1
|
Abumandour M, Haddad S, Farrag F, Kandyel R, Roshdy K, Massoud D, Khalil EK. Biological aspects of the lingual papillae of the Arab Zebu cattle: a new perspicuity of its chad ecological adaptations. BMC ZOOL 2024; 9:21. [PMID: 39135086 PMCID: PMC11318158 DOI: 10.1186/s40850-024-00208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Our research is the first to explore the ultrastructural features of the lingual papillary system of Arab Zebu cattle, highlighting their Chadian environmental adaptations. RESULTS There were two types of papillary systems: gustatory (fungiform and circumvallate) and mechanical (filiform, conical, and lentiform). The dorsal surface of the apex and rostral parts of the body had well-developed filiform papillae, whereas the tip's surface had mucosal folds, tubercles, and few filiform papillae. The torus lingua's dorsal surface displayed few lentiform papillae, while two conical papillae subtypes and numerous circumvallate papillae were present on its lateral surfaces. A slight median ridge on the dorsal surface of the body had not been described previously. Six filiform papillae subtypes were identified: long and rod-like on the tip; tongue-like and elongated on the lateral area of the apex and body; transient conical and leaf-like on the median line. The accessory processes were: one pair (on long, tongue-like, and transient conical), two pairs (on leaf-like and elongated), and four pairs on the large conical papillae. The two fungiform papillae subtypes were surrounded by a groove and had taste pores (3-5 on the oval and 5-9 on the round papillae). The U-shaped annular bad were observed around the ovoid circumvallate papillae, and the circular bad were observed around the round ones. The circumvallate had taste pores (8-14 on the round's dorsal and lateral surfaces and 6-10 on the ovoid's lateral surface). CONCLUSION The papillary system's regional divergence was specialized for its harsh and semi-harsh diet.
Collapse
Affiliation(s)
- Mohamed Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt.
| | - Seham Haddad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| | - Ramadan Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Karam Roshdy
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Diaa Massoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
- Department of Biology, College of Science, Jouf University, P.O. Box 2014, Sakaka, Al-Jouf, Saudi Arabia
| | - Eman Kamal Khalil
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Abumandour MMA, Eldefrawy F, Morsy K, El-Bakary N, Hanafy BG. Scanning electron microscopic characterizations of the tongue of the Nubian goat (Capra aegagrus hircus): A specialized focus on its papillary system adaptation to Egyptian environmental conditions. Anat Histol Embryol 2023. [PMID: 36943131 DOI: 10.1111/ahe.12915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023]
Abstract
The current investigation was focused on describing the gross and scanning electron features of the Nubian goat (Capra aegagrus hircus) tongue, with new insights into its papillary adaptation to the Egyptian environment. The elongated tongue had a rostral free and the caudal fixed. The ventral apical surface is classified into the smaller rostral papillary region on the tip and the larger non-papillary region by the U-line of filiform papillae. Functionally, there are two papillary types: mechanical (filiform, conical and lentiform in addition to the longitudinal row of large conical papilla on the lateral of the body) and gustatory (fungiform and circumvallate). Filiform papillae were densely distributed on the dorsal surface of the apex and body, and on the lateral apical border and lateral surface of the body and root, in addition to the ventral surface of the tip. This filiform papillary system gives a raspy appearance to the dorsal surface. The conical and lentiform papillae were limited to the torus linguae. Circumvallate papillae are surrounded by an annular groove and slightly vallum. The lingual root was devoid of any papillae. Lingual papillary subtypes are filiform papillae (elongated and triangular), conical papillae (elongated and oval) and fungiform papillae (round and ovoid). The investigated Nubian goat may have developed a specialized papillary system due to regional differences in the distribution, structure and subtypes of the system, allowing it to adapt to the dried grasses and leaves of trees and bushes that are available in Upper Egypt's dry, hot climate.
