1
|
Muthumalage T, Sarles E, Wang Q, Hensel E, Hill T, Rahman I, Robinson R, Stroup AM, Thongphanh K, Miller LA. In Vitro assessments of ENDS toxicity in the respiratory tract: Are we there yet? NAM JOURNAL 2025; 1:100016. [PMID: 40264558 PMCID: PMC12013380 DOI: 10.1016/j.namjnl.2025.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Approximately 4.6 % of U.S. adults over the age of 18 use e-cigarettes, which are a type of electronic nicotine delivery system (ENDS). Over 2.5 million U.S. middle and high school students also use both disposable and/or flavored ENDS products. The health impacts of ENDS use by adults and adolescents are considered a controversial topic in the social media partially due to misperceptions surrounding ENDS toxicity compared to that of combustible cigarettes. There is growing evidence that ENDS, particularly their product composition and design, individual and combined ingredients, and produced aerosols, are toxic to human health. Animal studies have been critical for defining the pathophysiologic outcomes resulting from ENDS use. However, in vitro approaches using human cells can measure the potential toxicity of ENDS e-liquids and aerosols on a shorter timeline and are in keeping with recent statements to replace, reduce and refine the use of animals in biomedical research and regulatory decision making. This review examines current research related to cell culture models of the respiratory tract and exposure methodologies for ENDS use and compares known in vivo parameters of injury and inflammation associated with ENDS to different in vitro systems developed to replicate the inhaled toxicant outcomes. The design and interpretation of exposure methodologies and technological gaps in the evaluation of ENDS aerosols are also discussed. Given the ongoing evolution and popularity of ENDS products, in vitro assessments for measuring respiratory tract injury and inflammation resulting from ENDS use provide a critical scientific platform for rapid evaluation of potential inhalation toxicity in tobacco regulatory science.
Collapse
Affiliation(s)
| | - Emma Sarles
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Thomas Hill
- Office of Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Risa Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Andrea M. Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, 20850, USA
| | - Krista Thongphanh
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | - Lisa A. Miller
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| |
Collapse
|
2
|
Savko C, Esquer C, Molinaro C, Rokaw S, Shain AG, Jaafar F, Wright MK, Phillips JA, Hopkins T, Mikhail S, Rieder A, Mardani A, Bailey B, Sussman MA. Myocardial Infarction Injury Is Exacerbated by Nicotine in Vape Aerosol Exposure. J Am Heart Assoc 2025; 14:e038012. [PMID: 39704237 PMCID: PMC12054503 DOI: 10.1161/jaha.124.038012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Vaping is touted as a safer alternative to traditional cigarette smoking, but the full spectrum of harm reduction versus comparable risk remains unresolved. Elevated bioavailability of nicotine in vape aerosol together with known risks of nicotine exposure may result in previously uncharacterized cardiovascular consequences of vaping. The objective of this study is to assess the impact of nicotine exposure via vape aerosol inhalation upon myocardial response to infarction injury. METHODS AND RESULTS Flavored vape juice containing nicotine (5 mg/mL) or vehicle alone (0 mg) was delivered using identical 4-week treatment protocols. Mice were subjected to acute myocardial infarction injury and evaluated for outcomes of cardiac structure and function. Findings reveal that nicotine exposure leads to worse outcomes with respect to contractile performance regardless of sex. Nonmyocyte interstitial cell accumulation following infarction significantly increased with exposure to vape aerosol alone, but a comparable increase was not present when nicotine was included. CONCLUSIONS Myocardial function after infarction is significantly decreased after exposure to nicotine vape aerosol irrespective of sex. Comparable loss of contractile function was not observed in mice exposed to vape aerosol alone, highlighting the essential role of nicotine in loss of contractile function. Increased vimentin immunoreactivity was observed in the vape alone group compared with control and vape nicotine. The correlation between vaping, interstitial cell responses, and cardiac remodeling leading to impaired contractility warrants further investigation. Public health experts seeking to reduce vaping-related health risks should consider messaging that highlights the increased cardiovascular risk especially with nicotine-containing aerosols.
Collapse
Affiliation(s)
- Clarissa Savko
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Claudia Molinaro
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Sophie Rokaw
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Abraham G. Shain
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Faid Jaafar
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Morgan K. Wright
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Joy A. Phillips
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Tyler Hopkins
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Sama Mikhail
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Abigail Rieder
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Ariana Mardani
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| | - Barbara Bailey
- SDSU Department of MathematicsSan Diego State UniversitySan DiegoCA
| | - Mark A. Sussman
- SDSU Integrated Regenerative Research Institute and Biology DepartmentSan Diego State UniversitySan DiegoCA
| |
Collapse
|
3
|
Jiang Y, Hao S, Chen X, Cheng M, Xu J, Li C, Zheng H, Volpe G, Chen A, Liao S, Liu C, Liu L, Xu X. Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions. Front Genet 2022; 13:858808. [PMID: 35391793 PMCID: PMC8982079 DOI: 10.3389/fgene.2022.858808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yujia Jiang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Shijie Hao
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Huiwen Zheng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Ao Chen
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Xun Xu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|