1
|
Vlodavets DV. [Risdiplam for the treatment of spinal muscular atrophy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-57. [PMID: 38465810 DOI: 10.17116/jnevro202412402145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) is a devastating disease that is the leading genetic cause of death in infants and young children. It includes a broad spectrum of phenotypes that are classified into clinical groups based on the age of onset and maximum motor function achieved. The most common form of SMA is due to a defect in the survival motor neuron 1 gene (SMN1) localized to 5q11.2-q13.3. The development of clinical symptoms and disease progression is thought to be due to decreased levels of survival motor neuron (SMN) protein. SMA type 1 results in almost inevitable mortality within the first 2 years of life. The first two drugs approved globally for the treatment of SMA were the antisense oligonucleotide nusinersen (Spinraza), and the gene therapy onasemnogene abeparvovec-xioi (Zolgensma). Both interventions have approval and restrictions on use in different countries around the world. Despite these approved therapies, the medical unmet need in SMA (the majority of patients with SMA are not on a disease-modifying therapy) remains high with therapies in the pipeline to address some of the remaining limitations. The third and more recently approved drug for SMA is risdiplam (Evrysdi), an orally administered, centrally and peripherally distributed small molecule that modulates SMN2 pre-mRNA splicing toward the production of full-length SMN2 mRNA to increase functional SMN protein levels. In Russia the drug risdiplam was approved for use on November 26, 2020 with indications for the treatment of SMA in patients aged 2 months and older, and in 2023 the indications were expanded - use is allowed starting from the birth. Risdiplam is widely distributed into the CNS and peripheral tissues including muscles. Following risdiplam administration, SMN protein levels compared with baseline levels increase between 2- and 6-fold depending on the SMA phenotype treated. The risdiplam clinical development program currently has four ongoing clinical trials assessing its safety and efficacy. Clinical trials included more than 450 patients receiving risdiplam to date, has been well tolerated and no treatment-related safety findings leading to study withdrawal have been observed. Data from real clinical practice - more than 11.000 patients worldwide receive therapy with risdiplam, also confirm the safety and good tolerability of the drug.
Collapse
Affiliation(s)
- D V Vlodavets
- Veltischev Clinical Pediatric Research Institute of Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AP, Hoekzema K, Porubsky D, Li R, Nurk S, Koren S, Miga KH, Phillippy AM, Timp W, Ventura M, Eichler EE. Segmental duplications and their variation in a complete human genome. Science 2022; 376:eabj6965. [PMID: 35357917 PMCID: PMC8979283 DOI: 10.1126/science.abj6965] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite their importance in disease and evolution, highly identical segmental duplications (SDs) are among the last regions of the human reference genome (GRCh38) to be fully sequenced. Using a complete telomere-to-telomere human genome (T2T-CHM13), we present a comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence, increasing the genome-wide estimate from 5.4 to 7.0% [218 million base pairs (Mbp)]. An analysis of 268 human genomes shows that 91% of the previously unresolved T2T-CHM13 SD sequence (68.3 Mbp) better represents human copy number variation. Comparing long-read assemblies from human (n = 12) and nonhuman primate (n = 5) genomes, we systematically reconstruct the evolution and structural haplotype diversity of biomedically relevant and duplicated genes. This analysis reveals patterns of structural heterozygosity and evolutionary differences in SD organization between humans and other primates.
Collapse
Affiliation(s)
- Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ludovica Mercuri
- Department of Biology, University of Bari, Aldo Moro, Bari 70125, Italy
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruiyang Li
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Aldo Moro, Bari 70125, Italy
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Spinal muscular atrophy: Where are we now? Current challenges and high hopes. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by muscle weakness. It causes movement issues and severe physical disability. SMA is classified into four types based on the level of function achieved, age of onset, and maximum function achieved. The deletion or point mutation in the Survival of Motor Neuron 1 (SMN1) gene causes SMA. As a result, no full-length protein is produced. A nearly identical paralog, SMN2, provides enough stable protein to prevent death but not enough to compensate for SMN1's loss. The difference between SMN1 and SMN2 is due to different exon 7 alternative splicing patterns. SMA molecular therapies currently focus on restoring functional SMN protein by splicing modification of SMN2 exon 7 or elevated SMN protein levels. Nusinersen, an antisense oligonucleotide targeting the ISS-N1 sequence in SMN2 intron 7, was the first drug approved by the Food and Drug Administration. Risdiplam, a novel therapeutic that acts as an SMN2 exon 7 splicing modifier, was recently approved. All of these drugs result in the inclusion of SMN2 exon 7, and thus the production of functional SMN protein. Onasemnogene abeparvovec is a gene therapy that uses a recombinant adeno-associated virus that encodes the SMN protein. There are also experimental therapies available, such as reldesemtiv and apitegromab (SRK-015), which focus on improving muscle function or increasing muscle tissue growth, respectively. Although approved therapies have been shown to be effective, not all SMA patients can benefit from them due to age or weight, but primarily due to their high cost. This demonstrates the significance of continuous treatment improvement in today's medical challenges.
