potential genes or genera together. As a result, limited number of genes explained about 40% of the variability in both feed efficiency indicators. Combining information from rumen metagenome-assembled genomes and partial least square analysis results, microbial genera carrying these genes were determined and indicated that a limited number of important genera impacting on feed efficiency. In addition, potential mechanisms explaining significant difference between Low and High feed efficiency animals were analyzed considering, based on the literature, their gastrointestinal location of action. High feed efficiency animals were associated with microbial species including several Eubacterium having the genetic capacity to form biofilm or releasing metabolites like butyrate or propionate known to provide a greater contribution to cattle energy requirements compared to acetate. Populations associated with fucose sensing or hemolysin production, both mechanisms specifically described in the lower gut by activating the immune system to compete with pathogenic colonizers, were also identified to affect feed efficiency using rumen microbiome information. Microbial mechanisms associated with low feed efficiency animals involved potential pathogens within Proteobacteria and Spirochaetales, releasing less energetic substrates (e.g., acetate) or producing sialic acid to avoid the host immune system. Therefore, this study focusing on genes known to be involved in host-microbiome interaction improved the identification of rumen microbial genetic capacities and potential mechanisms significantly impacting on feed efficiency in beef cattle fed high concentrate diet.
Collapse
Affiliation(s)
| | - Robert D. Stewart
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Mick Watson
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland’s Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
11
|
Zucker NL, Bulik CM. On bells, saliva, and abdominal pain or discomfort: Early aversive visceral conditioning and vulnerability for anorexia nervosa. Int J Eat Disord 2020; 53:508-512. [PMID: 32141642 PMCID: PMC8344083 DOI: 10.1002/eat.23255] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Gastrointestinal (GI) symptoms are common in anorexia nervosa (AN), can predate illness onset, complicate renourishment, and persist after recovery. We explore how, through processes of aversive visceral conditioning, early GI pain and discomfort may increase vulnerability to AN in some individuals. Processes include enhanced preoccupation with the gut resulting from aversive visceral memories and disruptions in the typical acquisition of self-attunement when children learn to map and interpret interoceptive sensations and develop adaptive actions. We question whether a fear of weight gain, in some cases, may be an epiphenomenon of the recapitulation of actual or perceived GI symptoms that is especially relevant during puberty, especially in girls. This conceptualization has immediate clinical implications and offers ideas for future research. We propose that GI discomfort associated with renourishment may reignite prior aversive visceral experiences. We encourage development of a formulation that organizes the individual's current experience of the body with respect to these prior aversive experiences. Our conceptualization underscores the importance of assessment of GI experiences in individuals with AN; the examination of dietary strategies that minimize GI symptoms and enhance renourishment efficacy; and strategies that attempt to alter this aversive visceral conditioning by mapping sensations to meanings and adaptive actions.
Collapse
Affiliation(s)
- Nancy L. Zucker
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA,Correspondence to: Correspondence Nancy L. Zucker, Department of Psychiatry and Behavioral Science, Duke University School of Medicine, P.O. Box 3454, Durham 27710, NC.
| | - Cynthia M. Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Renand G, Vinet A, Decruyenaere V, Maupetit D, Dozias D. Methane and Carbon Dioxide Emission of Beef Heifers in Relation with Growth and Feed Efficiency. Animals (Basel) 2019; 9:ani9121136. [PMID: 31842507 PMCID: PMC6940808 DOI: 10.3390/ani9121136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Simple Summary For sustainable meat production, beef farmers must make the best use of grass and roughage while limiting the carbon footprint of their herds. The genetic improvement in feed efficiency and enteric methane production of replacement heifers is possible if the recorded phenotypes are available. Intuitively, the relationship between the two traits should be negative, i.e., favorable, since the energy lost with the methane is not available for heifer metabolism. The measurement of feed efficiency requires several weeks of feed intake recording. The enteric methane emission rate can also be recorded over several weeks. The two traits of 326 beef heifers from two experimental farms were measured simultaneously for 8 to 12 weeks. The correlations between roughage intake, daily gain, and methane were all positive. The enteric methane emission rate was positively related to body weight, daily gain, and dry matter intake. The relationship with feed efficiency was slightly positive, i.e., unfavorable. Therefore, the two traits should be recorded simultaneously to evidence low-emitting and efficient heifers. This study also showed that replacing the feed intake recording with the carbon dioxide emission rate appeared potentially beneficial for selecting these low-emitting and efficient heifers. Abstract Reducing enteric methane production and improving the feed efficiency of heifers on roughage diets are important selection objectives for sustainable beef production. The objective of the current study was to assess the relationship between different methane production and feed efficiency criteria of beef heifers fed ad libitum roughage diets. A total of 326 Charolais heifers aged 22 months were controlled in two farms and fed either a grass silage (n = 252) or a natural meadow hay (n = 74) diet. Methane (CH4) and carbon dioxide (CO2) emission rates (g/day) were measured with GreenFeed systems. The dry matter intake (DMI), average daily gain (ADG), CH4 and CO2 were measured over 8 to 12 weeks. Positive correlations were observed among body weight, DMI, ADG, CH4 and CO2. The residual feed intake (rwgDMI) was not related to CH4 or residual methane (rwiCH4). It was negatively correlated with methane yield (CH4/DMI): Rp = −0.87 and −0.83. Residual gain (rwiADG) and ADG/DMI were weakly and positively related to residual methane (rwiCH4): Rp = 0.21 on average. The ratio ADG/CO2 appeared to be a useful proxy of ADG/DMI (Rp = 0.64 and 0.97) and CH4/CO2 a proxy of methane yield (Rp = 0.24 and 0.33) for selecting low-emitting and efficient heifers.
