1
|
Cambra JM, Martinez-Serrano CA, Rodriguez-Martinez H, Vazquez JM, Cuello C, Gil MA, Martinez EA, Parrilla I. Deciphering immune tolerance in allogeneic pig pregnancy. Theriogenology 2025; 238:117363. [PMID: 40024099 DOI: 10.1016/j.theriogenology.2025.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Embryo transfer (ET) has transformed swine biotechnology, enabling genetic advancements and disease control. However, its success remains inconsistent, partly due to immune-mediated challenges at the maternal-fetal interface. This study explores the immunological environment of hemi-allogeneic pregnancies (via artificial insemination, AI) versus allogeneic pregnancies (via ET) in pigs during the critical implantation phase. Sows were categorized into groups based on pregnancy type and fetal counts, reflecting varying outcomes. Endometrial immune cell populations, including T lymphocytes, regulatory T cells (Tregs), natural killer (NK) cells, and macrophages, were analyzed using immunohistochemistry. Notably, allogeneic pregnancies with poor outcomes displayed elevated NK cell and macrophage infiltration alongside reduced Treg presence, contributing to a pro-inflammatory environment. In contrast, allogeneic pregnancies with favorable outcomes exhibited immune profiles resembling hemi-allogeneic pregnancies, suggesting enhanced maternal-fetal tolerance. These findings underscore the immunological variability driving embryo survival rates in ET pregnancies and highlight key cellular targets for improving reproductive efficiency. Further research on immunomodulatory strategies is vital to optimize ET success in swine and other species.
Collapse
Affiliation(s)
- Josep M Cambra
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, 81675, Munich, Germany.
| | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Cta de La Coruña Km 7,5, 28040, Madrid, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Biomedical Research Institute Pascual Parrilla of Murcia (IMIB), Campus of Health Sciences, El Palmar, 30120, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Biomedical Research Institute Pascual Parrilla of Murcia (IMIB), Campus of Health Sciences, El Palmar, 30120, Murcia, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Biomedical Research Institute Pascual Parrilla of Murcia (IMIB), Campus of Health Sciences, El Palmar, 30120, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Biomedical Research Institute Pascual Parrilla of Murcia (IMIB), Campus of Health Sciences, El Palmar, 30120, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Biomedical Research Institute Pascual Parrilla of Murcia (IMIB), Campus of Health Sciences, El Palmar, 30120, Murcia, Spain.
| |
Collapse
|
2
|
Parrilla I, Gil MA, Cuello C, Martinez EA. Sperm Cryopreservation in Boars. Methods Mol Biol 2025; 2897:183-192. [PMID: 40202636 DOI: 10.1007/978-1-0716-4406-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cryopreservation is the procedure that allows preserving cells, including gametes, for long time periods while maintaining their functionality, through the use of cryogenic temperature. Currently, sperm cryopreservation is a crucial-assisted reproductive biotechnology in pigs since it is the only effective and efficient method for long-term preservation of boar fertility. Here, we describe a two-step cryopreservation protocol for boar sperm using lactose-egg yolk and glycerol-based extenders.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain.
| | - María A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Hallberg I, Morrell JM, Malaluang P, Johannisson A, Sjunnesson Y, Laskowski D. Sperm quality and in vitro fertilizing ability of boar spermatozoa stored at 4 °C versus conventional storage for 1 week. Front Vet Sci 2024; 11:1444550. [PMID: 39376925 PMCID: PMC11457738 DOI: 10.3389/fvets.2024.1444550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Since boar spermatozoa show a marked deterioration in sperm quality when cooled, insemination doses are usually stored at 16-18 °C. However, maintaining this temperature during transport of semen doses is challenging, particularly during the summer months. An alternative could be to store the doses at 4 °C if cold-shock to the sperm could be prevented. The objective of this study was to evaluate boar sperm quality and fertility in in vitro fertilization after storage in AndroStar Premium at 4 °C for 1 week. Methods Insemination doses (n = 9) in AndroStar Premium from a commercial boar semen collection station were transported to the laboratory at approximately 20 °C. At the laboratory, sperm quality evaluation and was preformed and each dose was split; half of each ejaculate was stored in a climate-controlled box at 16-18 °C, the other was slowly cooled to 4 °C. Both samples were stored for 1 week before further sperm quality evaluation and in vitro fertilization (IVF) were performed. Mean values were tested using generalized linear regression, with treatment and boar as fixed factors; p ≤ 0.05 was considered significant. Results Sperm membrane integrity (mean ± sem: 91 ± 0.05 and 83 ± 0.09% for 16 and 4 °C, respectively) and superoxide production (6.79 ± 2.37 and 13.54 ± 6.23% for 16 and 4 °C, respectively), were different between treatments. The DNA fragmentation index was lower in cold-stored samples than in conventionally stored samples (3.74 ± 2.25 and 7.40 ± 3.36% for 4 and 16 °C, respectively). The numbers of oocytes developing to blastocyst on Day 6 (mean ± sd: 9.0 ± 8.0 and 6.0 ± 5.0%, for storage at 16 and 4 °C, respectively) were not different between treatments. Discussion Therefore, storage of boar semen doses in AndroStar Premium at 4 °C for up to 7 days would be a viable alternative to current praxis.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane M. Morrell
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pack Malaluang
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Denise Laskowski
- Department of Clinical Sciences, Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Brito CRC, Hoyos-Marulanda V, Cruz LAX, Gasperin BG, Vieira AD, Mondadori RG, Lucia T. Morphometric Evaluation of the Ampullae of the Oviducts in Prepubertal Gilts Treated With Chorionic Gonadotropins. Reprod Domest Anim 2024; 59:e14714. [PMID: 39205435 DOI: 10.1111/rda.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
This study assessed morphometric traits of the ampulla of the oviducts in prepubertal gilts treated with chorionic gonadotropins. With the day of slaughter as D0, gilts were assigned to four treatments (n = 8 each): control (untreated), eCG (200 IU eCG on D3), eCG+hCG (1200 IU eCG on D6 plus 500 IU hCG on D3), and eCG+hCG+AI (the previous treatment plus artificial insemination on D1). Blood and ampullae samples were collected at slaughter. Serum progesterone concentrations were higher for gilts treated with hCG than for those in the eCG and control treatments (p < 0.001), but estradiol concentrations did not differ (p > 0.05). The epithelium, muscle and lumen areas and the inner and larger ampullae diameters did not differ across treatments (p > 0.05). Therefore, treatment with chorionic gonadotropins did not alter the ampullae morphometry of prepubertal gilts.
Collapse
Affiliation(s)
| | | | - Luis A X Cruz
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | - Rafael G Mondadori
- Fibra, Faculdade de Veterinária, Pelotas, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thomaz Lucia
- Fibra, Faculdade de Veterinária, Pelotas, Brazil
| |
Collapse
|
5
|
Kim E, Yu IJ, Lee J, Jeon Y. Effects of MnTBAP on Porcine Semen Cryopreservation and Capacitation. Antioxidants (Basel) 2024; 13:672. [PMID: 38929111 PMCID: PMC11201202 DOI: 10.3390/antiox13060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Antioxidants protect cellular function and structure by neutralizing the oxidative stress caused by increased reactive oxygen species (ROS) during sperm freezing. Studies on cryopreservation using various antioxidants have demonstrated encouraging results. Many studies have used antioxidants to increase the efficiency of sperm freezing and to improve the success rate of artificial insemination and pregnancy. Manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) is a newly synthesized antioxidant with positive effects on sperm morphology and capacitation in humans, rams, and stallions. In this study, porcine semen was treated with 0, 50, 100, and 150 μM of MnTBAP based on a Tris-egg-yolk extender and frozen to determine whether MnTBAP can assist the status of sperm during cryopreservation. First, motility was assessed using the computer-assisted sperm analysis (CASA) system, with the 100 μM treatment group showing the highest motile rate (66.8%) compared with that of the other groups (control, 51.1%; 50 μM and 150 μM, 59.6%); therefore, the remaining analyses were conducted comparing the two groups (control vs. 100 μM group; p < 0.01). Second, fluorescence staining was applied to examine the control and 100 μM groups using fluorescence microscopy. The viability (41.7% vs. 62.4%) and the acrosome integrity (77.9% vs. 86.4%) differed significantly (p < 0.05). In addition, the mitochondrial membrane potential (MMP) was 46.5% vs. 51.9%; the fragmentation rate, estimated using the Sperm-sus-Halomax kit, was 63.4% vs. 57.4%; and the detected caspase activity was 30.1% vs. 22.9%. These tended to be higher in the treated group but did not differ significantly. Third, measurements using FACSLyric revealed that the 100 μM treatment group exhibited a state of elevated normal lipid arrangement within the plasma membrane and diminished levels of apoptosis and ROS (p < 0.01). We assessed the expression of genes relevant to antioxidant effectiveness using real-time RT-qPCR. Our findings indicated significant alterations in the expression levels of various mRNA species, with the exception of NOX5 (p < 0.05). Finally, the straws were dissolved and used to treat matured denuded oocytes to investigate the effect on fertilization and embryo development in vitro. The cleavage rate was (77.6% vs. 84.1%), and the blastocyst rate was 9.7% vs. 11.4% (p < 0.05). In conclusion, these results suggest that MnTBAP positively affected sperm freeze-thawing, improving the fertilization capacity, and leading to increased embryo development.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon 27136, Republic of Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (E.K.); (I.-J.Y.)
| |
Collapse
|
6
|
Xiong Z, Hong Z, Li X, Gao D, Wang L, Liu S, Zhao J, Li X, Qian P. The multidrug-resistant Pseudomonas fluorescens strain: a hidden threat in boar semen preservation. Front Microbiol 2023; 14:1279630. [PMID: 37869660 PMCID: PMC10588451 DOI: 10.3389/fmicb.2023.1279630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Although the bacterial composition of boar ejaculate has been extensively studied, the bacterial composition of extended boar semen is often overlooked, despite the potential risks these microorganisms may pose to the long-term preservation of extended boar semen at 15-17°C. In this study, we characterized the bacterial community composition of extended semen and discovered that Pseudomonas spp. was the dominant flora. The dominant strains were further isolated and identified as a potential new species in the Pseudomonas fluorescens group and named GXZC strain, which had adverse effects on sperm quality and was better adapted to growth at 17°C. Antimicrobial susceptibility testing showed that the GXZC strain was resistant to all commonly used veterinary antibiotics. Whole-genome sequencing (WGS) and genome annotation revealed the large genetic structure and function [7,253,751 base pairs and 6,790 coding sequences (CDSs)]. Comparative genomic analysis with the closest type strains showed that the GXZC strain predicted more diversity of intrinsic and acquired resistance genes to multi-antimicrobial agents. Taken together, our study highlights a problem associated with the long-term storage of extended boar semen caused by a P. fluorescens group strain with unique biological characteristics. It is essential to develop a new antibacterial solution for the long-term preservation of boar semen.