Collapse
Affiliation(s)
- Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma Eldefrawy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen El-Bakary
- Department of Zoology, Faculty of Science, Damietta University, Damietta, Egypt
| | - Basma G Hanafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Abumandour MMA, Morsy K, Elghoul M. Morphological features of the Egyptian Ossimi sheep tongue: New scanning electron microscopic insights into its papillary system adaptations to Egyptian ecological conditions. Anat Histol Embryol 2023; 52:262-278. [PMID: 36321507 DOI: 10.1111/ahe.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 03/15/2023]
Abstract
The current study aims to illustrate the gross and scanning electron microscopic characterizations and ultrastructural adaptation of the lingual papillary system of Egyptian Ossimi sheep to Egyptian ecological conditions. The tongue had three regions: the apex (with a slightly bifurcated tip), the body (subdivided into rostral and caudal parts) and the root (subdivided into rostral papillary and caudal non-papillary parts). Torus linguae had two parts: the triangular rostral part (the caudal part of the body) and the quadrilateral wide part (the rostral part of the root). The lingual papillary system had mechanical (filiform, conical and lentiform) and gustatory (fungiform and circumvallate) types. Filiform papillae were heavily scattered on the dorsal surface of the apex, the rostral part of the body and the ventral surface of the papillary region of the tip. Filiform papillae had five subtypes (ventral and dorsal processed, triangular, leaf-like and triangular-processed papillae), while the conical papillae had three subtypes: two lingual (small, large) and one paralingual (elongated pointed), and the fungiform had two subtypes: the high-density ovoid (on the ventral surface of the tip) and round papillae (on the dorsal surface) that possessed a high number of taste pores, not previously described. They ranged from 5 to 10 for ovoid and 25 to 25 for round papillae. Each circumvallate papilla had an ovoid bulb (with 2-5 taste pores) encircled by an annular groove and two pads (i.e. not described previously). The papillary system's regional divergence was specialized for their harsh and semi-harsh diet.
Collapse
Affiliation(s)
- Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mahmoud Elghoul
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Moore AM, Hartstone-Rose A, Gonzalez-Socoloske D. Review of sensory modalities of sirenians and the other extant Paenungulata clade. Anat Rec (Hoboken) 2021; 305:715-735. [PMID: 34424615 DOI: 10.1002/ar.24741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/15/2021] [Accepted: 07/18/2021] [Indexed: 11/12/2022]
Abstract
Extant members of Paenungulata (sirenians, proboscideans, and hyracoideans) form a monophyletic clade which originated in Africa. While paenungulates are all herbivorous, they differ greatly in size, life history, and habitat. Therefore, we would expect both phylogenetically related similarities and ecologically driven differences in their use and specializations of sensory systems, especially in adaptations in sirenians related to their fully aquatic habitat. Here we review what is known about the sensory modalities of this clade in an attempt to better elucidate their sensory adaptations. Manatees have a higher frequency range for hearing than elephants, who have the best low-frequency hearing range known to mammals, while the hearing range of hyraxes is unknown. All paenungulates have vibrissae assisting in tactile abilities such as feeding and navigating the environment and share relatively small eyes and dichromatic vision. Taste buds are present in varying quantities in all three orders. While the olfactory abilities of manatees and hyraxes are unknown, elephants have an excellent sense of smell which is reflected by having the relatively largest cranial nerve related to olfaction among the three lineages. Manatees have the relatively largest trigeminal nerve-the nerve responsible for, among other things, mystacial vibrissae-while hyraxes have the relatively largest optic nerve (and therefore, presumably, the best vision) among the Paenungulata. All three orders have diverged significantly; however, they still retain some anatomical and physiological adaptations in common with regard to sensory abilities.
