1
|
Xie X, Zhang Y, Peng H, Deng Z. Sex Chromosome Dosage Compensation in Insects. INSECTS 2025; 16:160. [PMID: 40003790 PMCID: PMC11856597 DOI: 10.3390/insects16020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary process of achieving dose compensation, insects have developed a wide variety of mechanisms. There exist two primary modes of dosage compensation mechanisms, including the up-regulation of heterogametic sex chromosomes in the heterogamety and down-regulation of homogametic sex chromosomes in the homogamety. Although extensive investigations have been conducted on dosage compensation in model insects, many questions still remain unresolved. Meanwhile, research on non-model insects is attracting increasing attention. This paper systematically summarizes the current advances in the field of insect dosage compensation with respect to its types and mechanisms. The principal insects involved in this study include the Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and other lepidopteran insects. This paper analyzes the controversial issues about insect dosage compensation and also provides prospects for future research.
Collapse
Affiliation(s)
- Xingcheng Xie
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Heyuan Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.X.); (H.P.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
2
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2025; 41:76-98. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
3
|
Krzywinska E, Ribeca P, Ferretti L, Hammond A, Krzywinski J. A novel factor modulating X chromosome dosage compensation in Anopheles. Curr Biol 2023; 33:4697-4703.e4. [PMID: 37774706 DOI: 10.1016/j.cub.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Dosage compensation (DC), a process countering chromosomal imbalance in individuals with heteromorphic sex chromosomes, has been molecularly characterized only in mammals, Caenorhabditis elegans, and fruit flies.1 In Drosophila melanogaster males, it is achieved by an approximately 2-fold hypertranscription of the monosomic X chromosome mediated by the MSL complex.2,3 The complex is not assembled on female X chromosomes because production of its key protein MSL-2 is prevented due to intron retention and inhibition of translation by Sex-lethal, a female-specific protein operating at the top of the sex determination pathway.4 It remains unclear how DC is mechanistically regulated in other insects. In the malaria mosquito Anopheles gambiae, an approximately 2-fold hypertranscription of the male X also occurs5 by a yet-unknown molecular mechanism distinct from that in D. melanogaster.6 Here we show that a male-specifically spliced gene we call 007, which arose by a tandem duplication in the Anopheles ancestral lineage, is involved in the control of DC in males. Homozygous 007 knockouts lead to a global downregulation of the male X, phenotypically manifested by a slower development compared to wild-type mosquitoes or mutant females-however, without loss of viability or fertility. In females, a 007 intron retention promoted by the sex determination protein Femaleless, known to prevent hypertranscription from both X chromosomes,7 introduces a premature termination codon apparently rendering the female transcripts non-productive. In addition to providing a unique perspective on DC evolution, the 007, with its conserved properties, may represent an important addition to a genetic toolbox for malaria vector control.
Collapse
Affiliation(s)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; National Infection Service, UK Health Security Agency, Colindale Avenue, London NW9 5EQ, UK
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Andrew Hammond
- Department of Life Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK; Biocentis, S.r.l., Via Mazzieri, 05100 Terni, Italy
| | | |
Collapse
|
4
|
Lauria Sneideman MP, Meller VH. Master regulator of a mosquito X chromosome discovered. Nature 2023; 623:34-35. [PMID: 37770657 DOI: 10.1038/d41586-023-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
|
5
|
Kalita AI, Marois E, Kozielska M, Weissing FJ, Jaouen E, Möckel MM, Rühle F, Butter F, Basilicata MF, Keller Valsecchi CI. The sex-specific factor SOA controls dosage compensation in Anopheles mosquitoes. Nature 2023; 623:175-182. [PMID: 37769784 PMCID: PMC10620080 DOI: 10.1038/s41586-023-06641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The Anopheles mosquito is one of thousands of species in which sex differences play a central part in their biology, as only females need a blood meal to produce eggs. Sex differentiation is regulated by sex chromosomes, but their presence creates a dosage imbalance between males (XY) and females (XX). Dosage compensation (DC) can re-equilibrate the expression of sex chromosomal genes. However, because DC mechanisms have only been fully characterized in a few model organisms, key questions about its evolutionary diversity and functional necessity remain unresolved1. Here we report the discovery of a previously uncharacterized gene (sex chromosome activation (SOA)) as a master regulator of DC in the malaria mosquito Anopheles gambiae. Sex-specific alternative splicing prevents functional SOA protein expression in females. The male isoform encodes a DNA-binding protein that binds the promoters of active X chromosomal genes. Expressing male SOA is sufficient to induce DC in female cells. Male mosquitoes lacking SOA or female mosquitoes ectopically expressing the male isoform exhibit X chromosome misregulation, which is compatible with viability but causes developmental delay. Thus, our molecular analyses of a DC master regulator in a non-model organism elucidates the evolutionary steps that lead to the establishment of a chromosome-specific fine-tuning mechanism.