Collapse
Affiliation(s)
- Zhixuan Xiong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ziqiang Hong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shudan Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Junna Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhou J, Zhang K, Gao J, Xu J, Wu C, He M, Zhang S, Zhang D, Dai J, Sun L. Effect of Poria cocos Mushroom Polysaccharides (PCPs) on the Quality and DNA Methylation of Cryopreserved Shanghai White Pig Spermatozoa. Cells 2023; 12:1456. [PMID: 37296577 PMCID: PMC10253127 DOI: 10.3390/cells12111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, we explore the effects of Poria cocos mushroom polysaccharides (PCPs) on the quality and DNA methylation of the cryopreserved spermatozoa of Shanghai white pigs. A total of 24 ejaculates (three ejaculate samples per boar) from eight Shanghai white pigs were manually collected. The pooled semen was diluted with a based extender supplemented with different concentrations of PCPs (0, 300, 600, 900, 1200, and 1500 μg/mL). Once thawed, the quality of the spermatozoa and their antioxidant function were assessed. In the meantime, the effect of spermatozoa DNA methylation was also analyzed. The results show that compared with the control group, 600 μg/mL of PCPs significantly improves the spermatozoa viability (p < 0.05). The motility and plasma membrane integrity of the frozen-thawed spermatozoa are significantly higher after treatment with 600, 900, and 1200 μg/mL of PCPs compared with the control group (p < 0.05). In comparison with the control group, the percentages of acrosome integrity and mitochondrial activity are significantly enhanced after the application of 600 and 900 μg/mL PCPs (p < 0.05). The reactive oxygen species (ROS), the malondialdehyde (MDA) levels, and the glutathione peroxidase (GSH-Px) activity, in comparison with the control group, are significantly decreased in all groups with PCPs (all p < 0.05). The enzymatic activity of superoxide dismutase (SOD) in spermatozoa is significantly higher in the treatment with 600 μg/mL of PCPs than in the other groups (p < 0.05). As compared with the control group, a significant increase in the catalase (CAT) level is found in the groups with PCPs at 300, 600, 900, and 1200 μg/mL (all p < 0.05). In comparison with the control group, the 5-methylcytosine (5-mC) levels are significantly decreased in all groups with PCPs (all p < 0.05). As a result of these findings, a certain amount of PCPs (600-900 μg/mL) added to the cryodiluent can significantly improve the quality of Shanghai white pig spermatozoa and can also reduce the methylation of spermatozoa DNA caused by cryopreservation. This treatment strategy may establish a foundation for the cryopreservation of semen from pigs.
Collapse
Affiliation(s)
- Jinyong Zhou
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Keqin Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jun Gao
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Jiehuan Xu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Caifeng Wu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Mengqian He
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Shushan Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Defu Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jianjun Dai
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lingwei Sun
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
8
|
Gonzalez-Ramiro H, Gil MA, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Lucas-Sanchez A, Parrilla I, Martinez CA, Martinez EA. The Use of a Brief Synchronization Treatment after Weaning, Combined with Superovulation, Has Moderate Effects on the Gene Expression of Surviving Pig Blastocysts. Animals (Basel) 2023; 13:ani13091568. [PMID: 37174605 PMCID: PMC10177444 DOI: 10.3390/ani13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of estrus synchronization and superovulation (SS) treatments causes alterations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte growth, fertilization, and embryo development. However, the impact of combined SS treatments on the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6), sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6), ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination, the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was performed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold change </> 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each pathway was minimal. Only four pathways were disrupted comprising only a total of four altered transcripts, which were not related to reproductive functions or embryonic development. On the other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of 10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos' response to oxidative stress, thereby impairing subsequent embryo development. The gene expression changes observed in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect fertilization, embryo production, and reproductive tract gene expression, make its use in embryo transfer programs unrecommendable.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
- Department of Research and Development, Grupo Agropor I+D+I, AIE, 30565 Murcia, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina A Martinez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
9
|
Gonzalez-Plaza A, Cambra JM, Garcia-Canovas M, Parrilla I, Gil MA, Martinez EA, Rodriguez-Martinez H, Martinez CA, Cuello C. Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression. Theriogenology 2023; 206:1-10. [PMID: 37148716 DOI: 10.1016/j.theriogenology.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
The most commonly used technique to vitrify pig embryos is the super open pulled straw (SOPS), where a maximum of 6 embryos can be vitrified simultaneously per device without compromising the minimum volume necessary for optimal preservation. Since optimal embryo transfer (ET) demands a transfer of 20-40 embryos per recipient, the customary use of SOPS complicates embryo warming and ET in field conditions. Such complications could be avoided when using the Cryotop® (OC) system, which has been proven to be an effective option for vitrifying at least 20 porcine embryos simultaneously. This study aimed to investigate the changes in the transcriptome of blastocysts caused by vitrification using both systems. In vivo-derived blastocysts were OC- (n = 60; 20 embryos/device) and SOPS- (n = 60; 4-6 embryos/device) vitrified and cultured for 24 h after warming. Nonvitrified blastocysts (n = 60) cultured for 24 h postcollection acted as controls. At the end of culture, 48 viable embryos from each group (6 pools of 8 embryos) were selected for microarray (GeneChip® Porcine Genome Array, P/N 900624, Affymetrix) analysis of differentially expressed genes (DEGs). The survival rate of embryos vitrified with the OC and SOPS systems (>97%) was similar to that of the control embryos (100%). Microarray analysis of each vitrification system compared to the control group showed 245 DEGs (89 downregulated and 156 upregulated) for the OC system and 210 (44 downregulated and 166 upregulated) for the SOPS system. Two pathways were enriched for the DEGs specifically altered in each vitrification system compared to the control (glycolysis/gluconeogenesis and carbon metabolism pathways for the OC system and amino sugar and nucleotide sugar metabolism and lysosome pathways in the SOPS group). The OC group showed 31 downregulated and 24 upregulated genes and two enriched pathways (mineral absorption and amino sugar and nucleotide sugar metabolism pathways) when compared to the SOPS group. In summary, vitrification with the OC system altered fewer genes related to apoptosis and activated genes related to cell proliferation. We conclude that vitrification with either the OC or SOPS system has a moderate to low effect on the transcriptome of in vivo-derived porcine blastocysts. Further investigation is needed to elucidate how the differences in the transcriptome of embryos vitrified with these systems affect their subsequent developmental ability after ET.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Manuela Garcia-Canovas
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A Gil
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina A Martinez
- Department of Animal Reproduction. National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| | - Cristina Cuello
- Department of Medicine & Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education & Research (CMN), University of Murcia. Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
10
|
Masuda Y, Kheawkanha T, Nagahama A, Kawasaki K, Konno T, Yamanaka K, Tatemoto H. Antifreeze protein type III addition to freezing extender comprehensively improves post-thaw sperm properties in Okinawan native Agu pig. Anim Reprod Sci 2023; 252:107232. [PMID: 37075564 DOI: 10.1016/j.anireprosci.2023.107232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Sperm cryopreservation often leads to physical cell damage through ice crystal formation. This study evaluates the improvements to freezing extender cryoprotective activity due to antifreeze protein (AFP) addition, which primarily acts on ice crystal formation, through investigating the post-thaw sperm properties of Okinawan native Agu pig. Six individual boar sperm samples were diluted with the freezing extender supplemented with 1 μg/mL of AFP I or AFP III and then subjected to cryopreservation. Treatment with AFP I during the freezing procedure had no improvement for any characteristics after thawing compared to untreated sperm. In contrast, the addition of AFP III to the freezing extender strongly increased sperm motility, mitochondria and cell membrane integrity, and the acrosomal proteolytic activity of frozen-thawed sperm in 5 of 6 individuals (P < 0.05). Furthermore, cryoinjury prevention by AFP III significantly enhanced sperm viability (by ATP content), and maintained DNA quality and in vitro sperm penetrability compared with AFP I treatment (P < 0.05). These findings demonstrate that AFP III addition to the freezing extender of boar sperm is more effective in maintaining sperm characteristics than the extender without AFP III or AFP I, despite individual differences in response.