Collapse
Affiliation(s)
- Amanda Marie Moore
- Department of Biology, Andrews University, Berrien Springs, Michigan, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
5
|
Cizek P, Hamouzova P, Goździewska-Harłajczuk K, Klećkowska-Nawrot J, Kvapil P. Microscopic structure of the tongue in the lesser hedgehog tenrec (Echinops telfairi, Afrosoricida) and its relation to phylogenesis. Anat Sci Int 2020; 95:313-322. [PMID: 31933048 DOI: 10.1007/s12565-019-00522-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 12/01/2022]
Abstract
The tongue of the lesser hedgehog tenrec (Echinops telfairi) was evaluated by light and scanning electron microscopy. Dorsal and lateral surfaces of the tongue were densely covered with various types of lingual papillae. Two types of mechanical papillae (filiform and conical) and two types of sensory papillae (fungiform and vallate) were observed. Rostrocaudally, the number of spikes in filiform papillae increased. Filiform, crown-like papillae were found on the radix, as well as large conical papillae with a wide base and a caudally bent single spike. Fungiform papillae were scattered in four rows on the dorsal surface. Three vallate papillae in inverse triangular layout were developed in the area of the lingual radix. Taste buds were found in the sensory papillae, i.e., fungiform and vallate. The lingual glands were predominantly seromucous. These glands were evenly scattered from the caudal portion of the lingual apex to the lingual radix. Purely serous glands were localized close to vallate papillae. A histochemical analysis of glands was performed. Results were compared to the Afrotheria (tenrec's relatives) and Eulipotyphla (animals with similar feeding habits to tenrecs). This study is the first description of the lingual morphology in the member of the Order Afrosoricida. Moreover, it compares the effect of the phylogenetic relation to the effect of the feeding habits on the lingual morphology.
Collapse
Affiliation(s)
- Petr Cizek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic.
| | - Pavla Hamouzova
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 1 Kożuchowska Street, 50-631, Wrocław, Poland
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 1 Kożuchowska Street, 50-631, Wrocław, Poland
| | - Pavel Kvapil
- Zoo Ljubljana, Večna pot 70, 1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Massoud D, Abumandour MMA. Descriptive studies on the tongue of two micro‐mammals inhabiting the Egyptian fauna; the Nile grass rat (
Arvicanthis niloticus
) and the Egyptian long‐eared hedgehog (
Hemiechinus auritus
). Microsc Res Tech 2019; 82:1584-1592. [DOI: 10.1002/jemt.23324] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/02/2019] [Accepted: 06/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Diaa Massoud
- Department of BiologyCollege of Science, Jouf University Sakaka Saudi Arabia
- Department of Zoology, Faculty of ScienceFayoum University Fayoum Egypt
| | - Mohamed M. A. Abumandour
- Department of Anatomy and EmbryologyFaculty of Veterinary Medicine, Alexandria University Alexandria Egypt
| |
Collapse
|
7
|
Iwasaki SI, Erdoğan S, Asami T. Evolutionary Specialization of the Tongue in Vertebrates: Structure and Function. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Walther J, Golde J, Kirsten L, Tetschke F, Hempel F, Rosenauer T, Hannig C, Koch E. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-17. [PMID: 29264891 DOI: 10.1117/1.jbo.22.12.121717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 05/21/2023]
Abstract
Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.
Collapse
Affiliation(s)
- Julia Walther
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Department of Medical Physics and Biomedical Engi, Germany
| | - Jonas Golde
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Lars Kirsten
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Florian Tetschke
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Franz Hempel
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| | - Tobias Rosenauer
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Christian Hannig
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Policlinic of Operative and Pediatric Dentistry,, Germany
| | - Edmund Koch
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clini, Germany
| |
Collapse
|
9
|
El-Bakary NER, Abumandour MMA. Morphological Studies of the Tongue of the Egyptian Water Buffalo (Bubalus bubalis) and Their Lingual Papillae Adaptation for Its Feeding Habits. Anat Histol Embryol 2017; 46:474-486. [PMID: 28833390 DOI: 10.1111/ahe.12292] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
This work was conducted to describe the morphological characters of the tongue of Egyptian water buffalo (Bubalus bubalis). The lingual root and the dorsal middle region of apex and body in addition to the dorsal and ventral surface of lingual tip were devoided from any fungiform papillae. The lingual tip contains conical papillae only. The ventral surface of lingual apex was divided into two portions by the U-shaped fungiform line into papillary and non-papillary region. Histological investigation on the lingual surface epithelium and lamina propria submucosa reflects differences in these layers in different parts of the tongue. By SEM, there are two subtypes of filiform papillae: caudally directed papillae on dorsal surface and rostrally directed papillae on the lateral region of ventral surface of lingual apex. There are two subtypes of conical papillae: small slightly rostrally directed papillae on dorsal and ventral surface of lingual tip and large posteromedially directed papillae on dorsal surface of lingual root. The rounded circumvallate papillae consisted of round bulb surrounded by deep circular groove, which surrounded by circular pad. Higher magnification of filiform papillae indicates the presence of microcrests separated by microgrooves, and these microgrooves consisted of microrodes. The fungiform surface having micropores on the tip of elevated tubercle for taste buds pores. All these observed structures (microcrests, microgrooves, microrodes, tubercles, microridges) in a higher magnification allow animals to transport food particles through the oral cavity and help in the defensive behaviour. There are strong correlations between the tongue anatomical characteristics and its functions.
