1
|
Williams SRO, Knight MI, Milner TC, Garner JB, Moate PJ, Giri K, Hannah MC, Jacobs JL, Wales WJ, Marett LC. Grain Type Impacts Feed Intake, Milk Production and Body Temperature of Dairy Cows Exposed to an Acute Heat Event in Early Lactation. Animals (Basel) 2025; 15:1045. [PMID: 40218438 PMCID: PMC11987967 DOI: 10.3390/ani15071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
The frequency, duration and intensity of heat events in Australia are forecast to increase. Different grain types result in different heat loads on animals, so grain selection could reduce the impact of heat exposure. Thirty-two multiparous Holstein cows at 86 days in milk were offered a basal forage diet plus one of four supplements: (1) BLY, rolled barley; (2) CAN, canola meal and rolled wheat; (3) CRN, disk-milled corn; or (4) WHT, rolled wheat. Cows were exposed to a 2-day heat wave in controlled-climate chambers. Overall, cows offered CAN had the lowest dry matter intake (DMI; 16.2 vs. 17.7 kg) but produced more energy-corrected milk (ECM; 34.9 vs. 29.6 kg) when compared with the other treatments. The results were similar during heat exposure. Cows fed CRN and CAN had the greatest body temperature (38.9 °C), and cows fed BLY had the lowest (38.4 °C). Despite this, cows fed BLY had the greatest reduction in DMI from the pre-challenge to the heat-challenge periods (-2.8 vs. -0.4 kg DM/d). There appears to be a small advantage to offering cows a concentrate with a greater protein concentration compared to one that has a greater concentration of fat or starch. The choice of grain to include in a dairy cow's ration during summers with acute heat events may simply be an economic one.
Collapse
Affiliation(s)
| | | | - Tori C. Milner
- Agriculture Victoria Research, Ellinbank, VIC 3821, Australia
| | - Josie B. Garner
- Agriculture Victoria Research, Ellinbank, VIC 3821, Australia
| | - Peter J. Moate
- Agriculture Victoria Research, Ellinbank, VIC 3821, Australia
| | - Khageswor Giri
- Agriculture Victoria Research, Bundoora, VIC 3083, Australia
| | | | - Joe L. Jacobs
- Agriculture Victoria Research, Ellinbank, VIC 3821, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | | | - Leah C. Marett
- Agriculture Victoria Research, Ellinbank, VIC 3821, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
2
|
Alam AMMN, Lee EY, Hossain MJ, Samad A, Kim SH, Hwang YH, Joo ST. Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:645-662. [PMID: 39165738 PMCID: PMC11331369 DOI: 10.5187/jast.2024.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 08/22/2024]
Abstract
Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.
Collapse
Affiliation(s)
- AMM Nurul Alam
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md Jakir Hossain
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Abdul Samad
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
3
|
Chauhan SS, Zhang M, Osei-Amponsah R, Clarke I, Sejian V, Warner R, Dunshea FR. Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Anim Front 2023; 13:60-68. [PMID: 37841767 PMCID: PMC10575297 DOI: 10.1093/af/vfad046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Surinder S Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Minghao Zhang
- Department of Food and Nutrition, Provincial Hospital, Shandong First Medical University, China
| | - Richard Osei-Amponsah
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Department of Animal Science, School of Agriculture, University of Ghana, Accra, Ghana
| | - Iain Clarke
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Veerasamy Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - Robyn Warner
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
DiGiacomo K, Simpson S, Leury BJ, Dunshea FR. Dietary Betaine Impacts Metabolic Responses to Moderate Heat Exposure in Sheep. Animals (Basel) 2023; 13:1691. [PMID: 37238121 PMCID: PMC10215872 DOI: 10.3390/ani13101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary betaine supplementation can ameliorate physiological responses to heat exposure (HE) in sheep. This experiment measured metabolic responses to glucose (intravenous glucose tolerance, IVGTT), insulin (insulin tolerance test, ITT), and adrenocorticotropic hormone (ACTH) challenges in Merino ewes (n = 36, 39.7 kg) maintained at thermoneutral (TN, 21 °C) or HE (18-43 °C) and supplemented with either 0, 2, or 4 g/day dietary betaine (n = 6 per group). Sheep had ad libitum access to water and were pair-fed such that the intake of the TN sheep mimicked that of the HE sheep. After 21 days of treatment, sheep were fitted with jugular catheters and subjected to consecutive daily challenges (IVGTT, ITT, and ACTH, d 21-23, respectively), followed by skeletal muscle and subcutaneous adipose tissue biopsy collections for gene expression analysis (d 24). The HE-treated sheep had a greater insulin:glucose ratio (p = 0.033), a greater estimated homeostatic model assessment of insulin resistance (HOMAIR; p = 0.029), and a reduced revised quantitative insulin sensitivity check index (RQUICKI; p = 0.015). Sheep fed betaine (2 + 4 g/day) had a greater basal plasma insulin (p = 0.017) and a reduced basal non-esterified fatty acid (NEFA; p = 0.036) concentration, while the RQUICKI was reduced (p = 0.001) in sheep fed betaine. The results suggested that betaine supplementation alters lipid metabolism by potentially improving insulin signaling, although these responses differ between TN and HE conditions. There was no other impact of temperature or dietary treatments on the tissue gene expressions measured. Our results support the notion that betaine, in part, acts to modify lipid metabolism.