Collapse
Affiliation(s)
- Yusuke Masuda
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Theerapat Kheawkanha
- Faculty of Agriculture, Khon Kaen University, Muang Khon Kaen District, Khon Kaen 40002, Thailand
| | - Ayari Nagahama
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kokoro Kawasaki
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Toshihiro Konno
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kenichi Yamanaka
- Faculty of Agriculture, Saga University, Saga city, Saga 840-8502, Japan
| | - Hideki Tatemoto
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
11
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
12
|
Shi L, Zhang Y, Huang X, Shi M, Sun D, Zhang Y, Li W, Jin T, Feng J, Xing J, Li B, Cao G. Effects of mitoquinone (MitoQ) supplementation during boar semen cryopreservation on sperm quality, antioxidant status and mitochondrial proteomics. Anim Reprod Sci 2022; 247:107099. [DOI: 10.1016/j.anireprosci.2022.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/01/2022]
|
13
|
Monteiro MS, Torres MA, Passarelli MDS, Martins MP, Ravagnani GM, Papa FO, Alvarenga MA, Dell'Aqua Júnior JA, Yasui GS, Martins SMMK, de Andrade AFC. Impact of cryopreservation protocols (one- and two-step) on boar semen quality at 5 °C and post-thawing. Anim Reprod Sci 2022; 247:107093. [DOI: 10.1016/j.anireprosci.2022.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022]
|
14
|
Purdy PH, Graham JK, Azevedo HC. Evaluation of boar and bull sperm capacitation and the acrosome reaction using flow cytometry. Anim Reprod Sci 2022; 246:106846. [PMID: 34563407 DOI: 10.1016/j.anireprosci.2021.106846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
Flow cytometry can be used to evaluate many sperm attributes and Dr. Duane Garner was influential in developing assays to understand sperm physiology and function. We review some of Dr. Garner's work and describe experiments that evaluate sperm capacitation using Dr. Garner's philosophy. In exploratory experiments, boar sperm were cryopreserved in lactose egg yolk (LEY) or Beltsville Freezing Extender 5 (BF5) and incubated in one capacitating medium. In another experiment, frozen-thawed bull sperm were incubated in TALP-Ca or CFDM1 capacitating media. In both experiments, sperm viability and capacitation were evaluated using multiple probes. Boar sperm frozen in LEY had greater survival rates (38%) than sperm frozen in BF5 (22%; P < 0.05) but did not capacitate as effectively as sperm in BF5 (P < 0.05). In Experiment 2, bull sperm survived to a greater extent when incubated in TALP-Ca than in CFDM1 (P < 0.05) and had greater capacitation for most parameters (P < 0.05). Of particular interest, 77% of sperm incubated in TALP-Ca had activated second messenger systems involved in capacitation, compared with < 5% of sperm incubated in CFDM1. The results indicate different freezing and capacitating media induce different responses to sperm capacitation and functions. If only sperm viability and acrosomal integrity were evaluated, these results would be interpreted very differently. Dr. Garner's philosophy of evaluating multiple sperm parameters was an impetus to determine unique treatment differences which help in understanding sperm capacitation, and design further experiments to determine how media content causes sperm physiology differences.
Collapse
Affiliation(s)
- Phillip H Purdy
- USDA, ARS, NLGRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO 80521-4500, USA.
| | - James K Graham
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | | |
Collapse
|
15
|
Gillis JD, Holt WV, Penfold LM, Woad KJ, Graham JK, Watts JA, Gardner DS, Yon L. Cryo-scanning electron microscopy demonstrates that ice morphology is not associated with the post-thaw survival of domestic boar (Sus domesticus) spermatozoa: A comparison of directional and conventional freezing methods. Cryobiology 2022; 108:10-18. [PMID: 36084733 DOI: 10.1016/j.cryobiol.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
Directional freezing (in 2 or 10 ml hollow glass tubes) has been reported to improve post-thaw sperm survival parameters compared to conventional methods (in 0.5 ml straws). However, the biophysical properties that increase post-thaw survival are poorly understood. Therefore, the aim for the current study was to investigate the effect of ice morphology on the post-thaw survival of domestic boar spermatozoa directionally and conventionally cryopreserved in 0.5 ml straws. Ice morphology was quantitatively analyzed using a combination of cryo-scanning electron microscopy and Fiji Shape Descriptors. Multivariate analysis found a significant, non-linear effect (p < 0.05) of interface velocity on ice morphology, with an increase in both ice-lake size, as indicated by area and in aspect ratio, at an interface velocity of 0.2 mm/s. By contrast, post-thaw sperm survival (defined as spermatozoa with both intact plasma membranes and acrosomes) was biphasic, with peaks of survival at interface velocities of 0.2 mm/s (54.2 ± 1.9%), and 1.0 or 1.5 mm/s (56.5 ± 1.5%, 56.7 ± 1.7% respectively), and lowest survival at 0.5 (52.1 ± 1.6%) and 3.0 mm/s (51.4 ± 1.9%). Despite numerical differences in Shape Descriptors, there was no difference (p > 0.05) in the post-thaw survival between conventionally and directionally cryopreserved samples at optimal interface velocities of 1.0 or 1.5 mm/s. These findings suggest that: 1) ice morphology has little impact on post-thaw survival of boar spermatozoa, and 2) directional freezing in 0.5 ml straws (rather than 2 or 10 ml hollow glass tubes) may attenuate benefits of directional freezing.
Collapse
Affiliation(s)
- James D Gillis
- South-East Zoo Alliance for Reproduction & Conservation, 581705 White Oak Road, Yulee, FL, 32097, USA; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK.
| | - William V Holt
- Academic Department of Reproductive and Developmental Medicine, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield, S10 2SF, UK
| | - Linda M Penfold
- South-East Zoo Alliance for Reproduction & Conservation, 581705 White Oak Road, Yulee, FL, 32097, USA
| | - Kathryn J Woad
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - James K Graham
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Julie A Watts
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| |
Collapse
|
16
|
Parrilla I, Rodriguez‐Martinez H, Cuello C, Gil MA, Martinez EA. Neither frozen-thawed seminal plasma nor commercial transforming growth factor-β1 infused intra-utero before insemination improved fertility and prolificacy in sows. Reprod Domest Anim 2022; 57 Suppl 5:86-89. [PMID: 35467050 PMCID: PMC9790250 DOI: 10.1111/rda.14133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
Seminal plasma (SP) affects reproduction, inducing cell and molecular changes in the female genital tract. A main active component in SP is the modulatory transforming growth factor-β (TGF-β), particularly its TGF-β1 isoform, which affects the synthesis of other cytokines as granulocyte-macrophage colony-stimulating factor, relevant for embryo development and pregnancy. This study evaluated the effect of pooled frozen-thawed SP and commercial TGF-β1 infused during oestrus in sows post-cervically inseminated with liquid extended semen, containing ~4 ml of residual SP, on their fertility and prolificacy. For this, 250 sows in their post-weaning oestrus were used. Sows were randomly assigned to one of the following groups to be post-cervically treated 30 min before insemination: (i) SP group: infused with 40 ml of SP (N = 57); ii) Group TFGß1 : infused with 40 ml of BTS extender containing 3 ng/ml of porcine TGF-β1 (N = 64); iii) BTS group: infused with 40 ml of BTS extender (N = 60); and iv) Control Group: sows catheterized but not infused prior to AI (N = 69). Farrowing rates (range: 86.7% to 91.3%) and numbers of live-born piglets (range: range: 12.8 ± 2.9 to 13.4 ± 3.1) were not affected by any treatment compared with Controls, indicating that neither pre-infusions of SP nor TGF-ß1 30 min before AI influenced subsequent fertility and prolificacy.
Collapse
Affiliation(s)
| | - Heriberto Rodriguez‐Martinez
- Deparment of Biomedical & Clinical Sciences (BKV)BKH/Obstetrics & GynaecologyLinköping UniversityLinköpingSweden
| | - Cristina Cuello
- Deparment of Medicine and Animal SurgeryUniversity of MurciaMurciaSpain
| | - María Antonia Gil
- Deparment of Medicine and Animal SurgeryUniversity of MurciaMurciaSpain
| | | |
Collapse
|
17
|
Tomás-Almenar C, de Mercado E. Optimization of the Thawing Protocol for Iberian Boar Sperm. Animals (Basel) 2022; 12:ani12192600. [PMID: 36230350 PMCID: PMC9558520 DOI: 10.3390/ani12192600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Limited attention is paid to sperm thawing protocols, and their study could be relevant to endangered species or breeds, especially for cryopreserved material present in the existing gene banks. The aim of this study was to determine the most optimal thawing protocol for Iberian boar sperm through testing different thawing rates and different modifications of the thawing extender. Based on the findings, the most optimal results were obtained thawing at 70 °C for 8 s with the inclusion of cyclodextrins loaded with cholesterol (CLC) in the extender, revealing the importance of adapting the thawing protocols. Abstract Thawing protocols have been barely studied, and their modifications may lead to a substantial improvement in post-thawing sperm quality, which could be of great relevance to existing sperm banks, such as those for Iberian pig breeds with varieties in danger of extinction. For that, the study aimed to evaluate different thawing rates and to evaluate modifications in the composition of the thawing extender (basic pH to 8–8.2, incorporation of cyclodextrins loaded with cholesterol [CLC] and the incorporation of ion chelators [EDTA and EGTA]). After thawing, overall sperm motility and kinematic parameters, acrosome status and sperm membrane integrity were evaluated. The most optimal results were obtained with the thawing rate reaching 70 °C for 8 s with the inclusion of 12.5 mg of CLC/500 × 106 spermatozoa in the thawing extender, which showed an improvement compared to the control at 70 °C. In conclusion, to adapt the thawing conditions may be relevant, especially for endangered species or breeds such as some varieties of Iberian pig, since this process could also be used in samples cryopreserved in gene banks.
Collapse
|
18
|
Moya-Jódar M, Coppiello G, Rodríguez-Madoz JR, Abizanda G, Barlabé P, Vilas-Zornoza A, Ullate-Agote A, Luongo C, Rodríguez-Tobón E, Navarro-Serna S, París-Oller E, Oficialdegui M, Carvajal-Vergara X, Ordovás L, Prósper F, García-Vázquez FA, Aranguren XL. One-Step In Vitro Generation of ETV2-Null Pig Embryos. Animals (Basel) 2022; 12:ani12141829. [PMID: 35883376 PMCID: PMC9311767 DOI: 10.3390/ani12141829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One of the latest goals in regenerative medicine is to use pluripotent stem cells to generate whole organs in vivo through the blastocyst complementation technique. This method consists of the microinjection of pluripotent stem cells into preimplantation embryos that have been genetically modified to ablate the development of a target organ. By taking advantage of the spatiotemporal clues present in the developing embryo, pluripotent stem cells are able to colonize the empty developmental niche and create the missing organ. Combining human pluripotent stem cells with genetically engineered pig embryos, it would be possible to obtain humanized organs that could be used for transplantation, and, therefore, solve the worldwide issue of insufficient availability of transplantable organs. As endothelial cells play a critical role in xenotransplantation rejection in all organs, in this study, we optimized a protocol to generate a vascular-disabled preimplantation pig embryo using the CRISPR/Cas9 system. This protocol could be used to generate avascular embryos for blastocyst complementation experiments and work towards the generation of rejection-free humanized organs in pigs. Abstract Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.