Collapse
Affiliation(s)
- N E R El-Bakary
- Department of Zoology, Faculty of Science, Damietta University, Damietta, Egypt
| | - M M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Rshide, Egypt
| |
Collapse
|
10
|
Abstract
We examined the dorsal lingual surface of an adult eastern grey kangaroo (Macropus gigantues) by scanning electron microscopy. The filiform papillae on the lingual apex and anterior body consisted of a main papilla and secondary papillae. The connective tissue core of the filiform papillae on the lingual apex had several processes. The filiform papillae on the lingual posterior body were thread-like in shape. The connective tissue core of the filiform papillae on the lingual posterior body consisted of many slender processes. The fungiform papillae were round in shape. Three vallate papillae with the apex of the triangle directed posteriorly consisted of a groove and pad. Several conical papillae derived from the posterolateral margin of the tongue where foliate papillae have been shown to be distributed in many other animal species. The surface structure of the tongue in the eastern grey kangaroo resembles that of the red kangaroo.
Collapse
|
11
|
Morphological variations of the vallate papillae in some mammalian species. Anat Sci Int 2014; 89:161-70. [DOI: 10.1007/s12565-013-0215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
|
12
|
Emura S, Okumura T, Chen H. Morphology of the lingual papillae in the brush-tailed rat kangaroo. Okajimas Folia Anat Jpn 2014; 90:85-88. [PMID: 24815106 DOI: 10.2535/ofaj.90.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We examined the dorsal lingual surface of an adult brush-tailed rat kangaroo (Bettongia penicillata) by scanning electron microscopy. The filiform and fungiform papillae on the lingual apex and body consisted of a main papilla and secondary papillae. The connective tissue core of the filiform papillae on the lingual apex was cylindrical in shape with a crushed top. The connective tissue core of the filiform papillae on the lingual body had one large and several small processes. The fungiform papillae were round in shape. The connective tissue core of the fungiform papillae had several depressions on its top. The surface of the vallate papillae was rough and the papillae were surrounded by a groove and a pad. Several long conical papillae derived from the posterolateral margin of the tongue where foliate papillae have been shown to be distributed in many other animal species. The long conical papillae were very similar to those of the koala and opossum.
Collapse
|
13
|
El Sharaby AA, Alsafy MA, El-Gendy SA, Wakisaka S. Morphological characteristics of the vallate papillae of the one-humped camel (Camelus dromedarius). Anat Histol Embryol 2012; 41:402-9. [PMID: 23137354 DOI: 10.1111/j.1439-0264.2012.01149.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/25/2012] [Indexed: 11/30/2022]
Abstract
In this study, the morphology of the vallate papillae of camel was investigated using gross, light and scanning electron microscopy as well as immunohistochemistry. Vallate papillae were arranged along an identical line on each side of the lingual torus and revealed remarkable individual differences. However, each papilla - round or flat, small or large, single or paired - was surrounded by a prominent groove and an annular pad. Based on our findings, postnatal development and formation of new papillae occur in camel. Microscopically, taste buds were constantly observed along the medial wall epithelium, and in the papillary wall epithelium on both sides of the secondary groove apparently separating the vallate papillae. In addition, an aggregation of taste buds was occasionally observed at the bottom of the lateral wall epithelium. Using SEM, we observed several pits and microplicae on the surface of papillae as well as distinct taste pores on the peripheral parts of the dorsal surface. We demonstrated immunoreactivity of α-gustducin only in mature taste buds. We conclude that the morphological features and microstructure of vallate papillae are a characteristic feature in camel compared to other ruminants. These features might have evolved to assist the camel in the manipulation and tasting of thin organic stiff plants that grow in its environment and therefore might have related to the feeding habits of the animal.
