1
|
Sarad K, Stefańska M, Kraszewska I, Burda G, Szade K, Błyszczuk P, Dulak J, Jaźwa-Kusior A. Endothelial Nrf2 deficiency promotes atherosclerotic lesion formation by shaping a proinflammatory niche. Life Sci 2025; 375:123725. [PMID: 40404122 DOI: 10.1016/j.lfs.2025.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
AIMS Dysfunctional endothelium contributes to the initiation and progression of atherosclerosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of antioxidant and cytoprotective genes. Reduced activity of Nrf2 can contribute to endothelial dysfunction. While the role of endothelial Nrf2 in vascular homeostasis is well supported, several knowledge gaps remain, particularly regarding its cell type-specific contributions and crosstalk mechanisms in vascular disease progression. MATERIALS AND METHODS Atherosclerosis was induced in mice with transcriptionally inactive Nrf2 in cadherin 5 (Cdh5)-expressing cells (Nrf2Cdh5tKO) and appropriate control Nrf2flox/flox mice via adeno-associated viral vector (AAV)-mediated overexpression of murine proprotein convertase subtilisin/kexin type 9 (Pcsk9) in the liver and high-fat diet feeding. In addition to histological analysis, single-cell RNA sequencing (scRNA-seq) was performed to investigate the cellular composition of healthy and atherosclerotic mouse aortas and examine their gene expression characteristics. KEY FINDINGS Loss of Nrf2 transcriptional activity in mice promoted aortic root lesions formation. The scRNA-seq analysis performed on the aortas of Nrf2Cdh5tKO mice revealed a specific transcriptomic profile of endothelial cells (ECs) lacking Nrf2 activity, including altered expression of genes regulating shear stress, inflammation, vascular permeability, and secretion of proatherogenic factors. Additionally, cellular crosstalk analysis revealed significant alterations in the atherosclerotic aortas of Nrf2Cdh5tKO mice, including weakened communication probability between ECs and (myo)fibroblasts and enhanced interactions between ECs and inflammatory macrophages. SIGNIFICANCE Endothelial Nrf2 deficiency promotes atherosclerosis by inducing inflammatory traits in ECs and shifting vascular cell communication dynamics.
Collapse
Affiliation(s)
- Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Gabriela Burda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland; Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
3
|
Zakyrjanova GF, Matigorova VA, Kuznetsova EA, Dmitrieva SA, Tyapkina OV, Tsentsevitsky AN, Andreyanova SN, Odnoshivkina JG, Shigapova RR, Mukhamedshina YO, Gogolev YV, Petrov AM. Key genes and processes affected by atorvastatin treatment in mouse diaphragm muscle. Arch Toxicol 2025:10.1007/s00204-025-04056-6. [PMID: 40234311 DOI: 10.1007/s00204-025-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Statins are one of the top prescribed medications and are used for preventing or treating cardiovascular diseases. Myalgia, muscle fatigue, weakness, and inflammation are the most common side effects of these drugs collectively named statin-associated muscle symptoms (SAMS). The mechanisms underlying SAMS remain unclear. Given that statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of mevalonate pathway, responsible for synthesis of cholesterol and other vital molecules, SAMS may be mediated by multiple reasons. Herein, using unbiased whole transcriptome sequencing, we identified statin-affected processes and then assessed them using fluorescent, biochemical, and histological approaches in the mouse diaphragm, the main respiratory muscle. Mice were orally treated for 1 month with atorvastatin, the most prescribed statin, at clinically relevant dose. We found that atorvastatin caused downregulation of genes encoding proteins required for oxidative phosphorylation and anabolic processes, whereas genes of proteins engaged inflammation and muscle atrophy were mainly up-regulated. Furthermore, alterations in gene expression pattern suggest oxidative stress and abnormal lipid accumulation. This transcriptome signature correlated to a decrease in mitochondrial polarization and protein synthesis capacity, as well as an increase in lipid peroxidation and reactive oxygen species production. In addition, atorvastatin treatment caused lipid raft disruption, phospholipidosis, myelin de-compactization, and appearance of greater heterogeneity of muscle fiber cross-section diameter. Thus, atorvastatin treatment can negatively affect diaphragm muscle via oxidative stress accompanied by decrease in mitochondrial activity, protein synthesis, and stability of plasma membrane. As a part of compensatory response can serve enhanced activity of superoxide dismutase and cholesterol uptake capacity.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Valeriya A Matigorova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Oksana V Tyapkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Sofya N Andreyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Julia G Odnoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Rezeda R Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
4