Collapse
Affiliation(s)
- Marta Moya-Jódar
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Giulia Coppiello
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Juan Roberto Rodríguez-Madoz
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Gloria Abizanda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Paula Barlabé
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Amaia Vilas-Zornoza
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Chiara Luongo
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Sergio Navarro-Serna
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Evelyne París-Oller
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | | | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
| | - Laura Ordovás
- Aragon Agency for Research and Development (ARAID), 50018 Zaragoza, Spain;
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain; (C.L.); (E.R.-T.); (S.N.-S.); (E.P.-O.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (F.A.G.-V.); (X.L.A.)
| | - Xabier L. Aranguren
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (M.M.-J.); (G.C.); (J.R.R.-M.); (G.A.); (P.B.); (A.U.-A.); (X.C.-V.); (F.P.)
- Correspondence: (F.A.G.-V.); (X.L.A.)
| |
Collapse
|
19
|
Gonzalez-Plaza A, Cambra JM, Parrilla I, Gil MA, Martinez EA, Martinez CA, Cuello C. The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Front Vet Sci 2022; 9:936753. [PMID: 35812891 PMCID: PMC9257686 DOI: 10.3389/fvets.2022.936753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Superfine Open Pulled Straw (SOPS) system is the most commonly used method for vitrification of pig embryos. However, this system only allows the vitrification of four to seven embryos per straw. In this study, we investigated the effectiveness of the open (OC) and closed (CC) Cryotop® systems to simultaneously vitrify a larger number of porcine embryos. Morulae, early blastocysts and full blastocysts were vitrified with the open Cryotop® (n = 250; 20 embryos per device) system, the closed Cryotop® (n = 158; 20 embryos per device) system and the traditional superfine open pulled straw (SOPS; n = 241; 4–7 embryos per straw) method. Fresh embryos from each developmental stage constituted the control group (n = 132). Data expressed as percentages were compared with the Fisher's exact test. The Kruskal-Wallis test was used to analyze the effect of the different vitrification systems on the embryo quality parameters and two-by-two comparisons were accomplished with the Mann-Whitney U test. Differences were considered statistically significant when p < 0.05. Vitrified and control embryos were incubated for 24 h and examined for viability and quality. At the warming step, the embryo recovery rate for the CC system was 51%, while all embryos were recovered when using OC and SOPS. There were no differences between the vitrification and control groups in the postwarming viability of full blastocysts. In contrast, morulae and early blastocysts that were vitrified-warmed with the SOPS system had lower viability (p < 0.01) compared to those from the OC, CC and control groups. The embryonic viability was similar between the OC and control groups, regardless of the developmental stage considered. Moreover, the embryos from the OC group had comparable total cell number and cells from the inner cell mass and apoptotic index than the controls. In conclusion, the OC system is suitable for the simultaneous vitrification of 20 porcine embryos at different developmental stages and provides comparable viability and quality results to fresh embryos subjected to 24 h of in vitro culture.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children's and Women's Health/Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Cristina A. Martinez
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- Cristina Cuello
| |
Collapse
|
20
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
21
|
Deori S, Ntallaris T, Wallgren M, Morrell JM, Johannisson A. Comparison of Single Layer Centrifugation and Magnetic Activated Cell Sorting for selecting viable boar spermatozoa after thawing. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Addition of l-carnitine to the freezing extender improves post-thaw sperm quality of Okinawan native Agu pig. Theriogenology 2021; 188:170-176. [PMID: 35031142 DOI: 10.1016/j.theriogenology.2021.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
The objective of the present study was to establish whether the addition of l-carnitine (LC), which exhibits antioxidant activity, to the freezing extender improves the quality of cryopreserved Okinawan native Agu pig sperm. Ejaculated sperm frozen in an extender supplemented with 0, 1, 2.5, or 5 mM LC was thawed, and the integrities of mitochondria and the plasmalemma and other sperm characteristics were evaluated. The treatment with different concentrations of LC effectively improved sperm motility, mitochondrial and plasmalemmal integrities, and the proteolytic activity of acrosomal contents after freeze-thawing (P < 0.05). The proportion of post-thaw sperm possessing intact mitochondria and plasmalemma and higher proteolytic activity of acrosomal contents was markedly higher among sperm frozen in the presence of 2.5 mM LC than among sperm frozen in the extender without LC (P < 0.05). Furthermore, although the addition of LC to the freezing extender had no effect on disturbance of DNA damage and caspase activity, sperm treated with 2.5 mM LC during freezing exhibited significantly higher penetrability into matured oocytes in vitro than untreated sperm. Collectively, these results indicate that the addition of LC to the freezing extender effectively improved the post-thaw quality of Agu pig sperm by preventing mitochondrial dysfunction caused by oxidative stress during cryopreservation.
Collapse
|
23
|
Gonzalez-Ramiro H, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Gil MA, Lucas-Sanchez A, Parrilla I, Martinez EA. A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Front Vet Sci 2021; 8:771573. [PMID: 34869743 PMCID: PMC8637542 DOI: 10.3389/fvets.2021.771573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although embryo transfer (ET) is a biotechnology ready for the swine industry, there are factors to be solved, the availability of embryo donors as one. Multiparous sows as donors ought to be considered since weaning is a natural and efficient method for estrus synchronization. In addition, superovulation treatments at weaning are effective in increasing the efficiency of donor embryo production. However, ET programs typically require more donors than those available from a single weaning, imposing grouping several weanings to establish a batch for ET. Since short-term administration of Altrenogest is effective in delaying estrus after weaning without effects on ovulation and embryo development, we investigated how Altrenogest combined with superovulation would affect reproductive parameters and embryo quality and quantity of weaned multiparous donor sows. The sows were administered Altrenogest from the day of weaning for 14 (SS-14 group; N = 26), 7 (SS-7 group; N = 31) and 4 (SS-4 group; N = 32) days. The sows were superovulated with eCG 24 h after the last administration of Altrenogest and with hCG at the onset of estrus. Sows not treated with Altrenogest that were superovulated with eCG 24 h post-weaning and hCG at the onset of estrus (SC group; N = 37) and sows with natural estrus after weaning (C group; N = 34) were used as control groups. The percentage of sows showing estrus within 10 days was not affected by the treatment, but the interval from Altrenogest withdrawal to estrus was longer (P < 0.05) in the SS groups than the interval from weaning to estrus in the controls. SS treatments increased (P < 0.05) the percentage of sows with ovarian cysts and the development of polycystic ovaries. The pregnancy and the fertilization rates, and the overall embryo production efficiency were also negatively affected by the SS treatments (P < 0.05). Interestingly, almost 70% of the structures classified as unfertilized oocytes or degenerated embryos in sows from the SS groups were immature oocytes. In conclusion, although superovulation of weaned sows was highly efficient, short-term administration of Altrenogest in combination with superovulation had negative effects on most of the reproductive parameters assessed, particularly affecting the overall efficiency of pregnancy and embryo production.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain.,Department of Research and Development, Grupo Agropor I+D+I, AIE, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Cuello C, Martinez CA, Cambra JM, González-Plaza A, Parrilla I, Rodriguez-Martinez H, Gil MA, Martinez EA. Vitrification Effects on the Transcriptome of in vivo-Derived Porcine Morulae. Front Vet Sci 2021; 8:771996. [PMID: 34869745 PMCID: PMC8633305 DOI: 10.3389/fvets.2021.771996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the reported promising farrowing rates after non-surgical and surgical transfers of vitrified porcine morulae and blastocysts produced in vivo (range: 70–75%), the pregnancy loss is 5–15 fold higher with vitrified than with fresh embryos. The present study aimed to investigate whether vitrification affects the transcriptome of porcine morulae, using microarrays and RT-qPCR validation. Morulae were obtained surgically from weaned sows (n = 13) on day 6 (day 0 = estrus onset). A total of 60 morulae were vitrified (treatment group). After 1 week of storage, the vitrified morulae were warmed. Vitrified-warmed and non-vitrified fresh morulae (control; n = 40) were cultured for 24 h to assess embryo survival by stereomicroscopy after. A total of 30 vitrified/warmed embryos that were deemed viable and 30 fresh control embryos (three pools of 10 for each experimental group) were selected for microarray analysis. Gene expression was assessed with a GeneChip® Porcine Genome Array (Affymetrix). An ANOVA analysis p-unadjusted <0.05 and a fold change cut-off of ±1.5 were set to identify differentially expressed genes (DEGs). Data analysis and biological interpretation were performed using the Partek Genomic Suite 7.0 software. The survival rate of morulae after vitrification and warming (92.0 ± 8.3%) was similar to that of the control (100%). A total of 233 DEGs were identified in vitrified morulae (38 upregulated and 195 downregulated), compared to the control group. Nine pathways were significantly modified. Go-enrichment analysis revealed that DEGs were mainly related to the Biological Process functional group. Up-regulated DEGs were involved in glycosaminoglycan degradation, metabolic pathways and tryptophan metabolism KEGG pathways. The pathways related to the down-regulated DEGs were glycolysis/gluconeogenesis, protein export and fatty acid elongation. The disruption of metabolic pathways in morulae could be related to impaired embryo quality and developmental potential, despite the relatively high survival rates after warming observed in vitro. In conclusion, vitrification altered the gene expression pattern of porcine morulae produced in vivo, generating alterations in the transcriptome that may interfere with subsequent embryo development and pregnancy after embryo transfer.