Collapse
|
4
|
Yuzawa T, Matsuoka M, Sumitani M, Aoki F, Sezutsu H, Suzuki MG. Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori. BMC DEVELOPMENTAL BIOLOGY 2020; 20:19. [PMID: 32957956 PMCID: PMC7504827 DOI: 10.1186/s12861-020-00224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023]
Abstract
Background Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. Results In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. Conclusions Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
Collapse
Affiliation(s)
- Tomohisa Yuzawa
- AIR WATER INC, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Misato Matsuoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.,SHINYUSHA, 1-12 Kanda Jimbocho, Chiyoda-ku, Tokyo, 101-0051, Japan
| | - Megumi Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hideki Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
5
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
6
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse. PLoS One 2015; 10:e0132364. [PMID: 26134627 PMCID: PMC4489873 DOI: 10.1371/journal.pone.0132364] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons.
Collapse
|
8
|
Kaczmarek A, Schneider S, Wirth B, Riessland M. Investigational therapies for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 2015; 24:867-81. [DOI: 10.1517/13543784.2015.1038341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Kaczmarek
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Svenja Schneider
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Brunhilde Wirth
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Markus Riessland
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
9
|
Wee CD, Havens MA, Jodelka FM, Hastings ML. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells. PLoS One 2014; 9:e115205. [PMID: 25506695 PMCID: PMC4266657 DOI: 10.1371/journal.pone.0115205] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.
Collapse
Affiliation(s)
- Claribel D. Wee
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mallory A. Havens
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Francine M. Jodelka
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Michelle L. Hastings
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pluripotent stem cell-based models of spinal muscular atrophy. Mol Cell Neurosci 2014; 64:44-50. [PMID: 25511182 DOI: 10.1016/j.mcn.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.
Collapse
|
11
|
Moursy A, Allain FHT, Cléry A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res 2014; 42:6659-72. [PMID: 24692659 PMCID: PMC4041419 DOI: 10.1093/nar/gku244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regulation of SMN2 exon 7 splicing is crucial for the production of active SMN protein and the survival of Spinal Muscular Atrophy (SMA) patients. One of the most efficient activators of exon 7 inclusion is hnRNP G, which is recruited to the exon by Tra2-β1. We report that in addition to the C-terminal region of hnRNP G, the RNA Recognition Motif (RRM) and the middle part of the protein containing the Arg–Gly–Gly (RGG) box are important for this function. To better understand the mode of action of hnRNP G in this context we determined the structure of its RRM bound to an SMN2 derived RNA. The RRM interacts with a 5′-AAN-3′ motif and specifically recognizes the two consecutive adenines. By testing the effect of mutations in hnRNP G RRM and in its putative binding sites on the splicing of SMN2 exon 7, we show that it specifically binds to exon 7. This interaction is required for hnRNP G splicing activity and we propose its recruitment to a polyA tract located upstream of the Tra2-β1 binding site. Finally, our data suggest that hnRNP G plays a major role in the recruitment of the Tra2-β1/hnRNP G/SRSF9 trimeric complex to SMN2 exon 7.
Collapse
Affiliation(s)
- Ahmed Moursy
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Porensky PN, Burghes AHM. Antisense oligonucleotides for the treatment of spinal muscular atrophy. Hum Gene Ther 2013; 24:489-98. [PMID: 23544870 DOI: 10.1089/hum.2012.225] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease affecting ∼1 in 10,000 live births. The most striking component is the loss of α-motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment paradigm other than supportive care, though the past 15 years has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease-modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials, including the application of antisense oligonucleotide (ASO) therapy for the correction of aberrant RNA splicing characteristic of SMA. Survival motor neuron (SMN) is a ubiquitously expressed 38-kD protein. Humans have two genes that produce SMN, SMN1 and SMN2, the former of which is deleted or nonfunctional in the majority of patients with SMA. These two genes are nearly identical with one exception, a C to T transition (C6T) within exon 7 of SMN2. C6T disrupts a modulator of splicing, leading to the exclusion of exon 7 from ∼90% of the mRNA transcript. The resultant truncated Δ7SMN protein does not oligomerize efficiently and is rapidly degraded. SMA can therefore be considered a disease of too little SMN protein. A number of cis-acting splice modifiers have been identified in the region of exon 7, the steric block of which enhances the retention of the exon and a resultant full-length mRNA sequence. ASOs targeted to these splice motifs have shown impressive phenotype rescue in multiple SMA mouse models.