Collapse
Affiliation(s)
- Gilles Renand
- UMR 1313 Génétique Animale et Biologie Intégrative, Université Paris-Saclay—Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)—AgroParisTech, Centre de Recherche de Jouy-en-Josas, 78350 Jouy-en-Josas, France;
- Correspondence: ; Tel.: +33-1-3465-2212
| | - Aurélie Vinet
- UMR 1313 Génétique Animale et Biologie Intégrative, Université Paris-Saclay—Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)—AgroParisTech, Centre de Recherche de Jouy-en-Josas, 78350 Jouy-en-Josas, France;
| | - Virginie Decruyenaere
- Production and Sectors Department, Walloon Agricultural Research Centre, 8 rue de Liroux, 5030 Gembloux, Belgium;
| | - David Maupetit
- UE 0332 Domaine Expérimental Bourges-La Sapinière, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de recherche Val de Loire, 18390 Osmoy, France;
| | - Dominique Dozias
- UE 0326 Domaine Expérimental du Pin, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de recherche de Rennes, 61310 Le-Pin-au-Haras, France;
| |
Collapse
|
13
|
Dini Y, Cajarville C, Gere JI, Fernandez S, Fraga M, Pravia MI, Navajas EA, Ciganda VS. Association between residual feed intake and enteric methane emissions in Hereford steers. Transl Anim Sci 2018; 3:239-246. [PMID: 32704795 PMCID: PMC7200529 DOI: 10.1093/tas/txy111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to quantify the emissions of enteric CH4 from growing Hereford steers raised under feedlot conditions based on contrasting levels of residual feed intake (RFI). A repeated measurements experiment was conducted over 20 d to determine CH4 production from two groups of nine Hereford steers, with contrasting RFI values (mean ± SD): low RFI (LRFI group; −0.78 ± 0.22 kg DMI/d) vs. high RFI (HRFI group; 0.83 ± 0.34 kg DMI/d). Steers were selected from a larger contemporary population in which the RFI was evaluated. Steers were maintained under confined conditions with ad libitum access to water and feed, comprising a total mixed ration of 55% sorghum silage, 21% barley silage, 21% corn grain, and 3% protein–mineral–vitamin–premix, provided twice a day. Before the beginning of CH4 measurements, the live weight of both groups of animals was determined, which on average (±SEM) was 357.0 ± 5.11 and 334.0 ± 10.17 kg in the LRFI and HRFI groups, respectively. Methane emission (g/d) was measured on each animal with the sulfur hexafluoride (SF6) tracer technique, during two consecutive periods of 5 d. Individual daily intake and feeding behavior characteristics were measured using a GrowSafe automated feeding system (Model 6000, GrowSafe Systems Ltd, Airdrie, Alberta, Canada). Methanogens in the ruminal content were quantified using quantitative polymerase chain reaction with primers targeting the mcrA gene. Methane emission was near 27% lower in animals with LRFI when expressed in absolute terms (g/d; 26.8%; P = 0.009), by unit of dry matter intake (g CH4/kg; 27.9%, P = 0.021), or as % of gross energy intake (26.7%; P = 0.027). These differences could not be explained by differences in amount of total of methanogens (average = 9.82 log10 units; P = 0.857). However, there were some differences in animal feeding behavior that could explain these differences (e.g., LRFI animals tended to spend less time in feeders). Our results suggest that, in Hereford steers, the selection by RFI values is a promising mitigation strategy for the reduction of the emission of enteric CH4.
