1
|
Tu T, Wang Q, Dong R, Liu X, Penttinen L, Hakulinen N, Tian J, Zhang W, Wang Y, Luo H, Yao B, Huang H. Achieving thermostability of a phytase with resistance up to 100 °C. J Biol Chem 2024; 300:107992. [PMID: 39547510 DOI: 10.1016/j.jbc.2024.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.90 Å), a variant with enhanced expression levels derived from Yersinia intermedia, to improve its thermostability. Among the 144 variants experimentally verified, 29 exhibited significantly improved thermostability with higher t1/2 values at 65 °C. Further combination and superposition led to APPAmut9 with an accumulation of five additional pairs of disulfide bonds and six single-point mutation sites, leading to an enhancement in its thermostability with a t1/2 value of 256.7 min at 65 °C, which was more than 75-fold higher than that of APPAmut4 (3.4 min). APPAmut9 exhibited a T50 value of 96 °C, representing a substantial increase of 40.9 °C compared to APPAmut4. Notably, approximately 70% of enzyme activity remained intact after exposure to boiling water at 100 °C for a holding period of 5 min. Significantly, these advantageous modifications were strategically positioned away from the catalytic pocket where enzymatic reactions occur to ensure minimal compromise on catalytic efficiency between APPAmut9 (11,500 ± 1100/mM/s) and APPAmut4 (12,300 ± 1600/mM/s). This study demonstrates the feasibility of engineering phytases with resistance to boiling using rational design strategies.
Collapse
Affiliation(s)
- Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruyue Dong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leena Penttinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Gebhardt JT, Dee SA, Little E, Scales BN, Kern DR. Evaluation of Extended Storage of Swine Complete Feed for Inactivation of Viral Contamination and Effect on Nutritional, Microbiological, and Toxicological Profiles. Animals (Basel) 2024; 14:393. [PMID: 38338036 PMCID: PMC10854509 DOI: 10.3390/ani14030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The extended storage of feed ingredients has been suggested as a method to mitigate the risk of pathogen transmission through contaminated ingredients. To validate the approach of extended storage of complete swine feed for the inactivation of swine viruses, an experiment was conducted wherein swine feed was inoculated with 10 mL of 1 × 105 TCID50/mL of porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and Senecavirus A (SVA) and stored for 58 d at 23.9 °C. Measures of feed quality were also evaluated at the initiation and conclusion of the storage period including screening for mycotoxins, characterization of select microbiological measures, and stability of phytase and dietary vitamins. Storing feed for 58 d under either ambient or anaerobic and temperature-controlled storage conditions did not result in substantial concerns related to microbiological profiles. Upon exposure to the feed following 58 d of storage in a swine bioassay, previously confirmed naïve pigs showed no signs of PEDV or SVA replication as detected by the PCR screening of oral fluids and serum antibody screening. Infection with SVA was documented in the positive control room through diagnostic testing through the State of Minnesota. For PRRSV, the positive control room demonstrated infection. For rooms consuming inoculated feed stored for 58 d, there was no evidence of PRRSV infection with the exception of unintentional aerosol transmission via a documented biocontainment breach. In summary, storing feed for 58 d at anaerobic and temperature-controlled environmental conditions of 23.9 °C validates that the extended storage of complete swine feed can be a method to reduce risks associated with pathogen transmission through feed while having minimal effects on measures of nutritional quality.
Collapse
Affiliation(s)
- Jordan T. Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Scott A. Dee
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN 56164, USA; (S.A.D.); (E.L.)
| | - Erin Little
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN 56164, USA; (S.A.D.); (E.L.)
| | | | - Doug R. Kern
- eGenesis, Cambridge, MA 02140, USA; (B.N.S.); (D.R.K.)
| |
Collapse
|
3
|
Weng Y, Wan A, Li Y, Liu Y, Chen X, Song H, Zhao CX. Scalable manufacturing of enzyme loaded alginate particles with excellent thermal and storage stability for industrial applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals (Basel) 2022; 12:3322. [PMID: 36496844 PMCID: PMC9740087 DOI: 10.3390/ani12233322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
The effects of pelleting process parameters and phytase source on the in-feed stability of phytase. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Gulizia J, Rueda M, Ovi F, Bonilla S, Prasad R, Jackson M, Gutierrez O, Pacheco W. Evaluate the effect of a commercial heat stable phytase on broiler performance, tibia ash, and mineral excretion from 1 to 49 days of age assessed using nutrient reduced diets. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Lautrou M, Narcy A, Dourmad JY, Pomar C, Schmidely P, Létourneau Montminy MP. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements. Front Vet Sci 2021; 8:734365. [PMID: 34901241 PMCID: PMC8654138 DOI: 10.3389/fvets.2021.734365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The sustainability of animal production relies on the judicious use of phosphorus (P). Phosphate, the mined source of agricultural phosphorus supplements, is a non-renewable resource, but phosphorus is essential for animal growth, health, and well-being. P must be provided by efficient and sustainable means that minimize the phosphorus footprint of livestock production by developing precise assessment of the bioavailability of dietary P using robust models. About 60% of the phosphorus in an animal's body occurs in bone at a fixed ratio with calcium (Ca) and the rest is found in muscle. The P and Ca requirements must be estimated together; they cannot be dissociated. While precise assessment of P and Ca requirements is important for animal well-being, it can also help to mitigate the environmental effects of pig farming. These strategies refer to multicriteria approaches of modeling, efficient use of the new generations of phytase, depletion and repletion strategies to prime the animal to be more efficient, and finally combining these strategies into a precision feeding model that provides daily tailored diets for individuals. The industry will need to use strategies such as these to ensure a sustainable plant-animal-soil system and an efficient P cycle.
Collapse
Affiliation(s)
- Marion Lautrou
- Département des sciences animales, Université Laval, Quebec, QC, Canada
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Agnès Narcy
- UMR Biologie des oiseaux et aviculture, INRA, Nouzilly, France
| | | | - Candido Pomar
- Agriculture et Agroalimentaire Canada, Sherbrooke, QC, Canada
| | - Philippe Schmidely
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | | |
Collapse
|
8
|
Mrudula Vasudevan U, Jaiswal AK, Krishna S, Pandey A. Thermostable phytase in feed and fuel industries. BIORESOURCE TECHNOLOGY 2019; 278:400-407. [PMID: 30709763 DOI: 10.1016/j.biortech.2019.01.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Phytase with wide ranging biochemical properties has long been utilized in a multitude of industries, even so, thermostability plays a crucial factor in choosing the right phytase in a few of the sectors. Mesophilic phytases are not considered to be a viable option in the feed industry owing to its limited stability in the required feed processing temperature. In the recent past, inclusion of thermostable phytase in fuel ethanol production from starch based raw material has been demonstrated with economic benefits. Therefore, considerable emphasis has been placed on using complementary approaches such as mining of extremophilic microbial wealth, encapsulation and using enzyme engineering for obtaining stable phytase variants. This article means to give an insight on role of thermostable phytases in feed and fuel industries and methods for its development, highlighting molecular determinants of thermostability.
Collapse
Affiliation(s)
- Ushasree Mrudula Vasudevan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Ireland
| | - Shyam Krishna
- MIMS Research Foundation, Calicut 673 007, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|