1
|
Yoshii K, Node E, Furuta M, Tojima Y, Matsunaga A, Adachi J, Takaai N, Morita M, Hosomi K, Kunisawa J. Establishment of enterotype-specific antibodies for various diagnostic systems. Sci Rep 2025; 15:16814. [PMID: 40368953 PMCID: PMC12078515 DOI: 10.1038/s41598-025-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
This study demonstrates that monoclonal antibodies can be developed to targeting specific gut bacteria prevalent in the Japanese population and the potential for creating a novel diagnostic system using these antibodies. In this study, we established specific antibodies against representative bacteria from the genera Bacteroides, Faecalibacterium, and Prevotella and showed that they could be detected using ELISA, flow cytometry, and western blot analysis. Furthermore, a technique to quantify target bacteria was developed by combining these antibodies in a sandwich ELISA, enabling the quantification of bacteria in human fecal samples. This technology serves as a foundational method for rapidly and easily measuring gut bacteria and is expected to evolve into a powerful tool for analyzing the impact of gut bacteria on health, as well as for personalized health management based on individual gut environments.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Eri Node
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Mari Furuta
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Faculty of Agriculture, Department of Applied Biological Science, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, NIBN, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Narimi Takaai
- Laboratory of Proteomics for Drug Discovery, NIBN, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Makiko Morita
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 2-2 Wakamatsu, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
2
|
Suzuki Y, Tsubota S, Kadomatsu K, Sakamoto K. Identification of APBB1 as a substrate for anaplastic lymphoma kinase. J Biochem 2024; 176:395-403. [PMID: 39115278 PMCID: PMC11954158 DOI: 10.1093/jb/mvae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 11/05/2024] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a well-known oncogene involved in various malignancies such as anaplastic large cell lymphoma, lung cancer and neuroblastoma. Several substrates for fused ALK have been identified and their biological functions have been described. However, the lack of a comprehensive identification of ALK substrates limits our understanding of the biological roles of receptor ALK. Thus, this study aimed to identify novel ALK substrates and characterize their biological functions. We screened the interactors of the kinase domain of receptor ALK using proximity-dependent biotin identification and identified 43 interactors. We narrowed down the candidates by evaluating whether these interactors were downstream of ALK in a neuroblastoma cell line, NB-1. Amongst these, we identified amyloid beta precursor protein-binding family B member 1 (APBB1) as an ALK downstream molecule involved in NB-1 cell viability. Finally, we assessed the kinase-substrate relationship between ALK and APBB1 and found that ALK phosphorylated multiple tyrosine residues in APBB1 both in-cell and in-tube assays, with tyrosine 269 as a major target. In conclusion, we successfully identified a new substrate for receptor ALK. Our results may help further elucidate the molecular mechanism of ALK downstream signalling in neuroblastoma.
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Institute for Glyco-core Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Shoji H, Hirano H, Nojima Y, Gunji D, Shinkura A, Muraoka S, Abe Y, Narumi R, Nagao C, Aoki M, Obama K, Honda K, Mizuguchi K, Tomonaga T, Saito Y, Yoshikawa T, Kato K, Boku N, Adachi J. Phosphoproteomic subtyping of gastric cancer reveals dynamic transformation with chemotherapy and guides targeted cancer treatment. Cell Rep 2024; 43:114774. [PMID: 39357518 DOI: 10.1016/j.celrep.2024.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
There are only a few effective molecular targeted agents for advanced unresectable or recurrent advanced gastric cancer (AGC), which has a poor prognosis with a median survival time of less than 14 months. Focusing on phosphorylation signaling in cancer cells, we have been developing deep phosphoproteome analysis from minute endoscopic biopsy specimens frozen within 20 s of collection. Phosphoproteomic analysis of 127 fresh-frozen endoscopic biopsy samples from untreated patients with AGC revealed three subtypes reflecting different cellular signaling statuses. Subsequent serial biopsy analysis has revealed the dynamic mesenchymal transitions within cancer cells, along with the concomitant rewiring of the kinome network, ultimately resulting in the conversion to the epithelial-mesenchymal transition (EMT) subtype throughout treatment. We present our investigation of intracellular signaling related to the EMT in gastric cancer and propose therapeutic approaches targeting AXL. This study also provides a wealth of resources for the future development of treatments and biomarkers for AGC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104-0045, Japan.
