1
|
Conti Nibali S, De Siervi S, Luchinat E, Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Mondelli MU, De Pinto V, Turato C, Arrigoni C, Lolicato M. VDAC1-interacting molecules promote cell death in cancer organoids through mitochondrial-dependent metabolic interference. iScience 2024; 27:109853. [PMID: 38784007 PMCID: PMC11112339 DOI: 10.1016/j.isci.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.
Collapse
Affiliation(s)
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enrico Luchinat
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Firenze, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario U. Mondelli
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, Section of Biology & Genetics, University of Catania, Catania, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Kawakami N, Sato H, Terasaka N, Matsumoto K, Suga H. MET-Activating Ubiquitin Multimers. Angew Chem Int Ed Engl 2023; 62:e202307157. [PMID: 37450419 DOI: 10.1002/anie.202307157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Receptor tyrosine kinases (RTKs) are generally activated through their dimerization and/or oligomerization induced by their cognate ligands, and one such RTK hepatocyte growth factor (HGF) receptor, known as MET, plays an important role in tissue regeneration. Here we show the development of ubiquitin (Ub)-based protein ligand multimers, referred to as U-bodies, which act as surrogate agonists for MET and are derived from MET-binding macrocyclic peptides. Monomeric Ub constructs (U-body) were first generated by genetic implantation of a macrocyclic peptide pharmacophore into a structural loop of Ub (lasso-grafting) and subsequent optimization of its flanking spacer sequences via mRNA display. Such U-body constructs exhibit potent binding affinity to MET, thermal stability, and proteolytic stability. The U-body constructs also partially/fully inhibited or enhanced HGF-induced MET-phosphorylation. Their multimerization to dimeric, tetrameric, and octameric U-bodies linked by an appropriate peptide linker yielded potent MET activation activity and downstream cell proliferation-promoting activity. This work suggests that lasso-grafting of macrocycles to Ub is an effective approach to devising protein-based artificial RTK agonists and it can be useful in the development of a new class of biologics for various therapeutic applications.
Collapse
Affiliation(s)
- Naoya Kawakami
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa City, Ishikawa, 920-1192, Japan
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa City, Ishikawa, 920-1192, Japan
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa City, Ishikawa, 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
4
|
Agouridas V, Ollivier N, Vicogne J, Diemer V, Melnyk O. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency. Acc Chem Res 2022; 55:2685-2697. [PMID: 36083810 PMCID: PMC9494750 DOI: 10.1021/acs.accounts.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The last two decades have witnessed the rise in power of chemical protein synthesis to the point where it now constitutes an established corpus of synthetic methods efficiently complementing biological approaches. One factor explaining this spectacular evolution is the emergence of a new class of chemoselective reactions enabling the formation of native peptide bonds between two unprotected peptidic segments, also known as native ligation reactions. In recent years, their application has fueled the production of homogeneous batches of large and highly decorated protein targets with a control of their composition at the atomic level. In doing so, native ligation reactions have provided the means for successful applications in chemical biology, medicinal chemistry, materials science, and nanotechnology research.The native chemical ligation (NCL) reaction has had a major impact on the field by enabling the chemoselective formation of a native peptide bond between a C-terminal peptidyl thioester and an N-terminal cysteinyl peptide. Since its introduction in 1994, the NCL reaction has been made the object of significant improvements and its scope and limitations have been thoroughly investigated. Furthermore, the diversification of peptide segment assembly strategies has been essential to access proteins of increasing complexity and has had to overcome the challenge of controlling the reactivity of ligation partners.One hallmark of NCL is its dependency on thiol reactivity, including for its catalysis. While Nature constantly plays with the redox properties of biological thiols for the regulation of numerous biochemical pathways, such a control of reactivity is challenging to achieve in synthetic organic chemistry and, in particular, for those methods used for assembling peptide segments by chemical ligation. This Account covers the studies conducted by our group in this area. A leading theme of our research has been the conception of controllable acyl donors and cysteine surrogates that place the chemoselective formation of amide bonds by NCL-like reactions under the control of dichalcogenide-based redox systems. The dependency of the redox potential of dichalcogenide bonds on the nature of the chalcogenides involved (S, Se) has appeared as a powerful means for diversifying the systems, while allowing their sequential activation for protein synthesis. Such a control of reactivity mediated by the addition of harmless redox additives has greatly facilitated the modular and efficient preparation of multiple targets of biological relevance. Taken together, these endeavors provide a practical and robust set of methods to address synthetic challenges in chemical protein synthesis.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France,Centrale
Lille, F-59000 Lille, France
| | - Nathalie Ollivier
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Jérôme Vicogne
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Vincent Diemer
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ.
Lille, CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and
Immunity of Lille, F-59000 Lille, France,
| |
Collapse
|