Collapse
Affiliation(s)
- Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Alejandro González-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
25
|
Domingues WB, Silveira TLR, Nunes LS, Blodorn EB, Schneider A, Corcine CD, Varela Junior AS, Acosta IB, Kütter MT, Greif G, Robello C, Pinhal D, Marins LF, Campos VF. GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish. Front Genet 2021; 12:704778. [PMID: 34567067 PMCID: PMC8455951 DOI: 10.3389/fgene.2021.704778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Overexpression of growth hormone (GH) in gh-transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males. It is hypothesized that microRNAs are directly involved in the regulation of fertility potential during spermatogenesis. The primary aim of our study was to verify whether gh overexpression disturbs the sperm miRNA profile and influences the sperm quality in transgenic zebrafish. We report a significant increase in body weight of gh-transgenic males along with associated reduced sperm motility and other kinetic parameters in comparison to the non-transgenic group. MicroRNA transcriptome sequencing of gh-transgenic zebrafish sperms revealed expressions of 186 miRNAs, among which six miRNA were up-regulated (miR-146b, miR-200a-5p, miR-146a, miR-726, miR-184, and miR-738) and sixteen were down-regulated (miR-19d-3p, miR-126a-5p, miR-126b-5p, miR-22a-5p, miR-16c-5p, miR-20a-5p, miR-126b-3p, miR-107a-3p, miR-93, miR-2189, miR-202–5p, miR-221–3p, miR-125a, miR-125b-5p, miR-126a-3p, and miR-30c-5p) in comparison to non-transgenic zebrafish. Some of the dysregulated miRNAs were previously reported to be related to abnormalities in sperm quality and reduced reproduction ability in other species. In this study, an average of 134 differentially expressed miRNAs-targeted genes were predicted using the in silico approach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the genes of affected pathways were primarily related to spermatogenesis, sperm motility, and cell apoptosis. Our results suggested that excess GH caused a detrimental effect on sperm microRNAome, consequently reducing the sperm quality and reproductive potential of zebrafish males.
Collapse
Affiliation(s)
- William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Tony L R Silveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Eduardo B Blodorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Carine D Corcine
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Antônio S Varela Junior
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Izani B Acosta
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mateus T Kütter
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Gonzalo Greif
- Unidad de Biología Molecular, Institut Pasteur, Montevideo, Uruguay
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur, Montevideo, Uruguay
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular Departamento de Genética, Instituto de Biociências de Botucatu Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Luís F Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
26
|
Soares SL, Brito CRC, Anciuti AN, Gatti NC, Corcini CD, Varela AS, Marques MG, Fonseca FN, Komninou ER, Lucia T. Nanocarried antioxidants in freezing extenders for boar spermatozoa. Andrologia 2021; 53:e14199. [PMID: 34392549 DOI: 10.1111/and.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Post-thawing cryoinjuries in boar spermatozoa due to oxidative stress may be reduced by adding nanoencapsulated antioxidants to freezing extenders. This study evaluated post-thawing kinetics, structural and biochemical functions of boar spermatozoa frozen with extenders including resveratrol and vitamin E loaded into polymeric nanocapsules. Resveratrol was added at 0 (control), 5, 10, 20, 40 and 80 µg/ml, whereas Vitamin E was added at 0 (control), 50, 100, 200 and 400 µg/ml. Both antioxidants were tested in free and nanoencapsulated presentations. In contact with empty nanocapsules, some sperm kinetics parameters were impaired compared to the control (p < .05), whereas lipoperoxidation declined (p < .05). With inclusion of 40 µg/ml nanoencapsulated resveratrol, some sperm kinetics parameters were improved (p < .01), but sperm motility, structural and biochemical functions did not differ from the control (p > .05). No improvement in sperm quality occurred with inclusion of vitamin E, although sperm kinetics with 400 µg/ml nanoencapsulated vitamin E was reduced compared to the control (p < .01). Inclusion of 40 µg/ml nanoencapsulated resveratrol benefitted boar sperm kinetics after thawing, but no improvement resulted from inclusion of vitamin E.
Collapse
Affiliation(s)
- S L Soares
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Camila R C Brito
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Andreia Nobre Anciuti
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Norton C Gatti
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Carine Dahl Corcini
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Antonio Sergio Varela
- Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, Rio Grande, Brazil
| | | | | | - Eliza R Komninou
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Thomaz Lucia
- ReproPel, Universidade Federal de Pelotas, Pelotas, Brazil.,Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
27
|
Caamaño JN, Tamargo C, Parrilla I, Martínez-Pastor F, Padilla L, Salman A, Fueyo C, Fernández Á, Merino MJ, Iglesias T, Hidalgo CO. Post-Thaw Sperm Quality and Functionality in the Autochthonous Pig Breed Gochu Asturcelta. Animals (Basel) 2021; 11:ani11071885. [PMID: 34202862 PMCID: PMC8300257 DOI: 10.3390/ani11071885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Genetic resource banks were created to preserve the genetic material of endangered, rare, valuable individuals or genetically relevant breeds. Sperm cryopreservation is a practical and widespread strategy to preserve these genetic materials. This study aimed to characterize the frozen-thawed sperm of the native pig breed Gochu Asturcelta, considering the effects of boar age and season of semen collection on post-thaw sperm quality. We found that the boar age did not have a significant effect on the sperm parameters assessed. However, the season significantly affected many of these parameters (motility, viability, acrosomal status, mitochondrial activity). In general, sperm samples collected in spring and summer showed higher quality post-thawing, the lowest in winter. Our findings demonstrated that the post-thawing sperm quality of Gochu Asturcelta was in the range of results for commercial breeds, bringing a good prospect for the use of assisted reproductive technologies in this local breed. Abstract Genetic resource banks (GRB) preserve the genetic material of endangered, valuable individuals or genetically relevant breeds. Semen cryopreservation is a crucial technique to reach these goals. Thus, we aimed to assess the sperm parameters of semen doses from the native pig breed Gochu Asturcelta stored at the GRB of Principado de Asturias (GRB-PA, Gijón, Spain), focusing on intrinsic and extrinsic (boar, season) factors. Two straws per boar (n = 18, 8–71 months of age) were thawed, pooled, and assessed after 30 and 150 min at 37 °C by CASA (computer-assisted sperm analysis system; motility and kinematic parameters) and flow cytometry (viability, acrosomal status, mitochondrial activity, apoptosis, reactive oxygen species, and chromatin status). The effects of age, incubation, and season on post-thawing quality were determined using linear mixed-effects models. Parameters were on the range for commercial boar breeds, with chromatin status (SCSA: fragmentation and immaturity) being excellent. Incubation decreased sperm quality and functionality. The boar age did not have a significant effect (p > 0.05), but the between-boar variability was significant (p < 0.001). The season significantly affected many parameters (motility, kinematics, viability, acrosomal status, mitochondrial activity), especially after 150 min of incubation. In general, samples collected in spring and summer showed higher quality post-thawing, the lowest in winter. In conclusion, the sperm doses from the Gochu Asturcelta breed stored at the GRB-PA showed excellent chromatin status and acceptable characteristics after thawing. Therefore, boar and seasonal variability in this autochthonous breed could be relevant for cryobank management.
Collapse
Affiliation(s)
- José Néstor Caamaño
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
- Correspondence: ; Tel.: +34-98-450-2010
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Inmaculada Parrilla
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, 30071 Murcia, Spain; (I.P.); (L.P.)
| | - Felipe Martínez-Pastor
- INDEGSAL, Universidad de León, 24071 León, Spain; (F.M.-P.); (A.S.)
- Molecular Biology (Cell Biology), Universidad de León, 24071 León, Spain
| | - Lorena Padilla
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, 30071 Murcia, Spain; (I.P.); (L.P.)
| | - Amer Salman
- INDEGSAL, Universidad de León, 24071 León, Spain; (F.M.-P.); (A.S.)
| | - Carmen Fueyo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Ángel Fernández
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - María José Merino
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Universidad de Oviedo, 33203 Gijón, Spain;
| | - Carlos Olegario Hidalgo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| |
Collapse
|
28
|
Cambra JM, Martinez EA, Rodriguez-Martinez H, Gil MA, Cuello C. Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals (Basel) 2021; 11:ani11051414. [PMID: 34069238 PMCID: PMC8156047 DOI: 10.3390/ani11051414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
- Correspondence:
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
29
|
A new sperm selection criterion for cryopreservation of boar semen. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
This study aimed to define potential markers that could determine the suitability of ejaculate for cryopreservation. Fresh semen from eleven boars (4–7 ejaculates/boar), regardless of their sperm motility, was subjected to a cryopreservation procedure. The sperm quality before and after freezing was assessed based on the sperm membrane permeability and acrosome integrity. The results showed that it was possible to effectively cryopreserve ejaculates below the accepted standards of 70–80% of fresh motile sperm and still obtain a high cryosurvival rate. Moreover, a significant correlation was found between the percentage of viable sperm with apoptotic-like changes, viable sperm with reacted acrosomes, and the cryosurvival rate. The proposed markers for assessing the quality of fresh semen could be used to predict the success of cryopreservation procedures.
Collapse
|
30
|
Abstract
In modern livestock breeding, cryopreserved semen is routinely used for artificial insemination. Sperm cryopreservation allows for long-term storage of insemination doses and secures reproduction at a desired time point. In order to cryopreserve semen, it needs to be carefully processed to preserve its vital functions after thawing. In this chapter, we describe the processes involved in cryopreservation of bull, stallion, and boar sperm. These include preparation of diluents, dilution of sperm in primary and freezing extender, slow cooling from room temperature to 5 °C, packaging of insemination doses in straws, freezing at a defined cooling rate in liquid nitrogen vapor, cryogenic storage, and thawing. Two-step dilution approaches, with commonly used diluents, are presented, namely, TRIS-egg yolk (TEY) extender for bull sperm, skim milk (INRA-82) extender for stallion sperm, and lactose-egg yolk (LEY) extender for boar sperm. Furthermore, simple methods are presented for cooling and freezing of sperm at defined cooling rates.