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Yosui Nojima
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560-8531, Japan; Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan
| | - Daigo Gunji
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akina Shinkura
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1112, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Chioko Nagao
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 566-0002, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Proteobiologics Co., Ltd., Osaka 562-0011, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan; Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
4
|
Iketani M, Hatomi M, Fujita Y, Watanabe N, Ito M, Kawaguchi H, Ohsawa I. Inhalation of hydrogen gas mitigates sevoflurane-induced neuronal apoptosis in the neonatal cortex and is associated with changes in protein phosphorylation. J Neurochem 2024; 168:2775-2790. [PMID: 38849977 DOI: 10.1111/jnc.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
Inhalation of hydrogen (H2) gas is therapeutically effective for cerebrovascular diseases, neurodegenerative disorders, and neonatal brain disorders including pathologies induced by anesthetic gases. To understand the mechanisms underlying the protective effects of H2 on the brain, we investigated the molecular signals affected by H2 in sevoflurane-induced neuronal cell death. We confirmed that neural progenitor cells are susceptible to sevoflurane and undergo apoptosis in the retrosplenial cortex of neonatal mice. Co-administration of 1-8% H2 gas for 3 h to sevoflurane-exposed pups suppressed elevated caspase-3-mediated apoptotic cell death and concomitantly decreased c-Jun phosphorylation and activation of the c-Jun pathway, all of which are induced by oxidative stress. Anesthesia-induced increases in lipid peroxidation and oxidative DNA damage were alleviated by H2 inhalation. Phosphoproteome analysis revealed enriched clusters of differentially phosphorylated proteins in the sevoflurane-exposed neonatal brain that included proteins involved in neuronal development and synaptic signaling. H2 inhalation modified cellular transport pathways that depend on hyperphosphorylated proteins including microtubule-associated protein family. These modifications may be involved in the protective mechanisms of H2 against sevoflurane-induced neuronal cell death.
Collapse
Affiliation(s)
- Masumi Iketani
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mai Hatomi
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Life Sciences, Toyo University, Asaka, Japan
| | - Yasunori Fujita
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Nobuhiro Watanabe
- Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
5
|
Hosomi K, Hatanaka N, Hinenoya A, Adachi J, Tojima Y, Furuta M, Uchiyama K, Morita M, Nagatake T, Saika A, Kawai S, Yoshii K, Kondo S, Yamasaki S, Kunisawa J. QcrC is a potential target for antibody therapy and vaccination to control Campylobacter jejuni infection by suppressing its energy metabolism. Front Microbiol 2024; 15:1415893. [PMID: 39015740 PMCID: PMC11250076 DOI: 10.3389/fmicb.2024.1415893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Campylobacter spp. are a public health concern, yet there is still no effective vaccine or medicine available. Methods Here, we developed a Campylobacter jejuni-specific antibody and found that it targeted a menaquinol cytochrome c reductase complex QcrC. Results The antibody was specifically reactive to multiple C. jejuni strains including clinical isolates from patients with acute enteritis and was found to inhibit the energy metabolism and growth of C. jejuni. Different culture conditions produced different expression levels of QcrC in C. jejuni, and these levels were closely related not only to the energy metabolism of C. jejuni but also its pathogenicity. Furthermore, immunization of mice with recombinant QcrC induced protective immunity against C. jejuni infection. Discussion Taken together, our present findings highlight a possible antibody- or vaccination-based strategy to prevent or control Campylobacter infection by targeting the QcrC-mediated metabolic pathway.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Noritoshi Hatanaka
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Hinenoya
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yoko Tojima
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Mari Furuta
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Keita Uchiyama
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Makiko Morita
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soichiro Kawai
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ken Yoshii
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Saki Kondo
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shinji Yamasaki
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
6
|