Collapse
Affiliation(s)
- Paul N Porensky
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Arnold WD, Burghes AHM. Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol 2013; 74:348-62. [PMID: 23939659 DOI: 10.1002/ana.23995] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/13/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, effective treatments are urgently needed, along with methods to determine whether treatment worked. In this review, we discuss the rapid progress in the understanding of recessive proximal spinal muscular atrophy and how this is leading to exciting potential treatments of the disease. Spinal muscular atrophy is caused by loss of the survival motor neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels has a marked impact in mouse models, and these therapeutics are rapidly moving toward clinical trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and potential measures of treatment effect are reviewed. One key issue discussed is the variable outcome of increasing SMN at different stages of disease progression.
Collapse
Affiliation(s)
- W David Arnold
- Neuromuscular Division, Department of Neurology, Wexner Medical Center, the Ohio State University, Columbus, OH; Department of Physical Medicine and Rehabilitation, Wexner Medical Center, the Ohio State University, Columbus, OH
| | | |
Collapse
|
14
|
McGivern JV, Patitucci TN, Nord JA, Barabas MEA, Stucky CL, Ebert AD. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia 2013; 61:1418-1428. [PMID: 23839956 DOI: 10.1002/glia.22522] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/01/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA-induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis-regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.
Collapse
Affiliation(s)
- Jered V McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Joshua A Nord
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Marie-Elizabeth A Barabas
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
15
|
Havens MA, Duelli DM, Hastings ML. Targeting RNA splicing for disease therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:247-66. [PMID: 23512601 PMCID: PMC3631270 DOI: 10.1002/wrna.1158] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.
Collapse
Affiliation(s)
- Mallory A. Havens
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science. North Chicago, IL, 60064, USA. No conflicts of interest
| | - Dominik M. Duelli
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. No conflicts of interest
| | - Michelle L. Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science. North Chicago, IL, 60064, USA, Phone: 847-578-8517 Fax: 847-578-3253. No conflicts of interest
| |
Collapse
|
16
|
Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol Cell Neurosci 2013; 56:169-85. [PMID: 23631896 PMCID: PMC3793868 DOI: 10.1016/j.mcn.2013.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | | |
Collapse
|
17
|
Mitrpant C, Porensky P, Zhou H, Price L, Muntoni F, Fletcher S, Wilton SD, Burghes AHM. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLoS One 2013; 8:e62114. [PMID: 23630626 PMCID: PMC3632594 DOI: 10.1371/journal.pone.0062114] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length SMN2 transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in SMN2 have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer is located downstream of exon 7 in SMN2 intron 7. Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO) that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Genetic Therapy
- Humans
- Injections, Intraventricular
- Mice
- Mice, Transgenic
- Morpholinos/genetics
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/therapy
- Oligonucleotides, Antisense/genetics
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival of Motor Neuron 2 Protein/genetics
- Survival of Motor Neuron 2 Protein/metabolism
- Titrimetry
- Transcription, Genetic
Collapse
Affiliation(s)
- Chalermchai Mitrpant
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QE II Medical Centre, Perth, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (CM); (AHMB)
| | - Paul Porensky
- Department of Neurological Surgery, The Wexner Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Loren Price
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QE II Medical Centre, Perth, Western Australia, Australia
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QE II Medical Centre, Perth, Western Australia, Australia
| | - Steve D. Wilton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, QE II Medical Centre, Perth, Western Australia, Australia
| | - Arthur H. M. Burghes
- Department of Molecular and Cellular Biochemistry and Neurology, The Wexner Ohio State University Medical Center, Columbus, Ohio, United States of America
- * E-mail: (CM); (AHMB)
| |
Collapse
|
18
|
Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev 2013; 23:330-8. [PMID: 23602330 DOI: 10.1016/j.gde.2013.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/26/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023]
Abstract
Both complex disorders and monogenetic diseases are often modulated in their phenotype by further genetic, epigenetic or extrinsic factors. This gives rise to extensive phenotypic variability and potentially protection from disease manifestations, known as incomplete penetrance. Approaches including whole transcriptome, exome, genome, methylome or proteome analyses of highly discordant phenotypes in a few individuals harboring mutations at the same locus can help to identify these modifiers. This review describes the complexity of modifying factors of one of the most frequent autosomal recessively inherited disorders in humans, spinal muscular atrophy (SMA). We will outline how this knowledge contributes to understanding of the regulatory networks and molecular pathology of SMA and how this knowledge will influence future approaches to therapies.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
19
|
Lorson MA, Lorson CL. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med Chem 2012; 4:2067-84. [PMID: 23157239 PMCID: PMC3589915 DOI: 10.4155/fmc.12.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. A neurodegenerative disease, it is caused by loss of SMN1, although low, but essential, levels of SMN protein are produced by the nearly identical gene SMN2. While no effective treatment or therapy currently exists, a new wave of therapeutics has rapidly progressed from cell-based and preclinical animal models to the point where clinical trials have initiated for SMA-specific compounds. There are several reasons why SMA has moved relatively rapidly towards novel therapeutics, including: SMA is monogenic; the molecular understanding of SMN gene regulation has been building for nearly 20 years; and all SMA patients retain one or more copies of SMN2 that produces low levels of full-length, fully functional SMN protein. This review primarily focuses upon the biology behind the disease and examines SMN1- and SMN2-targeted therapeutics.