Collapse
|
31
|
Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. BIOLOGY 2021; 10:biology10020159. [PMID: 33671276 PMCID: PMC7923199 DOI: 10.3390/biology10020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor β1 (TGF-β1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-β1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-β1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.
Collapse
|
32
|
París-Oller E, Navarro-Serna S, Soriano-Úbeda C, Lopes JS, Matás C, Ruiz S, Latorre R, López-Albors O, Romar R, Cánovas S, Coy P. Reproductive fluids, used for the in vitro production of pig embryos, result in healthy offspring and avoid aberrant placental expression of PEG3 and LUM. J Anim Sci Biotechnol 2021; 12:32. [PMID: 33583428 PMCID: PMC7883450 DOI: 10.1186/s40104-020-00544-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits. Results The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00544-0.
Collapse
Affiliation(s)
- E París-Oller
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Navarro-Serna
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Soriano-Úbeda
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - J S Lopes
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Matás
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Ruiz
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - R Latorre
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - O López-Albors
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - R Romar
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Cánovas
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - P Coy
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
33
|
Delgado-Bermúdez A, Mateo-Otero Y, Llavanera M, Bonet S, Yeste M, Pinart E. HVCN1 but Not Potassium Channels Are Related to Mammalian Sperm Cryotolerance. Int J Mol Sci 2021; 22:ijms22041646. [PMID: 33562049 PMCID: PMC7914938 DOI: 10.3390/ijms22041646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Little data exist about the physiological role of ion channels during the freeze–thaw process in mammalian sperm. Herein, we determined the relevance of potassium channels, including SLO1, and of voltage-gated proton channels (HVCN1) during mammalian sperm cryopreservation, using the pig as a model and through the addition of specific blockers (TEA: tetraethyl ammonium chloride, PAX: paxilline or 2-GBI: 2-guanidino benzimidazole) to the cryoprotective media at either 15 °C or 5 °C. Sperm quality of the control and blocked samples was performed at 30- and 240-min post-thaw, by assessing sperm motility and kinematics, plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and intracellular O2−⁻ and H2O2 levels. General blockade of K+ channels by TEA and specific blockade of SLO1 channels by PAX did not result in alterations in sperm quality after thawing as compared to control samples. In contrast, HVCN1-blocking with 2-GBI led to a significant decrease in post-thaw sperm quality as compared to the control, despite intracellular O2−⁻ and H2O2 levels in 2-GBI blocked samples being lower than in the control and in TEA- and PAX-blocked samples. We can thus conclude that HVCN1 channels are related to mammalian sperm cryotolerance and have an essential role during cryopreservation. In contrast, potassium channels do not seem to play such an instrumental role.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; (A.D.-B.); (Y.M.-O.); (M.L.); (S.B.); (M.Y.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
34
|
Cuello C, Martinez CA, Cambra JM, Parrilla I, Rodriguez-Martinez H, Gil MA, Martinez EA. Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. Int J Mol Sci 2021; 22:ijms22031222. [PMID: 33513717 PMCID: PMC7865857 DOI: 10.3390/ijms22031222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.
Collapse
Affiliation(s)
- Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Cristina A. Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
- Correspondence:
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| |
Collapse
|
35
|
Galo JM, Streit-Jr DP, Corcini CD, Varela-Jr AS, Jardim RD, Ribeiro RP. Protein profile as a quality indicator of cryopreserved semen from Tambaqui Colossoma macropomum (Cuvier, 1818). BRAZ J BIOL 2020; 80:752-762. [PMID: 31778482 DOI: 10.1590/1519-6984.219140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to evaluate the association between proteins in the seminal plasma of tambaqui Colossoma macropomum (Cuvier, 1818) with seminal quality indicators after thawing. The semen was cryopreserved with a dilution based on BTS with 8% DMSO. A 200 µL sample of semen from each animal was diluted in 800 µL BTS, centrifuged at 800 rpm, and the supernatant was cryopreserved to further analyze of the protein profile of seminal plasma through one-dimensional electrophoresis (SDS-PAGE). After 15 days of cryopreservation, a cryopreserved semen straw was thawed to analyze both qualitative and quantitative parameters. When considering all collections, the SDS-PAGE identified 15 protein bands in the seminal plasma of tambaqui. When the interaction (presence or absence) between proteins observed in the seminal plasma and the post thawed spermatic parameters was evaluated, we observed a great influence of the presence of proteins on spermatic quality. A greater (P<0.05) fertilization rate was observed with the presence of proteins 12, 34, 44, 85, and 90 kDa. Proteins in seminal plasma of tambaqui influenced the spermatic quality after thawing, and thus, they can be utilized as an indicator of sperm quality, especially the proteins with a molecular weight ≤ 50 kDa.
Collapse
Affiliation(s)
- J M Galo
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia - IFRO, Campus Ariquemes, Rodovia RO-257, Km 13, CEP 76878-899, Ariquemes, RO, Brasil
| | - D P Streit-Jr
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 7712, CEP 91540-000, Porto Alegre, RS, Brasil
| | - C D Corcini
- Faculdade de Veterinária, Universidade Federal de Pelotas - UFPEL, Rua Gomes Carneiro, 01, Centro, CEP 96010-900, Pelotas, RS, Brasil
| | - A S Varela-Jr
- Setor de Morfologia-Histologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Campus Carreros, Prédio 06, CEP 96203-000, Rio Grande, RS, Brasil
| | - R D Jardim
- Setor de Morfologia-Histologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Campus Carreros, Prédio 06, CEP 96203-000, Rio Grande, RS, Brasil
| | - R P Ribeiro
- Departamento de Zootecnia, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, CEP 87030-121, Bairro Zona 07, Maringá, PR, Brasil
| |
Collapse
|
36
|
González R, Pericuesta E, Gutiérrez-Adán A, Sjunnesson YCB. Effect of an altered hormonal environment by blood plasma collected after adrenocorticotropic administration on embryo development and gene expression in porcine embryos. Theriogenology 2020; 162:15-21. [PMID: 33388725 DOI: 10.1016/j.theriogenology.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023]
Abstract
Early embryonic development may be affected by adrenal hyperactivity in stressful situations which may lead to endocrine changes in the embryo environment. A sensitive period in porcine embryo development is the 4-cell stage when the embryo genome activation occurs. A mixed in vivo-in vitro system was implemented to test whether an altered milieu around this stage could affect embryo development and blastocyst quality in the porcine model. After in vitro maturation and fertilisation, presumptive zygotes were exposed for 24 h to plasma collected after ovulation from adrenocorticotropic hormone (ACTH)-treated, non-ACTH-treated sows; and, medium without plasma, supplemented with bovine serum albumin. Subsequently, embryo development and differences in gene expression were tested among treatments. Cleavage and blastocyst rates did not differ between treatments. Blastocyst quality by morphology assessment was similar when all the resulting blastocysts were included in the analysis. However, when only expanded blastocysts (and onwards) were included in the analysis, the blastocysts from the non-ACTH plasma group showed better quality score. Blastocyst quality by morphological assessment was not mirrored by the transcription levels of various important genes for embryo development whose gene expression profile did not significantly differ among groups. It is likely that the effect of the altered environment provided by plasma from ACTH-treated sows was too short to affect embryo development. Therefore, a brief exposure to an altered endocrine environment may not have harmful consequences for the embryo once fertilisation occurs.
Collapse
Affiliation(s)
- Raquel González
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden.
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Ylva C B Sjunnesson
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden
| |
Collapse
|
37
|
Cambra JM, Jauregi-Miguel A, Alvarez-Rodriguez M, Parrilla I, Gil MA, Martinez EA, Cuello C, Rodriguez-Martinez H, Martinez CA. Allogeneic Embryos Disregulate Leukemia Inhibitory Factor (LIF) and Its Receptor in the Porcine Endometrium During Implantation. Front Vet Sci 2020; 7:611598. [PMID: 33330727 PMCID: PMC7732548 DOI: 10.3389/fvets.2020.611598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
Despite its advantages for pig breeding, embryo transfer (ET) has a major handicap: high embryo mortality during the pre- and implantation period, probably caused by divergent phenomena of tolerance between the immunologically unrelated (i.e., allogeneic) embryos and the recipient sow. Thus, to reach a similar maternal tolerance as in conventional breeding by artificial insemination (AI) would be the key to ET-success. For this reason, we studied the expression of the leukemia inhibitory factor (LIF) cytokine and its receptor in the pig endometrium during the implantation period (days 18 and 24) in sows subjected to ET (AL group) vs. post-cervical-AI controls (Hemi-AL group). Quantification of expression was performed at both mRNA (rt-qPCR) and protein (WB) levels. The expression of endometrial LIF on day 24 was considerably lower in ET than in AI pregnancies. Correlations between endometrial mRNA levels of LIF and LIF-R showed that, contrary to early AI-pregnancies, ET-pregnancies lack an inverse relation between cytokine and receptor levels. In conclusion, ET-pregnancies lack sufficient endometrial levels of LIF to develop adequate immunotolerance mechanisms to prevent the rejection of allogeneic ET-embryos.
Collapse
Affiliation(s)
- Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain.,Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Amaia Jauregi-Miguel
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Sweett H, Fonseca PAS, Suárez-Vega A, Livernois A, Miglior F, Cánovas A. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci Rep 2020; 10:20102. [PMID: 33208801 PMCID: PMC7676258 DOI: 10.1038/s41598-020-75758-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Fertility plays a key role in the success of calf production, but there is evidence that reproductive efficiency in beef cattle has decreased during the past half-century worldwide. Therefore, identifying animals with superior fertility could significantly impact cow-calf production efficiency. The objective of this research was to identify candidate regions affecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single-step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and five windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A different set of 14 prioritized genes were identified for SM and five were previously identified as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Significant enrichment results were identified for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed significant GO terms associated with male fertility. The identification of these regions contributes to a better understanding of fertility associated traits and facilitates the discovery of positional candidate genes for future investigation of causal mutations and their implications.