Collapse
Affiliation(s)
- Kristy DiGiacomo
- School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia (B.J.L.); (F.R.D.)
| | - Sarah Simpson
- School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia (B.J.L.); (F.R.D.)
| | - Brian J. Leury
- School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia (B.J.L.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia (B.J.L.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation. Animals (Basel) 2022; 12:ani12162031. [PMID: 36009623 PMCID: PMC9404427 DOI: 10.3390/ani12162031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary A common nutritional strategy to reduce heat stress on dairy cows is to provide a more slowly degradable starch source that reduces the amount of heat generated during digestion. The aim of this experiment was to investigate the responses of late lactation dairy cows to cereal grain-based diets in a short-term heat challenge. Cows were offered a diet of alfalfa hay supplemented with either wheat grain (fast rumen degradable) or corn grain (slow rumen degradable). Individual cow measurements of feed intake, milk yield and composition, respiration rate, and body temperature were taken daily before, during and after a 4-day heat challenge, during which the cows were in individual controlled-climate chambers and exposed to air temperature up to 33 °C with 50% relative humidity. While exposed to the heat challenge during late lactation, cows that were offered corn grain had greater feed intake and tended to produce more energy-corrected milk but had lower respiration rates and similar body temperature to the cows offered wheat grain. The economic impact of feeding corn in place of wheat grain needs to be assessed before any comparative value of feeding corn grain or wheat grain can be determined. Abstract Cereal grains that differ in the rate and extent of ruminal fermentation differ in heat increment and may be used to improve thermoregulation during heat stress. This experiment investigated the responses of dairy cows in late lactation to a heat challenge when offered wheat-grain or corn-grain. Eighteen lactating cows, 220 ± 94 (mean ± standard deviation) days in milk, 3.7 ± 0.17 years of age and 558 ± 37 kg bodyweight, were allocated treatments containing 6 kg dry matter (DM)/day of wheat grain or 6 kg DM/day corn grain (9 per treatment) plus 14 kg DM/day of alfalfa hay. Measurements were made during a 7-day pre-challenge period at ambient conditions in individual stalls, during a 4-day heat challenge (temperature humidity index of 74 to 84) in individual controlled-climate chambers, then during a 7-day recovery period at ambient conditions in individual stalls. During the heat challenge, cows offered corn had lower respiration rates (p = 0.017) and greater feed intake (p = 0.021) but energy-corrected milk (p = 0.097) was not different to that of cows offered wheat. Feeding corn grain to dairy cows during a heat challenge reduced some of the negative impacts of heat stress, enabling the cows to consume more forage compared with supplementing with wheat grain.
Collapse
|
6
|
Reducing the Fermentability of Wheat with a Starch Binding Agent Reduces Some of the Negative Effects of Heat Stress in Sheep. Animals (Basel) 2022; 12:ani12111396. [PMID: 35681860 PMCID: PMC9179450 DOI: 10.3390/ani12111396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to investigate the effects of reducing the fermentability of grains on thermoregulatory responses in heat stressed (HS) lambs. To achieve this, wheat grain treated with a commercial starch binding agent, Bioprotect, is compared to maize, which has already demonstrated effects in ameliorating heat stress-induced thermoregulation responses and untreated wheat grains. An initial in vitro experiment was conducted to examine cumulative gas production from the fermentation of wheat grain with different dosages of the commercial starch binding agent, Bioprotect. Based on the in vitro results, an in vivo lamb experiment was conducted using 24 Merino lambs (1 year old; 42.6 ± 3.6 kg BW). The lambs were offered one of three dietary treatments: a wheat-based diet (WD), a Bioprotect treated wheat-based diet (BD), and a maize-based diet (MD). Three successive 1-week experimental periods were conducted with lambs from all dietary groups (P1, P2, and P3). During P1, lambs were exposed to a TN environment and fed a 1.7× Maintenance feed intake (MF) level; in P2, lambs were kept in a HS environment and fed a 1.7× MF level; and in P3, animals were kept in a HS environment and fed a 2× MF level. The in vitro experiment revealed a reduction in cumulative gas production (p < 0.05) from the Bioprotect treated wheat compared to untreated wheat samples. In the in vivo component of the study, the replacement of wheat with maize or 2% Bioprotect-treated wheat reduced the respiration rate (p < 0.001) and heart rate (p ≤ 0.01) of lambs during HS. There was a reduction in the concentration of blood gas variables such as a base excess of blood (BE(b)) and extracellular fluid (BE(ecf)), bicarbonate (CHCO3−), the partial pressure of carbon dioxide (pCO2), the total concentration of carbon dioxide (ctCO2), and sodium (Na+) (p ≤ 0.001 for all) during the periods of HS compared to the thermoneutral conditions. Moreover, BD- and MD-fed lambs had a higher blood potassium concentration (K+) than the WD-fed lambs (p = 0.008). The results of the present study suggest that Bioprotect can be a viable feed treatment strategy for treating rapidly fermentable grains such as wheat to alleviate the effects of HS. Further, Bioprotect-treated wheat could be an option to replace maize in concentrate rations in jurisdictions where maize is cost-prohibitive or unavailable.