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
5
|
Špaková I, Smolko L, Sabolová G, Badovská Z, Kalinová K, Madreiter-Sokolowski C, Graier WF, Mareková M, Vašková J, Rabajdová M. Selective targeting of genes regulated by zinc finger proteins in endometriosis and endometrioid adenocarcinoma by zinc niflumato complex with neocuproine. Sci Rep 2025; 15:10126. [PMID: 40128272 PMCID: PMC11933352 DOI: 10.1038/s41598-025-94249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Inadequate angiogenesis of endometriotic implants stimulated by the inflammatory microenvironment in the uterine region leads to the development of gynecological diseases, which significantly reduce the fertility and vitality of young women. Angiogenic processes are controlled by factors whose activities are regulated at the gene level by reactive oxygen species (ROS), hypoxia-induced factors (HIFs), and zinc-finger proteins (ZnFs) or posttranscriptionally via non-coding RNAs. The cooperation of these factors is responsible for the manifestation of pathological stimuli in the form of endometriosis of the body of the uterus, ovaries, or peritoneum, from which endometrioid carcinoma can develop. Molecules that can control gene expression by their intercalation to target DNA sequence, such as [Zn(neo)(nif)2], could prevent the hyperactivation of pro-angiogenic pathways (decrease HIF-1α, VEGF-A, TGF-β1, COX2, and ANG2/ANG1), reduce the formation of ROS, and reduce the risk of uterine neoplasticity. The NSAID-metal complex [Zn(neo)(nif)2] shows an ability to intercalate into ZNF3-7 target DNA sequence at a higher rate, which could explain its effect on genes regulated by this transcription factor. In addition, [Zn(neo)(nif)2] affects ROS production and Ca2+ level, possibly pointing to mitochondrial dysfunction as a potential cause for the described apoptosis.
Collapse
Affiliation(s)
- Ivana Špaková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Katarína Kalinová
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Corina Madreiter-Sokolowski
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia.
| |
Collapse
|
6
|
Hadi F, Mortaja M, Hadi Z. Calcium (Ca 2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer's disease as early moderators. Cell Biochem Funct 2024; 42:e4085. [PMID: 38951992 DOI: 10.1002/cbf.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Zahra Hadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
7
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
9
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Holendova B, Plecita-Hlavata L. Cysteine residues in signal transduction and its relevance in pancreatic beta cells. Front Endocrinol (Lausanne) 2023; 14:1221520. [PMID: 37455926 PMCID: PMC10339824 DOI: 10.3389/fendo.2023.1221520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties' addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic β-cells. Because β-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper β-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Nguyen TTM, Nguyen TH, Kim HS, Dao TTP, Moon Y, Seo M, Kang S, Mai VH, An YJ, Jung CR, Kim JM, Park S. GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:42. [PMID: 36750850 PMCID: PMC9903620 DOI: 10.1186/s13046-023-02607-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. METHODS Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8's involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. RESULTS GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. CONCLUSIONS Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Tin Tin Manh Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thi Ha Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Han Sun Kim
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thien T. P. Dao
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yechan Moon
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Munjun Seo
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sunmi Kang
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Van-Hieu Mai
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea ,grid.444808.40000 0001 2037 434XMolecular Biology Department, School of Medicine, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Yong Jin An
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Cho-Rok Jung
- grid.249967.70000 0004 0636 3099Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Sharifi S, Böger M, Lortz S, Mehmeti I. Luminal H 2 O 2 promotes ER Ca 2+ dysregulation and toxicity of palmitate in insulin-secreting INS-1E cells. FASEB J 2023; 37:e22685. [PMID: 36468845 DOI: 10.1096/fj.202201237r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) lumen is not only the major site for the assembly and folding of newly synthesized proteins but also the main intracellular Ca2+ store. Ca2+ ions are involved in versatile biochemical processes, including posttranslational processing and folding of nascent proteins. Disruption of ER Ca2+ homeostasis is usually accompanied by an ER stress response that can ultimately lead to apoptosis if unresolved. Abnormal ER Ca2+ depletion has been linked to pancreatic β-cell dysfunction and death under lipotoxic