Collapse
Affiliation(s)
- Monique A Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 440C, University of Missouri, MO 65211 USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 471G, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| |
Collapse
|
20
|
Bebee TW, Dominguez CE, Samadzadeh-Tarighat S, Akehurst KL, Chandler DS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet 2012; 21:4301-13. [PMID: 22763238 DOI: 10.1093/hmg/dds263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease associated with low levels of the essential survival motor neuron (SMN) protein. Reduced levels of SMN is due to the loss of the SMN1 gene and inefficient splicing of the SMN2 gene caused by a C>T mutation in exon 7. Global analysis of the severe SMNΔ7 SMA mouse model revealed altered splicing and increased levels of the hypoxia-inducible transcript, Hif3alpha, at late stages of disease progression. Severe SMA patients also develop respiratory deficiency during disease progression. We sought to evaluate whether hypoxia was capable of altering SMN2 exon 7 splicing and whether increased oxygenation could modulate disease in a severe SMA mouse model. Hypoxia treatment in cell culture increased SMN2 exon 7 skipping and reduced SMN protein levels. Concordantly, the treatment of SMNΔ7 mice with hyperoxia treatment increased the inclusion of SMN2 exon 7 in skeletal muscles and resulted in improved motor function. Transfection splicing assays of SMN minigenes under hypoxia revealed that hypoxia-induced skipping is dependent on poor exon definition due to the SMN2 C>T mutation and suboptimal 5' splice site. Hypoxia treatment in cell culture led to increased hnRNP A1 and Sam68 levels. Mutation of hnRNP A1-binding sites prevented hypoxia-induced skipping of SMN exon 7 and was found to bind both hnRNP A1 and Sam68. These results implicate hypoxic stress as a modulator of SMN2 exon 7 splicing in disease progression and a coordinated regulation by hnRNP A1 and Sam68 as modifiers of hypoxia-induced skipping of SMN exon 7.
Collapse
Affiliation(s)
- Thomas W Bebee
- The Center for Childhood Cancer at the Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
21
|
Alternative splicing interference by xenobiotics. Toxicology 2012; 296:1-12. [DOI: 10.1016/j.tox.2012.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022]
|
22
|
Bosio Y, Berto G, Camera P, Bianchi F, Ambrogio C, Claus P, Di Cunto F. PPP4R2 regulates neuronal cell differentiation and survival, functionally cooperating with SMN. Eur J Cell Biol 2012; 91:662-74. [PMID: 22559936 DOI: 10.1016/j.ejcb.2012.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 01/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a human disease caused by reduced levels of the Survival of Motor Neuron (SMN) protein, leading to progressive loss of motor neurons and muscular paralysis. However, it is still not very clear why these cells are specifically sensitive to SMN levels. Therefore, understanding which proteins may functionally interact with SMN in a neuronal context is a very important issue. PPP4R2, a regulatory subunit of the protein phosphatase 4 (PPP4C), was previously identified as a functional interactor of the SMN complex, but has never been studied in neuronal cells. In this report, we show that PPP4R2 displays a very dynamic intracellular localization in mouse and rat neuronal cell lines and in rat primary hippocampal neurons, strongly correlating with differentiation. More importantly, we found that PPP4R2 loss of function impairs the differentiation of the mouse motor-neuronal cell line NSC-34, an effect that can be counteracted by SMN overexpression. In addition, we show that PPP4R2 may specifically protect NSC-34 cells from DNA damage-induced apoptosis and that it is capable to functionally cooperate with SMN in this activity. Our data indicate that PPP4R2 is a SMN partner that may modulate the differentiation and survival of neuronal cells.