Tozuka T, Noro R, Yoshida K, Takahashi S, Hirao M, Matsuda K, Kato Y, Nakamichi S, Takeuchi S, Matsumoto M, Miyanaga A, Kunugi S, Honda K, Adachi J, Seike M. Phosphoproteomic Analysis Identified Mutual Phosphorylation of FAK and Src as a Mechanism of Osimertinib Resistance in EGFR-Mutant Lung Cancer. JTO Clin Res Rep 2024; 5:100668. [PMID: 38646155 PMCID: PMC11031815 DOI: 10.1016/j.jtocrr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Osimertinib is a standard treatment for patients with EGFR-mutant NSCLC. Although some osimertinib resistance mechanisms have been identified, nearly 50% of the mechanisms remain to be elucidated. This study was aimed at identifying non-genetic mechanisms underlying osimertinib resistance. Methods We established two osimertinib-resistant cell lines from EGFR mutation-positive PC-9 and HCC827 NSCLC cell lines (PC-9OR and HCC827OR, respectively) using a stepwise method. We compared the phosphoproteomic profiles of the osimertinib-resistant and parental cells using mass spectrometry. Upstream kinases were identified using the application Kinase Enrichment Analysis version 3. Results Phosphoproteomic analysis revealed 80 phosphorylation sites that were mutually up-regulated in PC-9OR and HCC827OR cells. The Kinase Enrichment Analysis version 3 analysis identified focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src) as upstream kinases of these up-regulated phosphoproteins. The small-interfering RNA-mediated knockdown of FAK reduced Src phosphorylation and that of Src reduced FAK phosphorylation in both cell lines. Furthermore, FAK- or Src-specific small-interfering RNA treatments restored EGFR phosphorylation in PC-9OR and HCC827OR cells. The combination of FAK and Src inhibitors inhibited PC-9OR and HCC827OR cell proliferation in vitro and suppressed tumor growth in a xenograft mouse model. Immunohistochemistry of tumors from patients with EGFR-mutant NSCLC suggested that phosphorylated FAK and Src are involved in initial and acquired resistance to osimertinib. Conclusions Phosphoproteomic analysis may help elucidate the mechanisms of resistance to molecular-targeted therapies in lung cancer. Mutual phosphorylation of FAK and Src is involved in osimertinib resistance. Thus, FAK and Src inhibition may be novel treatment strategies for osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Keisuke Yoshida
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Kato
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Institution for Advanced Medical Science, Nippon Medical School, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Muraoka S, Adachi J. Systematic Identification of Kinase-Substrate Relationship by Integrated Phosphoproteome and Interactome Analysis. Methods Mol Biol 2024; 2823:11-25. [PMID: 39052211 DOI: 10.1007/978-1-0716-3922-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The sensitivity of phosphorylation site identification by mass spectrometry (MS)-based phosphoproteomics has improved significantly. However, the lack of kinase-substrate relationship (KSR) data has hindered improvement of the range and accuracy of kinase activity prediction using phosphoproteome data. We herein describe the application of a systematic identification of KSR by integrated phosphoproteome and interactome analysis using doxycycline (Dox)-induced target kinase-overexpressing HEK-293 cells.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Osaka, Japan.
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Niinae T, Sugiyama N, Ishihama Y. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases. Genes Cells 2023; 28:727-735. [PMID: 37658684 PMCID: PMC11447832 DOI: 10.1111/gtc.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Three representative protein kinases with different substrate preferences, ERK1 (Pro-directed), CK2 (acidophilic), and PKA (basophilic), were used to investigate phosphorylation sequence motifs in substrate pools consisting of the proteomes from three different cell lines, MCF7 (human mammary carcinoma), HeLa (human cervical carcinoma), and Jurkat (human acute T-cell leukemia). Specifically, recombinant kinases were added to the cell-extracted proteomes to phosphorylate the substrates in vitro. After trypsin digestion, the phosphopeptides were enriched and subjected to nanoLC/MS/MS analysis to identify their phosphorylation sites on a large scale. By analyzing the obtained phosphorylation sites and their surrounding sequences, phosphorylation motifs were extracted for each kinase-substrate proteome pair. We found that each kinase exhibited the same set of phosphorylation motifs, independently of the substrate pool proteome. Furthermore, the identified motifs were also consistent with those found using a completely randomized peptide library. These results indicate that cell-extracted proteomes can provide kinase phosphorylation motifs with sufficient accuracy, even though their sequences are not completely random, supporting the robustness of phosphorylation motif identification based on phosphoproteome analysis of cell extracts as a substrate pool for a kinase of interest.
Collapse
Affiliation(s)
- Tomoya Niinae
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Clinical and Analytical ChemistryNational Institute of Biomedical Innovation, Health and NutritionIbarakiOsakaJapan
| |
Collapse
|