conditions. However, the underlying mechanisms how the β-cell toxic saturated free fatty acid palmitate perturbs ER Ca2+ homeostasis and its interplay with other organelles are not fully understood. In the present study, we demonstrate that treatment of insulin-secreting INS-1E cells with palmitate diminished ER Ca2+ levels, elevated cytosolic/mitochondrial Ca2+ content, lowered the mitochondrial membrane potential, and ATP content. In addition, palmitate-pretreated β-cells contained significantly less luminal Ca2+ , revealed a severely impaired ER Ca2+ reuptake rate, and substantially lower insulin content. Importantly, detoxification of luminal H2 O2 by expression of the ER-resident glutathione peroxidase 8 (GPx8) abrogated the lipotoxic effects of palmitate. Moreover, GPx8 supported oxidative protein folding and preserved insulin content under lipotoxic conditions. A direct involvement of luminal H2 O2 in palmitate-mediated ER Ca2+ depletion could be corroborated by the ectopic expression of an ER-luminal active catalase. Our data point to the critical role of luminal H2 O2 in palmitate-mediated depletion of ER Ca2+ through redox-dependent impairment of Ca2+ ATPase pump activity upstream of mitochondrial dysfunction in insulin-secreting INS-1E cells.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Maren Böger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 2023; 14:1147414. [PMID: 36937839 PMCID: PMC10017475 DOI: 10.3389/fphar.2023.1147414] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing H2O2 and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca2+ in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xingyu Pan
- Department of Pediatric Surgrey, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Yi Hua,
| |
Collapse
|
14
|
Samtleben S, Mina L, Yap MC, Branton WG, Yousuf MS, Tenorio G, Ballanyi K, Giuliani F, Kerr BJ, Power C, Simmen T. Astrocytes show increased levels of Ero1α in multiple sclerosis and its experimental autoimmune encephalomyelitis animal model. Eur J Neurosci 2022; 56:5177-5190. [PMID: 36083288 DOI: 10.1111/ejn.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) and its animal models are characterized by cellular inflammation within the central nervous system (CNS). The sources and consequences of this inflammation are currently not completely understood. Critical signs and mediators of CNS inflammation are reactive oxygen species (ROS) that promote inflammation. ROS originate from a variety of redox-reactive enzymes, one class of which catalyses oxidative protein folding within the endoplasmic reticulum (ER). Here, the unfolded protein response and other signalling mechanisms maintain a balance between ROS producers such as ER oxidoreductin 1α (Ero1α) and antioxidants such as glutathione peroxidase 8 (GPx8). The role of ROS production within the ER has so far not been examined in the context of MS. In this manuscript, we examined how components of the ER redox network change upon MS and experimental autoimmune encephalomyelitis (EAE). We found that unlike GPx8, Ero1α increases within both MS and EAE astrocytes, in parallel with an imbalance of other oxidases such of GPx7, and that no change was observed within neurons. This imbalance of ER redox enzymes can reduce the lifespan of astrocytes, while neurons are not affected. Therefore, Ero1α induction makes astrocytes vulnerable to oxidative stress in the MS and EAE pathologies.
Collapse
Affiliation(s)
- Samira Samtleben
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Mina
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Megan C Yap
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Saad Yousuf
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.,UTD Pain Center, Dallas, Texas, USA
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Fabrizio Giuliani
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
16
|
Costas-Ferreira C, Faro LRF. Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. Int J Mol Sci 2021; 22:13376. [PMID: 34948173 PMCID: PMC8704302 DOI: 10.3390/ijms222413376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Pesticides of different chemical classes exert their toxic effects on the nervous system by acting on the different regulatory mechanisms of calcium (Ca2+) homeostasis. Pesticides have been shown to alter Ca2+ homeostasis, mainly by increasing its intracellular concentration above physiological levels. The pesticide-induced Ca2+ overload occurs through two main mechanisms: the entry of Ca2+ from the extracellular medium through the different types of Ca2+ channels present in the plasma membrane or its release into the cytoplasm from intracellular stocks, mainly from the endoplasmic reticulum. It has also been observed that intracellular increases in the Ca2+ concentrations are maintained over time, because pesticides inhibit the enzymes involved in reducing its levels. Thus, the alteration of Ca2+ levels can lead to the activation of various signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. In this review, we also discuss some proposed strategies to counteract the detrimental effects of pesticides on Ca2+ homeostasis.