Collapse
Affiliation(s)
- Ylenia Bosio
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Bebee TW, Dominguez CE, Chandler DS. Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 2012; 131:1277-93. [DOI: 10.1007/s00439-012-1171-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/13/2012] [Indexed: 12/30/2022]
|
24
|
Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, Wilton SD, Burghes AHM. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2011; 21:1625-38. [PMID: 22186025 DOI: 10.1093/hmg/ddr600] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.
Collapse
Affiliation(s)
- Paul N Porensky
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 2011; 32:126-38. [PMID: 22037760 DOI: 10.1128/mcb.06077-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1.
Collapse
|
26
|
Osman EY, Yen PF, Lorson CL. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy. Mol Ther 2011; 20:119-26. [PMID: 22031236 DOI: 10.1038/mt.2011.232] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of survival motor neuron-1 (SMN1). A nearly identical copy gene, SMN2, is present in all SMA patients. Although the SMN2 coding sequence has the potential to produce full-length SMN, nearly 90% of SMN2-derived transcripts are alternatively spliced and encode a truncated protein. SMN2, however, is an excellent therapeutic target. Previously, we developed antisense-based oligonucleotides (bifunctional RNAs) that specifically recruit SR/SR-like splicing factors and target a negative regulator of SMN2 exon-7 inclusion within intron-6. As a means to optimize the antisense sequence of the bifunctional RNAs, we chose to target a potent intronic repressor downstream of SMN2 exon 7, called intronic splicing silencer N1 (ISS-N1). We developed RNAs that specifically target ISS-N1 and concurrently recruit the modular SR proteins SF2/ASF or hTra2β1. RNAs were directly injected in the brains of SMA mice. Bifunctional RNA injections were able to elicit robust induction of SMN protein in the brain and spinal column of neonatal SMA mice. Importantly, hTra2β1-ISS-N1 and SF2/ASF-ISS-N1 bifunctional RNAs significantly extended lifespan and increased weight in the SMNΔ7 mice. This technology has direct implications for SMA therapy and provides similar therapeutic strategies for other diseases caused by aberrant splicing.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri 65211-7310, USA
| | | | | |
Collapse
|
27
|
Singh NN, Singh RN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol 2011; 8:600-6. [PMID: 21654213 DOI: 10.4161/rna.8.4.16224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5′ ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3′ ss of an alternatively spliced exon.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences Iowa State University, Ames, IA, USA
| | | |
Collapse
|
28
|
Bebee TW, Gladman JT, Chandler DS. Generation of a tamoxifen inducible SMN mouse for temporal SMN replacement. Genesis 2011; 49:927-34. [PMID: 21538807 DOI: 10.1002/dvg.20764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/22/2011] [Accepted: 04/20/2011] [Indexed: 11/05/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is caused by low levels of the SMN protein, encoded by the Survival Motor Neuron genes (SMN1 and SMN2). Mouse models of SMA can be rescued by increased SMN expression, but the timing of SMN replacement for complete rescue is unknown. Studies in zebrafish predict restoration of SMN function during embryogenesis may be important for axonal pathfinding, while the mouse models and normal human disease progression suggest that post-natal treatment may be sufficient for amelioration of disease. To evaluate the timing for SMN replacement, we have generated a stably integrated Cre-inducible SMN mouse in which expression of full-length SMN2 occurs after tamoxifen administration. Our temporally inducible SMN transgene is able to express SMN in embryonic, neonatal, and weanling mice and as such can be utilized in severe and mild SMA mouse models to identify the therapeutic window for SMN replacement.
Collapse
Affiliation(s)
- Thomas W Bebee
- The Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
29
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
30
|
Burghes AHM, McGovern VL. Antisense oligonucleotides and spinal muscular atrophy: skipping along. Genes Dev 2010; 24:1574-9. [PMID: 20679391 DOI: 10.1101/gad.1961710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antisense oligonucleotides (ASOs) can be used to alter the splicing of a gene and either restore production of a required protein or eliminate a toxic product. In this issue of Genes & Development, Hua and colleagues (pp. 1634-1644) show that ASOs directed against an intron splice silencer (ISS) in the survival motor neuron 2 (SMN2) gene alter the amount of full-length SMN transcript in the nervous system, restoring SMN to levels that could correct spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|