Collapse
Affiliation(s)
- H Sweett
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - P A S Fonseca
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Suárez-Vega
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Livernois
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F Miglior
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
39
|
Parrilla I, Martinez CA, Cambra JM, Lucas X, Ferreira-Dias G, Rodriguez-Martinez H, Cuello C, Gil MA, Martinez EA. Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals (Basel) 2020; 10:ani10112028. [PMID: 33158034 PMCID: PMC7692685 DOI: 10.3390/ani10112028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary A proper uterine environment is basic for obtaining optimal embryo transfer outputs in domestic species, including the pig. However, scarce information is available about the uterine immune response of recipient (uninseminated) sows when receiving embryos during embryo transfer. Endometrial cytokine profile is among the main factors regulating uterine receptivity to embryos. In this study, using Luminex MAP® technology, we found important differences in the endometrial production in most of the 16 cytokines analyzed between recipient sows and embryo-bearing (inseminated) sows six days after estrus, with a predominant cytokine anti-inflammatory environment in the embryo-bearing endometria. These observations suggest that insemination components and/or early embryos induce an endometrium immune-tolerant cytokine profile at Day 6 of the cycle. The findings could contribute importantly to design strategies to maximize the reproductive performance of recipients after embryo transfer in swine. Abstract In the context of porcine embryo transfer (ET) technology, understanding the tightly regulated local uterine immune environment is crucial to achieve an adequate interaction between the transferred embryos and the receiving endometrium. However, information is limited on the uterine immune status of cyclic-recipient sows when receiving embryos during ET. The present study postulated that the anti- and proinflammatory cytokine profile 6 days after the onset of estrus differs between endometria from uninseminated cyclic sows and blastocyst-bearing sows. On Day 6 of the cycle, endometrial explants were collected from sows inseminated or not inseminated during the postweaning estrus and cultured for 22 h. The culture medium was then analyzed for the contents of a total of 16 cytokines using Luminex MAP® technology. The results showed important differences in the endometrial production of most cytokines between the sow categories, with a predominant anti-inflammatory environment displayed by the blastocyst-bearing endometria. These findings suggest that sperm, seminal plasma (SP) and/or early embryos modify the uterine environment by inducing an immune-tolerant cytokine profile already visible at Day 6. Whether the SP or some of its active components may help to develop strategies to maximize the reproductive performance of recipients after ET needs further investigation.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Correspondence: (I.P.); (C.A.M.)
| | - Cristina A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
- Correspondence: (I.P.); (C.A.M.)
| | - Josep M. Cambra
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Xiomara Lucas
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Cristina Cuello
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Maria A. Gil
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| | - Emilio A. Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (J.M.C.); (X.L.); (C.C.); (M.A.G.); (E.A.M.)
- Campus de Ciencias de la Salud, Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30071 Murcia, Spain
| |
Collapse
|
40
|
Balogh E, Dálnoki AB, Rózsa L, Debnár VJ, Varga-Balogh O, Rátky J, Zsolnai A, Anton I. Evaluation of porcine semen quality by portable and desktop CASA systems - Short communication. Acta Vet Hung 2020; 68:197-199. [PMID: 32894730 DOI: 10.1556/004.2020.00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 11/19/2022]
Abstract
When using artificial insemination in porcine reproduction, one of the most important requirements is the suitable quality of semen regarding its total motility (TM) and progressive motility (PM). Computer-assisted sperm analysis (CASA) is an appropriate method to analyse the quality of semen. Recently a portable instrument has been developed to help specialists in their everyday field work. In our study, semen quality was measured simultaneously by the portable device (Ongo) and a laboratory CASA system (Microptic) to compare TM and PM values obtained by these appliances at a concentration of 50 × 106 spermatozoa/mL. Agreement between measurements was evaluated with a Bland-Altman plot. Strong correlation was found between the investigated instruments for all the three parameters, i.e. sperm concentration, TM and PM. However, a few measurements fell outside the defined range of acceptance.
Collapse
Affiliation(s)
- Eszter Balogh
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
- 3University of Debrecen, Doctoral School of Animal Science, Debrecen, Hungary
| | - Anna Boglárka Dálnoki
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| | - László Rózsa
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| | - Viktória Johanna Debnár
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| | - Orsolya Varga-Balogh
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| | - József Rátky
- 2University of Veterinary Medicine, Budapest, Hungary
- 4Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Attila Zsolnai
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| | - István Anton
- 1NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, Herceghalom, H-2053, Hungary
| |
Collapse
|
41
|
Deori S, Johannisson A, Morrell J. Single Layer Centrifugation with 20% or 30% Porcicoll separates the majority of spermatozoa from a sample without adversely affecting sperm quality. Reprod Domest Anim 2020; 55:1337-1342. [PMID: 32687617 DOI: 10.1111/rda.13779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
Centrifugation of boar semen through one layer of 40% colloid (Porcicoll) was previously shown to separate spermatozoa from bacteria without having a detrimental effect on sperm quality. However, some spermatozoa were lost. The purpose of the present study was to determine whether 20% or 30% Porcicoll could be used to recover most of the spermatozoa without impacting on sperm quality. Insemination doses (n = 10) from a commercial boar station were sent to the laboratory at the Swedish University of Agricultural Sciences and processed by Single Layer Centrifugation with 20% and 30% Porcicoll approximately 7 hr after semen collection. The resulting sperm samples and controls were evaluated for sperm quality immediately and again after storage at 16-18°C for 4 and 7 days. Sperm recovery was 94 ± 18% and 87 ± 15% for 20% and 30% Porcicoll, respectively (p > .05). Sperm mitochondrial membrane potential and chromatin integrity were unaffected (p > .05). The proportion of live spermatozoa producing superoxide (9 ± 8%, 7 ± 6% and 3 ± 1%; p < .05), and the proportion of spermatozoa with high stainability DNA (0.68 ± 19%, 0.61 ± 0.22% and 0.96 ± 0.23%; p < .05- <0.01), were marginally increased whereas membrane integrity, although high, was lower in the centrifuged samples than in the controls (82 ± 8%, 83 ± 5% versus 92 ± 4%; p < .05). In conclusion, centrifugation through 20% or 30% Porcicoll enables most spermatozoa to be recovered, without having a major effect on sperm quality. These results are encouraging for further studies involving microbiological investigation of the processed samples, and scaling-up to process larger volumes of boar ejaculates.
Collapse
Affiliation(s)
- Sourabh Deori
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Anders Johannisson
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jane Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
42
|
Parrilla I, Martinez EA, Gil MA, Cuello C, Roca J, Rodriguez-Martinez H, Martinez CA. Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Anim Reprod 2020; 17:e20200022. [PMID: 33029213 PMCID: PMC7534575 DOI: 10.1590/1984-3143-ar2020-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seminal plasma (SP) supports not only sperm function but also the ability of spermatozoa to withstand biotechnological procedures as artificial insemination, freezing or sex sorting. Moreover, evidence has been provided that SP contains identifiable molecules which can act as fertility biomarkers, and even improve the output of assisted reproductive technologies by acting as modulators of endometrial and embryonic changes of gene expression, thus affecting embryo development and fertility beyond the sperm horizon. In this overview, we discuss current knowledge of the composition of SP, mainly proteins and cytokines, and their influence on semen basic procedures, such as liquid storage or cryopreservation. The role of SP as modulator of endometrial and embryonic molecular changes that lead to successful pregnancy will also be discussed.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Emilio Arsenio Martinez
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Maria Antonia Gil
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Jordi Roca
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina Alicia Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Ruiz-Conca M, Gardela J, Martínez CA, Wright D, López-Bejar M, Rodríguez-Martínez H, Álvarez-Rodríguez M. Natural Mating Differentially Triggers Expression of Glucocorticoid Receptor (NR3C1)-Related Genes in the Preovulatory Porcine Female Reproductive Tract. Int J Mol Sci 2020; 21:ijms21124437. [PMID: 32580389 PMCID: PMC7352215 DOI: 10.3390/ijms21124437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Mating initiates dynamic modifications of gene transcription in the female reproductive tract, preparing the female for fertilization and pregnancy. Glucocorticoid signaling is essential for the homeostasis of mammalian physiological functions. This complex glucocorticoid regulation is mediated through the glucocorticoid receptor, also known as nuclear receptor subfamily 3 group C member 1 (NR3C1/GR) and related genes, like 11β-hydroxysteroid dehydrogenases (HSD11Bs) and the FK506-binding immunophilins, FKBP5 and FKBP4. This study tested the transcriptome changes in NR3C1/GR regulation in response to natural mating and/or cervical deposition of the sperm-peak ejaculate fraction collected using the gloved-hand method (semen or only its seminal plasma), in the preovulatory pig reproductive tract (cervix to infundibulum, 24 h after mating/insemination/infusion treatments). Porcine cDNA microarrays revealed 22 NR3C1-related transcripts, and changes in gene expression were triggered by all treatments, with natural mating showing the largest differences, including NR3C1, FKBP5, FKBP4, hydroxysteroid 11-beta dehydrogenase 1 and 2 (HSD11B1, HSD11B2), and the signal transducer and activator of transcription 5A (STAT5A). Our data suggest that natural mating induces expression changes that might promote a reduction of the cortisol action in the oviductal sperm reservoir. Together with the STAT-mediated downregulation of cytokine immune actions, this reduction may prevent harmful effects by promoting tolerance towards the spermatozoa stored in the oviduct and perhaps elicit spermatozoa activation and detachment after ovulation.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Jaume Gardela
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Cristina Alicia Martínez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, 58183 Linköping, Sweden;
| | - Manel López-Bejar
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Heriberto Rodríguez-Martínez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Manuel Álvarez-Rodríguez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Correspondence: ; Tel.: +46-(0)72942-7883
| |
Collapse
|
44
|
Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. Int J Mol Sci 2020; 21:ijms21103662. [PMID: 32455957 PMCID: PMC7279338 DOI: 10.3390/ijms21103662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
The infusion of boar seminal plasma (SP) before artificial insemination (AI) positively alters the expression of endometrial genes and pathways involved in embryo development. This study aimed to determine which transcriptome changes occur in preimplantation embryos in response to SP infusions during estrus. Postweaning estrus sows received 40-mL intrauterine infusions of either SP (N = 6) or BTS extender (control group; N = 6) 30 min before each of two post-cervical AIs. On Day 6, embryos were surgically collected and analyzed for differential gene expression. Microarray analysis of embryos revealed 210 annotated genes, differentially expressed (p-value < 0.05 and fold change </> 2) in SP-blastocysts, compared to controls. Most of these genes were associated with biological, cellular, metabolic and developmental processes. The pathways enriched among the upregulated genes related to signal transduction, cellular processes and the endocrine system. Among altered genes involved in these pathways, the SP-group showed a conspicuous overexpression of ApoA-I, CDK1, MAPK1, SMAD2, PRKAA1 and RICTOR, with reported key roles in embryo development, implantation, or progression of pregnancy. In conclusion, the results demonstrate that SP infusions prior to AI upregulates the expression of embryo development related genes in Day 6 pig embryos.