Collapse
|
7
|
Gonzalez-Rivas P, Prathap P, DiGiacomo K, Cottrell J, Leury B, Chauhan S, Dunshea F. Reducing rumen starch fermentation of wheat with 3% NaOH does not reduce whole tract starch digestibility and increases energy utilization in wethers during heat stress. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Islam MA, Lomax S, Doughty AK, Islam MR, Clark CEF. Timing of eating during transition impacts feedlot cattle diet and liveweight gain. Animal 2020; 15:100137. [PMID: 33573939 DOI: 10.1016/j.animal.2020.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The timing of eating, relative to when feed is offered, is affected by the social rank of feedlot cattle due to limited feed bunk space. As cattle can select feed based on dietary preference, the timing of eating for cattle in feedlot may be associated with the ingested diet composition. Our objectives were to determine the nutritive value and timing of feed ingested by 100 feedlot cattle during transition and the association of timing of eating with feeding behaviours and average daily gain (ADG). Cattle behaviour and timing of eating were determined on 100 feedlot cattle using accelerometer-based ear tag sensors from days 3 to 6 post feedlot induction (observation period), and the ongoing impact of this period on ADG was determined for the full feed period (75 days). To determine eating patterns at the time of feed offer, cattle were grouped according to the number of days they were recorded as eating within 1 h of feed being offered across 4 observation days, G0: not present across 4 days, G1: present for 1 day, G2: 2 days, G3: 3 days and G4: present for each of the 4 days. Total mixed ration (TMR) samples were collected for nutritive value analysis from four locations along the feed bunk from the time feed was offered and at hourly intervals thereafter for 7 h each day during the observation period. The composition of feed in the bunk changed across the 7 h of measurement (P < 0.05). The DM and CP of feed increased from 65 to 70% and 15 to 16%, respectively, and the NDF decreased from 36 to 32%. Thus, the preferred TMR feed component was the fibrous dietary fraction. However, the overall composition of the ingested diet for 7 h post feeding was similar between groups. Cattle in G0 had reduced eating time (0.7 vs 4.8%; P < 0.001), rumination time (4.5 vs 19.5%; P < 0.001) and ADG (1.0 vs 1.3 kg/d; P < 0.05) across the study, as compared with cattle in G4. Offering a more fibrous ration during feedlot transition, and customised cattle segregation and/or customised feeding regimes based on sensor derived feeding behaviour profiles during acclimation to feedlot can optimise ADG, animal welfare and feedlot profit.
Collapse
Affiliation(s)
- M A Islam
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia; Department of Dairy Science, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.