Collapse
Affiliation(s)
| | - Lilian R. F. Faro
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Biología, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
17
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Granatiero V, Sayles NM, Savino AM, Konrad C, Kharas MG, Kawamata H, Manfredi G. Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1 G93A astrocytes. Autophagy 2021; 17:4029-4042. [PMID: 33749521 PMCID: PMC8726657 DOI: 10.1080/15548627.2021.1899682] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.Abbreviations: ACM: astrocyte conditioned medium; AKT: AKT serine/threonine kinase; ALS: amyotrophic lateral sclerosis; BrdU: thymidine analog 5-bromo-2'-deoxyuridine; CNS: central nervous system; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; IGF1R: insulin like growth factor 1 receptor; INSR: insulin receptor; iPSA: iPSC-derived astrocytes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta;MTOR: mechanistic target of rapamycin kinase; NES: nestin; PPK1: 3-phosphoinositide dependent protein kinase 1; PI: propidium iodide; PPP: picropodophyllotoxin; PTEN: phosphatase and tensin homolog; S100B/S100β: S100 calcium binding protein B; SLC1A3/ EAAT1: solute carrier family 1 member 3; SMI-32: antibody to nonphosphorylated NEFH; SOD1: superoxide dismutase 1; TUBB3: tubulin beta 3 class III; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Veronica Granatiero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Nicole M. Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Angela M. Savino
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
19
|
Peng L, Du J, Zhang R, Zhu N, Zhao H, Zhao Q, Yu Q, Li M. The Transient Receptor Potential Channel Yvc1 Deletion Recovers the Growth Defect of Calcineurin Mutant Under Endoplasmic Reticulum Stress in Candida albicans. Front Microbiol 2021; 12:752670. [PMID: 34917046 PMCID: PMC8669648 DOI: 10.3389/fmicb.2021.752670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential (TRP) channel Yvc1 was related with hyphal growth, oxidative stress response, and pathogenicity. Calcineurin subunit Cnb1 was activated immediately in yeasts when exposed to severe stimulation. However, the relationship between Yvc1 and Cnb1-governed calcium ions and endoplasmic reticulum (ER) stress response remains unrevealed. In this study, we found that the mutant cnb1Δ/Δ was sensitive to TN, which was related with the overexpression of membrane calcium ion channels that could increase the cytosol calcium concentration. However, the growth of the cnb1Δ/Δyvc1Δ/Δ mutant was recovered and its cell vitality was better than the cnb1Δ/Δ strain. Meanwhile, the cellular calcium concentration was decreased and its fluctuation was weakened under ER stress in the cnb1Δ/Δyvc1Δ/Δ strain. To verify the regulation role of Yvc1 in the calcium concentration, we found that the addition of CaCl2 led to the worse viability, while the growth state was relieved under the treatment of EGTA in the cnb1Δ/Δ strain. In conclusion, the deletion of YVC1 could reduce the cellular calcium and relieve the ER stress sensitivity of the cnb1Δ/Δ strain. Thereby, our findings shed a novel light on the relationship between the Yvc1-governed cellular calcium concentration and ER stress response in C. albicans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Pathak MP, Patowary P, Das A, Goyary D, Karmakar S, Bhutia YD, Roy PK, Das S, Chattopadhyay P. Crosstalk between AdipoR1/AdipoR2 and Nrf2/HO-1 signal pathways activated by β-caryophyllene suppressed the compound 48/80 induced pseudo-allergic reactions. Clin Exp Pharmacol Physiol 2021; 48:1523-1536. [PMID: 34314522 DOI: 10.1111/1440-1681.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Mast cell activation is initiated by two signalling pathways: immunoglobulin E (IgE)-dependent and IgE-independent pathway. It is reported that the IgE-independent type or pseudo-allergy pathway gets activated by G-protein-dependent activation of the mast cell. Recently, adiponectin (APN) receptors, AdipoR1, and AdipoR2 have been identified as G-protein-coupled receptors (GPCRs). Interestingly, APN replenishment is reported to activate the Nrf2/HO-1 signalling axis. However, no study has been performed interlinking the role of APN and the Nrf2/HO-1 signalling axis in pseudo-allergic reaction. In the present study, we evaluated the anti-pseudo-allergic effects of β-caryophyllene, an FDA-approved food additive, in activating AdipoR1/AdipoR2 and Nrf2/HO-1 axis signalling pathway. Compound 48/80 (C48/80)-induced systemic