Collapse
Affiliation(s)
- A A El Sharaby
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Egypt.
| | | | | | | |
Collapse
|
14
|
FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size. PLoS Genet 2011; 7:e1002098. [PMID: 21655085 PMCID: PMC3107195 DOI: 10.1371/journal.pgen.1002098] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/08/2011] [Indexed: 12/16/2022] Open
Abstract
The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1−/−;Spry2−/− embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway. The sense of taste is important for an animal's ability to survive and thrive, because it enables discrimination between nutritious substances and toxins. Taste buds are housed largely on the tongue in structures called papillae; of the three types of gustatory papillae, the circumvallate papilla (CVP) is the largest. In rodents, a single CVP is located in the posterior midline of the tongue housing hundreds of taste buds, whereas in other mammals up to dozens of CVPs can be found. However, despite the great variation in the number of CVPs in mammals, its status as the largest of the taste papillae, and its importance in taste function, very little is known about its development. We identified members of the FGF signaling pathway as determinants of CVP number. We propose that perturbations to the FGF signaling pathway may have been involved in the dramatic differences in CVP number that arose during mammalian evolution.
Collapse
|
15
|
Shao B, Long R, Ding Y, Wang J, Ding L, Wang H. Morphological adaptations of yak (Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. J Anim Sci 2010; 88:2594-603. [PMID: 20382869 DOI: 10.2527/jas.2009-2398] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using light and scanning electron microscopy, the morphological adaptations of the yak (Bos grunniens) tongue to its foraging environment in the Qinghai-Tibetan Plateau were studied. The tongue of the yak was compared with that of cattle (Bos taurus). Compared with cattle, yak tongues are on average 4 cm shorter (P < 0.001), and yak consume forages using the labia oris, rather than by extending the tongue into the harsh environment. The lingual prominence of yak is greater (P < 0.001) and more developed than in cattle. The conical papillae on the prominence surface of yak are slightly larger (diameter: P = 0.068 and height: P = 0.761) and more numerous (P < 0.001) than in cattle. The lenticular papillae on the prominence surface of yak are larger (diameter: P = 0.002 and height: P = 0.115) and more numerous (P = 0.007) than in cattle. Such characteristics may improve the digestibility of forage by the grinding of food between the tongue and the upper palate. Filiform, conical, lenticular, fungiform, and vallate papillae were observed on the dorsal surface of the tongues studied; no foliate papillae were observed. The papillae were covered by keratinized epithelium, which was thicker (P < 0.001) in the yak than in cattle. It is suggested that the development of characteristic filiform papillae, and more numerous lingual gland ducts and mucus-secreting pores in the lenticular, fungiform and vallate papillae, fungiform papillae, probably having mechanical functions, are all morphological adaptations by yak to diets with greater fiber and DM content as provided by the plants within the Qinghai-Tibetan Plateau environment. On average, yak has 26 vallate papillae and cattle have 28. In the vallate papillae of the yak, the taste buds are arranged in a monolayer within the epithelium, whereas they are multilayered (2 to 4) in those papillae in cattle. The number of taste buds in each vallate papillae was less (P < 0.001) in the yak than in cattle. Therefore, the gustatory function of the yak was weaker than in cattle. Yaks graze throughout the year on diverse natural grasslands and have evolved morphological characteristics enabling them to consume a wide variety of plant species, thereby better adapting them to the typically harsh characteristics of their pastures.
Collapse
Affiliation(s)
- B Shao
- Key Laboratory of Arid and Grassland Ecology (Lanzhou University), Ministry of Education, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|