Collapse
Affiliation(s)
- Yoana Dini
- Departamento de Nutrición Animal, Facultad de Veterinaria, Universidad de la República, San José, Uruguay
| | - Cecilia Cajarville
- Departamento de Nutrición Animal, Facultad de Veterinaria, Universidad de la República, San José, Uruguay
| | - José I Gere
- UIDI, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional. Medrano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sofía Fernandez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Martín Fraga
- Instituto Nacional de Investigación Agropecuaria, Plataforma de salud animal, Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Maria Isabel Pravia
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental Las Brujas, Las Piedras, Canelones, Uruguay
| | - Elly Ana Navajas
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental Las Brujas, Las Piedras, Canelones, Uruguay
| | - Verónica S Ciganda
- Instituto Nacional de Investigación Agropecuaria, Programa de Producción y Sustentabilidad Ambiental, Estación Experimental La Estanzuela, Colonia, Uruguay
| |
Collapse
|
14
|
Gunter SA, Beck MR. Measuring the respiratory gas exchange by grazing cattle using an automated, open-circuit gas quantification system. Transl Anim Sci 2018; 2:11-18. [PMID: 32704685 PMCID: PMC7200863 DOI: 10.1093/tas/txx009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022] Open
Abstract
Ruminants are a source of enteric CH4, which has been identified as an anthropogenic greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric CH4 emissions, systems are currently being developed to measure CH4 emissions by cattle. An issue with grazing cattle is the ability to measure CH4 emissions in open-air environments. A scientific instrument for this task is an automated, open-circuit gas quantification system (GQS; C-Lock, Inc., Rapid City, SD). The GQS is a head chamber that grazing cattle occasionally visit (3 to 8 min/visit; 3 to 6 visits/d), and while the animal consumes a small portion of bait (0.5 to 1.0 kg/visit), the GQS captures the animal's breath cloud by exhausting air through the GQS. The breath cloud is then analyzed for CH4, CO2, and O2 concentrations. Data are hourly uploaded to a server where it is processed using algorithms to determine total daily fluxes. Several factors affect emission estimates generated by the GQS including the animal's visitation rate, length of sampling period, and airflow through the system. The location of the GQS is an important factor in determining the cattle's willingness to visit. Further, cattle need to be trained to use the GQS, which normally requires 4 to 8 wk. Several researchers have shown that 30 or more visits are required to obtain high-quality estimates of gas fluxes. Once cattle are trained to use the GQS, the bait delivery rate has little effect on the animal's willingness to use the system. Airflow through the GQS is an important factor, but as long as airflow is maintained above 26 L/s the breath-cloud capture seems nearly complete. There is great concern regarding circadian variation in the instantaneous production rates of CH4 because the GQS normally only spot-samples 2 to 4 times/d. Preliminary analysis has shown that variation in the instantaneous production rates of CH4 do not vary as greatly with grazing cattle compared with meal-fed cattle. It seems that increasing the visitation length decreases variation in estimated emissions, but there is a diminishing return to increasing visitation length. The GQS is a useful tool for researching the nutrition and emissions of grazing cattle, but great care must be taken to obtain the best quality data possible for use in this high-impact research.
Collapse
Affiliation(s)
- Stacey A Gunter
- USDA, Agricultural Research Service, Southern Plains Range Research Station, Woodward, OK
| | - Matthew R Beck
- Oklahoma State University, Stillwater, OK
- Lincoln University, Canterbury, Lincoln, New Zeal
| |
Collapse
|
15
|
Cole NA, Parker DB, Todd RW, Leytem AB, Dungan RS, Hales KE, Ivey SL, Jennings J. Use of new technologies to evaluate the environmental footprint of feedlot systems. Transl Anim Sci 2018; 2:89-100. [PMID: 32704692 DOI: 10.1093/tas/txx001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
With increased concern over the effects of livestock production on the environment, a number of new technologies have evolved to help scientists evaluate the environmental footprint of beef cattle. The objective of this review was to provide an overview of some of those techniques. These techniques include methods to measure individual feed intake, enteric methane emissions, ground-level greenhouse gas and ammonia emissions, feedlot and pasture emissions, and identify potential pathogens. The appropriate method to use for measuring emissions will vary depending upon the type of emission, the emission source, and the goals of the research. These methods should also be validated to assure they produce accurate results and achieve the goals of the research project. In addition, we must not forget to properly use existing technologies and methods such as proper feed mixing, feeding management, feed/ingredient sampling, and nutrient analysis.
Collapse
Affiliation(s)
- N Andy Cole
- USDA-ARS-Conservation and Production Research Laboratory, Bushland, TX
| | - David B Parker
- USDA-ARS-Conservation and Production Research Laboratory, Bushland, TX
| | - Richard W Todd
- USDA-ARS-Conservation and Production Research Laboratory, Bushland, TX
| | - April B Leytem
- USDA-ARS-Northwest Irrigation and Soils Research Laboratory, Kimberly, ID
| | - Robert S Dungan
- USDA-ARS-Northwest Irrigation and Soils Research Laboratory, Kimberly, ID
| | | | - Shanna L Ivey
- Department of Animal and Range Science at New Mexico State University, Las Cruces, NM
| | | |
Collapse
|