Collapse
Affiliation(s)
| | - Eric Marois
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | - Magdalena Kozielska
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Etienne Jaouen
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | | | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
6
|
Klug D, Gautier A, Calvo E, Marois E, Blandin SA. The salivary protein Saglin facilitates efficient midgut colonization of Anopheles mosquitoes by malaria parasites. PLoS Pathog 2023; 19:e1010538. [PMID: 36862755 PMCID: PMC10013899 DOI: 10.1371/journal.ppat.1010538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/14/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Malaria is caused by the unicellular parasite Plasmodium which is transmitted to humans through the bite of infected female Anopheles mosquitoes. To initiate sexual reproduction and to infect the midgut of the mosquito, Plasmodium gametocytes are able to recognize the intestinal environment after being ingested during blood feeding. A shift in temperature, pH change and the presence of the insect-specific compound xanthurenic acid have been shown to be important stimuli perceived by gametocytes to become activated and proceed to sexual reproduction. Here we report that the salivary protein Saglin, previously proposed to be a receptor for the recognition of salivary glands by sporozoites, facilitates Plasmodium colonization of the mosquito midgut, but does not contribute to salivary gland invasion. In mosquito mutants lacking Saglin, Plasmodium infection of Anopheles females is reduced, resulting in impaired transmission of sporozoites at low infection densities. Interestingly, Saglin can be detected in high amounts in the midgut of mosquitoes after blood ingestion, possibly indicating a previously unknown host-pathogen interaction between Saglin and midgut stages of Plasmodium. Furthermore, we were able to show that saglin deletion has no fitness cost in laboratory conditions, suggesting this gene would be an interesting target for gene drive approaches.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail:
| | - Amandine Gautier
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
7
|
Klug D, Arnold K, Mela-Lopez R, Marois E, Blandin SA. A toolbox of engineered mosquito lines to study salivary gland biology and malaria transmission. PLoS Pathog 2022; 18:e1010881. [PMID: 36223382 PMCID: PMC9555648 DOI: 10.1371/journal.ppat.1010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Mosquito saliva is a vehicle for the transmission of vector borne pathogens such as Plasmodium parasites and different arboviruses. Despite the key role of the salivary glands in the process of disease transmission, knowledge of host-pathogen interactions taking place within this organ is very limited. To improve the experimental tractability of the salivary glands, we have generated fluorescent reporter lines in the African malaria mosquito Anopheles coluzzii using the salivary gland-specific promoters of the anopheline antiplatelet protein (AAPP), the triple functional domain protein (TRIO) and saglin (SAG) coding genes. Promoter activity was specifically observed in the distal-lateral lobes or in the median lobe of the salivary glands. Besides a comparison of the expression patterns of the selected promoters, the fluorescent probes allowed us to evaluate the inducibility of the selected promoters upon blood feeding and to measure intracellular redox changes. We also combined the aapp-DsRed fluorescent reporter line with a pigmentation-deficient yellow(-) mosquito mutant to assess the feasibility of in vivo microscopy of parasitized salivary glands. This combination allowed locating the salivary gland through the cuticle and imaging of individual sporozoites in vivo, which facilitates live imaging studies of salivary gland colonization by Plasmodium sporozoites.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Katharina Arnold
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Raquel Mela-Lopez
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
8
|
Anderson N, Jaron KS, Hodson CN, Couger MB, Ševčík J, Weinstein B, Pirro S, Ross L, Roy SW. Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems. Proc Natl Acad Sci U S A 2022; 119:e2122580119. [PMID: 35653559 PMCID: PMC9191650 DOI: 10.1073/pnas.2122580119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Haplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes). However, why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis posits that X-linked genes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis holds that conflict between genes drives genetic system turnover; under this model, X-linked genes could promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and genetic transmission. We studied lineages where we can distinguish these hypotheses: species with germline PGE that retain an XX/X0 sex determination system (gPGE+X). Because evolving PGE in these cases involves changes in transmission without increases in male hemizygosity, a high degree of X linkage in these systems is predicted by the Intragenomic Conflict Hypothesis but not the Haploid Viability Hypothesis. To quantify the degree of X linkage, we sequenced and compared 7 gPGE+X species’ genomes with 11 related species with typical XX/XY or XX/X0 genetic systems, representing three transitions to gPGE. We find highly increased X linkage in both modern and ancestral genomes of gPGE+X species compared to non-gPGE relatives and recover a significant positive correlation between percent X linkage and the evolution of gPGE. These empirical results substantiate longstanding proposals for a role for intragenomic conflict in the evolution of genetic systems such as HD/PGE.
Collapse
Affiliation(s)
- Noelle Anderson
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343
| | - Kamil S. Jaron
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Christina N. Hodson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Matthew B. Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA 02115
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Brooke Weinstein
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343
| | | | - Laura Ross
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Scott William Roy
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
9
|
Krzywinska E, Ferretti L, Krzywinski J. Establishment and a comparative transcriptomic analysis of a male-specific cell line from the African malaria mosquito Anopheles gambiae. Sci Rep 2022; 12:6885. [PMID: 35477969 PMCID: PMC9046191 DOI: 10.1038/s41598-022-10686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.
Collapse
Affiliation(s)
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | | |
Collapse
|
10
|
Basilicata MF, Keller Valsecchi CI. The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genet 2021; 17:e1009906. [PMID: 34882671 PMCID: PMC8659298 DOI: 10.1371/journal.pgen.1009906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diploid organisms contain a maternal and a paternal genome complement that is thought to provide robustness and allow developmental progression despite genetic perturbations that occur in heterozygosity. However, changes affecting gene dosage from the chromosome down to the individual gene level possess a significant pathological potential and can lead to developmental disorders (DDs). This indicates that expression from a balanced gene complement is highly relevant for proper cellular and organismal function in eukaryotes. Paradoxically, gene and whole chromosome duplications are a principal driver of evolution, while heteromorphic sex chromosomes (XY and ZW) are naturally occurring aneuploidies important for sex determination. Here, we provide an overview of the biology of gene dosage at the crossroads between evolutionary benefit and pathogenicity during disease. We describe the buffering mechanisms and cellular responses to alterations, which could provide a common ground for the understanding of DDs caused by copy number alterations.
Collapse
|
11
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|