Collapse
|
45
|
Martinez CA, Rubér M, Rodriguez-Martinez H, Alvarez-Rodriguez M. Pig Pregnancies after Transfer of Allogeneic Embryos Show a Dysregulated Endometrial/Placental Cytokine Balance: A Novel Clue for Embryo Death? Biomolecules 2020; 10:E554. [PMID: 32260537 PMCID: PMC7226322 DOI: 10.3390/biom10040554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Pig embryo transfer (ET) is burdened by high embryo mortality, with cytokines playing a significant role in recruitment of immune cells during embryo attachment and placentation. We hereby tested if their levels in endometrium and placenta from sows carrying hemi-allogeneic (artificially inseminated sows; C+ positive control) or allogeneic embryos (sows subjected to ET; ET) during peri-implantation (D18) or post-implantation (D24) are suitable mirrors of embryo rejection or tolerance after ET. Non-pregnant sows (C-) were used as negative controls. A set of cytokines was assayed in the tissues through multiplexed microsphere-based flow cytometry (Luminex xMAP, Millipore. USA). Fewer (58.7%. p < 0.003) conceptuses were recovered at D24 after ET compared to C+ (80.9%); with more than 20% of the ET conceptuses being developmentally delayed. Cytokine levels shifted during implantation. Anti-inflammatory IL-10 levels were significantly (p < 0.05) lower in ET sows compared to C+ at D24 of pregnancy. The C+ controls (carrying hemi-allogeneic embryos) consistently showed higher levels of pro-inflammatory TNF-α, IFN-γ, and IL-2 cytokines at D18 and IL-1α at D24, compared to the ET group. This clear dysregulation of pro- and anti-inflammatory cytokine levels in sows subjected to ET could be associated with an impaired maternal immune tolerance, explaining the high embryonic mortality of ET programs.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Clinical & Experimental Medicine (IKE), BHK/O&G Linköping University, SE-58185 Linköping, Sweden; (M.R.); (H.R.-M.); (M.A.-R.)
| | | | | | | |
Collapse
|
46
|
The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci Rep 2020; 10:5061. [PMID: 32193402 PMCID: PMC7081221 DOI: 10.1038/s41598-020-60810-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Semen modifies the expression of genes related to immune function along the porcine female internal genital tract. Whether other pathways are induced by the deposition of spermatozoa and/or seminal plasma (SP), is yet undocumented. Here, to determine their relative impact on the uterine and tubal transcriptomes, microarray analyses were performed on the endocervix, endometrium and endosalpinx collected from pre-ovulatory sows 24 h after either mating or artificial insemination (AI) with specific ejaculate fractions containing spermatozoa or sperm-free SP. After enrichment analysis, we found an overrepresentation of genes and pathways associated with sperm transport and binding, oxidative stress and cell-to-cell recognition, such as PI3K-Akt, FoxO signaling, glycosaminoglycan biosynthesis and cAMP-related transcripts, among others. Although semen (either after mating or AI) seemed to have the highest impact along the entire genital tract, our results demonstrate that the SP itself also modifies the transcriptome. The detected modifications of the molecular profiles of the pre/peri-ovulatory endometrium and endosalpinx suggest an interplay for the survival, transport and binding of spermatozoa through, for instance the up-regulation of the Estrogen signaling pathway associated with attachment and release from the oviductal reservoir.
Collapse
|
47
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
48
|
Safety assessment of poly(N-vinylcaprolactam) as a potential drug carrier in extenders for boar sperm cryopreservation. Toxicol In Vitro 2020; 65:104766. [PMID: 31923582 DOI: 10.1016/j.tiv.2020.104766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
Polymers may be used to deliver compounds in freezing extenders to minimize injuries in spermatozoa during cryopreservation, although their activity and toxicity for boar sperm are unknown. This study investigated the effects of the polymer (N-vinylcaprolactam) (PNVCL), when included in extenders for boar sperm cryopreservation. In Experiment 1, sperm was exposed to PNVCL at: 0 (control); 39.1; 78.1; 156.3; and 312.5 μg/mL. Spermatozoa structure, kinetics and biochemical functions were unaltered in contact with PNVCL at 38 °C (P > .05) but declined with prolonged exposure (10, 60 and 120 min) in all treatments (P > .05). In Experiment 2, after inclusion of PNVCL in the freezing extender at the same concentrations, post-thawing sperm quality did not differ compared to the control (P > .05). Lipid peroxidation and the production of reactive oxygen species were the only parameters of sperm quality that were unaffected in both experiments, even after contact with PNVCL for 120 min (P > .05). As no negative effects were observed in post-thawing boar sperm quality, PNVCL did not incur in cytotoxicity and may be a potential carrier for antioxidants in freezing extenders.
Collapse
|
49
|
Martinez CA, Cambra JM, Parrilla I, Roca J, Ferreira-Dias G, Pallares FJ, Lucas X, Vazquez JM, Martinez EA, Gil MA, Rodriguez-Martinez H, Cuello C, Álvarez-Rodriguez M. Seminal Plasma Modifies the Transcriptional Pattern of the Endometrium and Advances Embryo Development in Pigs. Front Vet Sci 2019; 6:465. [PMID: 31921921 PMCID: PMC6930161 DOI: 10.3389/fvets.2019.00465] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Seminal plasma (SP) promotes sperm survival and fertilizing capacity, and potentially affects embryo development, presumably via specific signaling pathways to the internal female genital tract. Objectives: This study evaluated how heterologous SP, infused immediately before postcervical artificial insemination (AI) affected embryo development and the transcriptional pattern of the pig endometria containing embryos. Materials and Methods: Postweaning estrus sows (n = 34) received 40-mL intrauterine infusions of either heterologous pooled SP or Beltsville Thawing Solution (BTS; control) 30 min before AI of semen extended to 10% of homologous SP. Embryos (all sows) and endometrium samples (3 sows/group) were removed during laparotomy 6 days after the infusion of SP or BTS to morphologically evaluate the embryos to determine their developmental stage and to analyze the endometrial transcriptome using microarrays (PORGENE 1.0 ST GeneChip array, Affymetrix) followed by qPCR for further validation. Results: Embryo viability was equal between the groups (~93%), but embryo development was significantly (P < 0.05) more advanced in the SP-treated group compared to control. A total of 1,604 endometrium transcripts were differentially expressed in the SP group compared to the control group. An enrichment analysis showed an overrepresentation of genes and pathways associated with the immune response, cytokine signaling, cell cycle, cell adhesion, and hormone response, among others. Conclusions: SP infusions prior to AI positively impacted the preimplantation embryo development and altered the expression of the endometrial genes and pathways potentially involved in embryo development.
Collapse
Affiliation(s)
- Cristina A Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain.,Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Inmaculada Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Jordi Roca
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Graça Ferreira-Dias
- Department of Morphology and Function, University of Lisbon, Lisbon, Portugal
| | - Francisco J Pallares
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Xiomara Lucas
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Juan M Vazquez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Emilio A Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Maria A Gil
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | | | - Cristina Cuello
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | | |
Collapse
|
50
|
Peña ST, Stone F, Gummow B, Parker AJ, Paris DBBP. Tropical summer induces DNA fragmentation in boar spermatozoa: implications for evaluating seasonal infertility. Reprod Fertil Dev 2019; 31:590-601. [PMID: 30414622 DOI: 10.1071/rd18159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023] Open
Abstract
Summer infertility continues to undermine pig productivity, costing the pig industry millions in annual losses. The boar's inefficient capacity to sweat, non-pendulous scrotum and the extensive use of European breeds in tropical conditions, can make the boar particularly vulnerable to the effects of heat stress; however, the link between summer heat stress and boar sperm DNA damage has not yet been demonstrated. Semen from five Large White boars was collected and evaluated during the early dry, late dry and peak wet seasons to determine the effect of seasonal heat stress on the quality and DNA integrity of boar spermatozoa. DNA damage in spermatozoa during the peak wet was 16-fold greater than during the early dry and nearly 9-fold greater than during the late dry season. Sperm concentration was 1.6-fold lower in the peak wet than early dry whereas no difference was found across several motility parameters as determined by computer-assisted sperm analysis. These results demonstrate that tropical summer (peak wet season) induces DNA damage and reduces concentration without depressing motility in boar spermatozoa, suggesting that traditional methods of evaluating sperm motility may not detect inherently compromised spermatozoa. Boar management strategies (such as antioxidant supplementation) need to be developed to specifically mitigate this problem.
Collapse
Affiliation(s)
- Santiago T Peña
- Discipline of Biomedical Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Felicity Stone
- Discipline of Biomedical Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Bruce Gummow
- Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Anthony J Parker
- College of Food, Agricultural and Environmental Sciences, Ohio State University, Wooster, OH 44691, USA
| | - Damien B B P Paris
- Discipline of Biomedical Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|