and cutaneous anaphylaxis-like shock in BALB/c mice was performed to assess the efficacy of β-caryophyllene (BCP). To assess the effect of BCP in anaphylactic hypotension, mean arterial pressure was measured in Wistar rats. Inhibitory properties of BCP in mast cell degranulation were estimated in rat peritoneal mast cells (RPMCs). ELISA was performed to estimate interleukin (IL)-6, tumour necrosis factor (TNF), IL-1β, IgE, ovalbumin (OVA)-IgE and APN and western blotting for protein expression of Nrf2/HO-1 and AdipoR1-AdipoR2. BCP dose-dependently inhibited systemic and cutaneous anaphylaxis-like shock induced by C48/80. BCP dose-dependently inhibited the mast cell degranulation followed by inhibition of histamine release. Also BCP dose-dependently activated the Nrf2/HO-1 and AdipoR1-AdipoR2 signalling axis pathway. Moreover, BCP reversed the drop in blood pressure when the haemodynamic parameters were accessed. Our findings suggest that BCP is a potent AdipoR1/AdipoR2-Nrf2/HO-1 axis pathway agonist that may suppress the IgE-independent pathway towards allergic response to secretagogues.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Yangchen D Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Probin Kumar Roy
- Department of Pharmaceutics, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Pharmaceutical & Fine Chemical Division, Department of Chemical Technology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
21
|
Jiménez-Villegas J, Ferraiuolo L, Mead RJ, Shaw PJ, Cuadrado A, Rojo AI. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med 2021; 173:125-141. [PMID: 34314817 DOI: 10.1016/j.freeradbiomed.2021.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating heterogeneous disease with still no convincing therapy. To identify the most strategically significant hallmarks for therapeutic intervention, we have performed a comprehensive transcriptomics analysis of dysregulated pathways, comparing datasets from ALS patients and healthy donors. We have identified crucial alterations in RNA metabolism, intracellular transport, vascular system, redox homeostasis, proteostasis and inflammatory responses. Interestingly, the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) has significant effects in modulating these pathways. NRF2 has been classically considered as the master regulator of the antioxidant cellular response, although it is currently considered as a key component of the transduction machinery to maintain coordinated control of protein quality, inflammation, and redox homeostasis. Herein, we will summarize the data from NRF2 activators in ALS pre-clinical models as well as those that are being studied in clinical trials. As we will discuss, NRF2 is a promising target to build a coordinated transcriptional response to motor neuron injury, highlighting its therapeutic potential to combat ALS.
Collapse
Affiliation(s)
- J Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - L Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - R J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - A I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
22
|
Bayat A, Bayat M, Broers C, Polstra AM, Zwijnenburg PJG, Hjortshøj TD. 5q11.2 deletion syndrome revisited-Further narrowing of the smallest region of overlap for the main clinical characteristics of the syndrome. Am J Med Genet A 2021; 185:3844-3850. [PMID: 34322994 DOI: 10.1002/ajmg.a.62428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 11/09/2022]
Abstract
Microdeletions at 5q11.2 are rare. Subjects show a phenotypic spectrum that overlaps CHARGE syndrome and 22q11.2 deletion syndrome. A growing number of subjects present with learning difficulty and/or intellectual disability, immune deficiency, congenital heart malformation, and dysmorphism. DHX29 and IL6ST have been proposed as candidate genes for the development of the major clinical manifestations. We present a new case and narrow down the shortest region of overlap to evaluate possible candidate genes. Our case does not present developmental delay or immune deficiency indicating a reduced penetrance for some of the main clinical manifestations. The shortest region of overlap between subjects with deletions at 5q11.2 is approximately 450 kb (position 54.3-54.7 Mb). The narrowed region comprises 10 protein coding genes, including DHX29. DHX29 is a strong candidate gene for the main features of 5q11.2-microdeletion syndrome; however, our findings suggest a joined impact of several genes as the cause of the syndrome.
