1
|
Souder DC, McGregor ER, Clark JP, Rhoads TW, Porter TJ, Eliceiri KW, Moore DL, Puglielli L, Anderson RM. Neuron-specific isoform of PGC-1α regulates neuronal metabolism and brain aging. Nat Commun 2025; 16:2053. [PMID: 40021651 PMCID: PMC11871081 DOI: 10.1038/s41467-025-57363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
The brain is a high-energy tissue, and although aging is associated with dysfunctional inflammatory and neuron-specific functional pathways, a direct connection to metabolism is not established. Here, we show that isoforms of mitochondrial regulator PGC-1α are driven from distinct brain cell-type specific promotors, repressed with aging, and integral in coordinating metabolism and growth signaling. Transcriptional and proteomic profiles of cortex from male adult, middle age, and advanced age mice reveal an aging metabolic signature linked to PGC-1α. In primary culture, a neuron-exclusive promoter produces the functionally dominant isoform of PGC-1α. Using growth repression as a challenge, we find that PGC-1α is regulated downstream of GSK3β independently across promoters. Broad cellular metabolic consequences of growth inhibition observed in vitro are mirrored in vivo, including activation of PGC-1α directed programs and suppression of aging pathways. These data place PGC-1α centrally in a growth and metabolism network directly relevant to brain aging.
Collapse
Affiliation(s)
- Dylan C Souder
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI, USA
| | - Eric R McGregor
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI, USA
| | - Josef P Clark
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, WI, USA
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI, USA
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI, USA.
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
2
|
McGregor ER, Lasky DJ, Rippentrop OJ, Clark JP, Wright S, Jones MV, Anderson RM. Reversal of neuronal tau pathology via adiponectin receptor activation. Commun Biol 2025; 8:8. [PMID: 39755746 PMCID: PMC11700159 DOI: 10.1038/s42003-024-07391-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.
Collapse
Affiliation(s)
- Eric R McGregor
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Danny J Lasky
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia J Rippentrop
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Josef P Clark
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha Wright
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
3
|
Walter-Manucharyan M, Martin M, Pfützner J, Markert F, Rödel G, Deussen A, Hermann A, Storch A. Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells. Dev Growth Differ 2024; 66:398-413. [PMID: 39436959 DOI: 10.1111/dgd.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
Collapse
Affiliation(s)
- Meri Walter-Manucharyan
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Melanie Martin
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Julia Pfützner
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
4
|
McGregor ER, Lasky DJ, Rippentrop OJ, Clark JP, Wright SLG, Jones MV, Anderson RM. Reversal of neuronal tau pathology, metabolic dysfunction, and electrophysiological defects via adiponectin pathway-dependent AMPK activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579204. [PMID: 38370802 PMCID: PMC10871331 DOI: 10.1101/2024.02.07.579204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.
Collapse
Affiliation(s)
- Eric R McGregor
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Danny J Lasky
- Department. of Neuroscience, Univ. of Wisconsin-Madison, Madison, WI
| | | | - Josef P Clark
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
| | | | - Mathew V Jones
- Department. of Neuroscience, Univ. of Wisconsin-Madison, Madison, WI
| | - Rozalyn M Anderson
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
- GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
5
|
Saltanova VA, Kicherova OA, Reikhert LI, Doyan YI, Mazurov NA. [Genetic basis of postoperative cognitive dysfunction]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:43-47. [PMID: 38676676 DOI: 10.17116/jnevro202412404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- V A Saltanova
- Tyumen State Medical University, Tyumen, Russia
- Regional clinical hospital No. 2, Tyumen, Russia
| | | | | | - Yu I Doyan
- Tyumen State Medical University, Tyumen, Russia
- Regional clinical hospital No. 2, Tyumen, Russia
| | - N A Mazurov
- Tyumen State Medical University, Tyumen, Russia
| |
Collapse
|
6
|
Souder DC, McGregor ER, Rhoads TW, Clark JP, Porter TJ, Eliceiri K, Moore DL, Puglielli L, Anderson RM. Mitochondrial regulator PGC-1a in neuronal metabolism and brain aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559526. [PMID: 37808866 PMCID: PMC10557769 DOI: 10.1101/2023.09.29.559526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.
Collapse
Affiliation(s)
- Dylan C Souder
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Eric R McGregor
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, WI
| | - Josef P Clark
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI
| | - Kevin Eliceiri
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI
| | - Luigi Puglielli
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|