| | - S Lomax
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| | - A K Doughty
- Allflex Australia Pty Ltd., 33 Neumann Road, Capalaba, QLD 4157, Australia
| | - M R Islam
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| | - C E F Clark
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
9
|
Cottrell JJ, Furness JB, Wijesiriwardana UA, Ringuet M, Liu F, DiGiacomo K, Leury BJ, Clarke IJ, Dunshea FR. The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals (Basel) 2020; 10:E690. [PMID: 32326633 PMCID: PMC7222789 DOI: 10.3390/ani10040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
With increases in the frequency, intensity and duration of heat waves forecast plus expansion of tropical agriculture, heat stress (HS) is both a current and an emerging problem. As cinnamon has been shown to increase insulin sensitivity, which is part of the adaptive response to HS, the aim of this experiment was to determine if cinnamon could improve insulin sensitivity and ameliorate HS in grower pigs. In a 2 × 2 factorial design, 36 female Large White × Landrace pigs were fed control (0%) vs. cinnamon (1.5%) diets and housed for 7 day under thermoneutral (20 °C, TN) vs. HS conditions (8 h 35 °C/16 h 28 °C, 35% relative humidity). At the completion of the challenge, insulin sensitivity was assessed by an intravenous glucose tolerance test (IVGTT). Heat stress increased parameters such as respiration rate and rectal temperature. Furthermore, biochemical changes in blood and urine indicated the pigs were experiencing respiratory alkalosis. Minimal modelling of parameters of insulin sensitivity showed that HS pigs had a lower insulin response to the IVGTT and improved insulin sensitivity. Cinnamon had additive effects with heat stress, reflected in lowering the insulin area under curve (AUC) and elevated insulin sensitivity compared to TN. However, this apparent improvement in insulin sensitivity did not ameliorate any of the other physiological symptoms of HS.
Collapse
Affiliation(s)
- Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - John B. Furness
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
- Department of Anatomy and Neurosciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia;
| | - Udani A. Wijesiriwardana
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Mitchell Ringuet
- Department of Anatomy and Neurosciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia;
| | - Fan Liu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Kristy DiGiacomo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| | - Iain J. Clarke
- Department of Physiology, Monash University, Clayton VIC 3168, Monash, Australia;
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville VIC 3010, Melbourne, Australia; (J.B.F.); (U.A.W.); (F.L.); (K.D.); (B.J.L.); (F.R.D.)
| |
Collapse
|
10
|
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci 2019; 162:108025. [PMID: 31841730 DOI: 10.1016/j.meatsci.2019.108025] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety.
Collapse
Affiliation(s)
- Paula A Gonzalez-Rivas
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
11
|
Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR. Genetic Selection for Thermotolerance in Ruminants. Animals (Basel) 2019; 9:E948. [PMID: 31717903 PMCID: PMC6912363 DOI: 10.3390/ani9110948] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
| | - Surinder S. Chauhan
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brendan Cullen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Iain J. Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| |
Collapse
|
12
|
Perennial Ryegrass Alkaloids Increase Respiration Rate and Decrease Plasma Prolactin in Merino Sheep under Both Thermoneutral and Mild Heat Conditions. Toxins (Basel) 2019; 11:toxins11080479. [PMID: 31430938 PMCID: PMC6723073 DOI: 10.3390/toxins11080479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
A study was undertaken to determine the effects of feeding two levels of perennial ryegrass alkaloids (nil vs. moderate) under two climatic conditions. Alkaloids were fed via endophyte-infected perennial ryegrass seed and hay. Twenty-four Merino ewe weaners (six months, initial BW 32 ± 1.7 kg) were used in a study that lasted for 21 days after 14 days of adaptation. Sheep were fed either a control or alkaloid (Alk, 110 μg/kg LW ergovaline and 75 μg/kg LW lolitrem B) supplemented diet. Sheep were exposed to either constant thermoneutral (TN, 21–22 °C, 49% RH) or mildly heated (HS, 33 °C 1000–1500 h, 28% relative humidity) conditions. Dietary Alk and HS reduced dry matter intake (DMI) (p < 0.001, p = 0.02, respectively) with the combination of both reducing DMI by 42%. Reductions in DMI resulted in a lower daily gain in the Alk treatment (p < 0.001). Feed digestibility was reduced in the combined treatment (p = 0.03). Rectal temperature, respiration rate, and skin temperature increased in the Alk treatment. Plasma prolactin concentrations were decreased by Alk and increased by mild HS. The data indicate that production is compromised in the presence of Alk and mild HS, with this effect being exacerbated by a combination of both.
Collapse
|
13
|
Betaine Improves Milk Yield in Grazing Dairy Cows Supplemented with Concentrates at High Temperatures. Animals (Basel) 2019; 9:ani9020057. [PMID: 30781822 PMCID: PMC6406857 DOI: 10.3390/ani9020057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/26/2019] [Accepted: 02/10/2019] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Heat events during summer can result in dramatic reductions in milk production in grazing dairy cows as they attempt to reduce their accumulated heat load. Therefore, there is interest in dietary manipulations that can decrease heat production or increase heat dissipation. One of the actions of sugar beet-derived betaine is to act as an osmolyte and reduce intracellular ion pumping and heat production. Therefore, this study was conducted to investigate the effects of dietary betaine supplementation on milk and milk component production in grazing dairy cows during hot periods in summer. Abstract Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.
Collapse
|
14
|
Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Trop Anim Health Prod 2018; 50:1763-1769. [DOI: 10.1007/s11250-018-1616-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 11/28/2022]
|