Collapse
Affiliation(s)
- Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Michael Bayat
- Department of Clinical Genetics, University Hospital of Aarhus, Aarhus, Denmark
| | - Chantal Broers
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
24
|
Zhang R, Liu C, Li Y, Chen L, Xiang J. Tenacissoside H promotes neurological recovery of cerebral ischaemia/reperfusion injury in mice by modulating inflammation and oxidative stress via TrkB pathway. Clin Exp Pharmacol Physiol 2021; 48:757-769. [PMID: 32799328 DOI: 10.1111/1440-1681.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R)-induced acute brain injury remains a troublesome condition in clinical practice. The present study aimed to investigate the protective effect of tenacissoside H (TH) on I/R-induced cerebral injury in mice. Here, a mouse model of middle cerebral artery occlusion (MCAO) was established by an improved Longa-Zea method. TH was given by intraperitoneal injection once a day within 1 week before establishing the mouse MCAO model. The neurological functions of mice were evaluated and the apoptosis of neurons was also detected by the TUNEL method and Nissl's staining. ELISA and western blot were used to detect the expression of inflammatory factors, oxidation factors and proteins in the cerebral ischaemic cortex. The results revealed that TH dose-dependently reduced neurological impairment, neuron apoptosis and brain oedema induced by MCAO. Furthermore, TH attenuated the expression of pro-inflammatory cytokines (including interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α), iNOS and nuclear factor (NF)-κB while increased production of anti-inflammatory cytokines (IL-4, IL-10 and BDNF) and proteins of tropomyosin-related kinase receptor B (TrkB) and PPARγ. Nevertheless, after the addition of TrkB inhibitor, the effects of TH above were mostly restrained. In conclusion, TH can protect mice against I/R-induced neurological impairments via modulating inflammation and oxidative stress through TrkB signalling.
Collapse
Affiliation(s)
- Rui Zhang
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Li
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Chen
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| | - Jianfeng Xiang
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| |
Collapse
|
25
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
26
|
P A, Bulbule SR, N H, G A, R.L B, K.S D. Elevation of gene expression of Btg2, Gadd 153, and antioxidant markers in RONS-induced PC12 cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Free radicals generated in the biological system bring about modifications in biological molecules causing damage to their structure and function. Identifying the damage caused by ROS and RNS is important to predict the pathway of apoptosis due to stress in PC12 cells. The first defense mechanisms against them are antioxidants which act in various pathways through important cellular organelles like the mitochondria and endoplasmic reticulum. Specific biomarkers like Gadd153 which is a marker for endoplasmic reticulum stress, Nrf2 which responds to the redox changes and translocates the antioxidant response elements, and Btg2 which is an antioxidant regulator have not been addressed in different stress conditions previously in PC12 cells. Therefore, the study was conducted to analyze the gene expression pattern (SOD, Catalase, Btg2, Gadd153, and Nrf2) and the protein expression pattern (iNOS and MnSOD) of the antioxidant stress markers in differential stress-induced PC12 cells. Peroxynitrite (1 μM), rotenone (1 μM), H2O2(100 mM), and high glucose (33 mM) were used to induce oxidative and nitrosative stress in PC12 cells.
Results
The results obtained suggested that rotenone-induced PC12 cells showed a significant increase in the expression of catalase, Btg2, and Gadd153 compared to the control. Peroxynitrite-induced PC12 cells showed higher expression of Btg2 compared to the control. H2O2 and high glucose showed lesser expression compared to the control in all stress marker genes. In contrast, the Nrf2 gene expression is downregulated in all the stress-induced PC12 cells compared to the control. Further, MnSOD and iNOS protein expression studies suggest that PC12 cells exhibit a selective downregulation. Lower protein expression of MnSOD and iNOS may be resulted due to the mitochondrial dysfunction in peroxynitrite-, high glucose-, and H2O2-treated cells, whereas rotenone-induced cells showed lower expression, which could be the result of a dysfunction of the endoplasmic reticulum.
Conclusion
Different stress inducers like rotenone, peroxynitrite, H2O2, and high glucose increase the NO and ROS. Btg2 and Gadd153 genes were upregulated in the stress-induced cells, whereas the Nrf2 was significantly downregulated in differential stress-induced PC12 cells. Further, antioxidant marker genes were differentially expressed with different stress inducers.
Collapse
|
27
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
28
|
Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020; 505:108-118. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing. Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway has also been linked to tumorigenesis, which highlights the requirement for further understanding of pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and non-pharmacological Nrf2 therapeutics.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sarah Buchanan
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shno Alsalhi
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden; Research Center, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region, Iraq
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|