1
|
Andersen C, Walters M, Bundgaard L, Berg LC, Vonk LA, Lundgren-Åkerlund E, Henriksen BL, Lindegaard C, Skovgaard K, Jacobsen S. Intraarticular treatment with integrin α10β1-selected mesenchymal stem cells affects microRNA expression in experimental post-traumatic osteoarthritis in horses. Front Vet Sci 2024; 11:1374681. [PMID: 38596460 PMCID: PMC11002141 DOI: 10.3389/fvets.2024.1374681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) remains a major cause of lameness in horses, which leads to lost days of training and early retirement. Still, the underlying pathological processes are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that serve as regulators of many biological processes including OA. Analysis of miRNA expression in diseased joint tissues such as cartilage and synovial membrane may help to elucidate OA pathology. Since integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) have shown mitigating effect on equine OA we here investigated the effect of integrin α10-MSCs on miRNA expression. Cartilage and synovial membrane was harvested from the middle carpal joint of horses with experimentally induced, untreated OA, horses with experimentally induced OA treated with allogeneic adipose-derived MSCs selected for the marker integrin α10-MSCs, and from healthy control joints. miRNA expression in cartilage and synovial membrane was established by quantifying 70 pre-determined miRNAs by qPCR. Differential expression of the miRNAs was evaluated by comparing untreated OA and control, untreated OA and MSC-treated OA, and joints with high and low pathology score. A total of 60 miRNAs were successfully quantified in the cartilage samples and 55 miRNAs were quantified in the synovial membrane samples. In cartilage, miR-146a, miR-150 and miR-409 had significantly higher expression in untreated OA joints than in control joints. Expression of miR-125a-3p, miR-150, miR-200c, and miR-499-5p was significantly reduced in cartilage from MSC-treated OA joints compared to the untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, miR-200a, miR-378, miR-409-3p, and miR-7177b in articular cartilage reflected pathology score. Several of these miRNAs are known from research in human patients with OA and from murine OA models. Our study shows that these miRNAs are also differentially expressed in experimental equine OA, and that expression depends on OA severity. Moreover, MSC treatment, which resulted in less severe OA, also affected miRNA expression in cartilage.
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | | | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
2
|
Vishwanath K, Secor EJ, Watkins A, Reesink HL, Bonassar LJ. Loss of effective lubricating viscosity is the primary mechanical marker of joint inflammation in equine synovitis. J Orthop Res 2024. [PMID: 38291343 DOI: 10.1002/jor.25793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro-inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well-established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000-fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = -0.6 to -0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2 (PGE2 ), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. A Translational Model for Repeated Episodes of Joint Inflammation: Welfare, Clinical and Synovial Fluid Biomarker Assessment. Animals (Basel) 2023; 13:3190. [PMID: 37893914 PMCID: PMC10603652 DOI: 10.3390/ani13203190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates repeated low-dose lipopolysaccharide (LPS) injections in equine joints as a model for recurrent joint inflammation and its impact on animal welfare. Joint inflammation was induced in eight horses by injecting 0.25 ng of LPS three times at two-week intervals. Welfare scores and clinical parameters were recorded at baseline and over 168 h post-injection. Serial synoviocentesis was performed for the analysis of a panel of synovial fluid biomarkers of inflammation and cartilage turnover. Clinical parameters and a final synoviocentesis were also performed eight weeks after the last sampling point to assess the recovery of normal joint homeostasis. Statistical methods were used to compare the magnitude of response to each of the 3 LPS inductions and to compare the baseline and final measurements. Each LPS injection produced consistent clinical and biomarker responses, with minimal changes in welfare scores. General matrix metalloproteinase (MMP) activity and joint circumference showed greater response to the second LPS induction, but response to the third was comparable to the first. Gylcosaminoglycans (GAG) levels showed a significantly decreased response with each induction, while collagen-cleavage neoepitope of type II collagen (C2C) and carboxypropetide of type II collagen epitope (CPII) showed quicker responses to the second and third inductions. All parameters were comparable to baseline values at the final timepoint. In conclusion, a consistent, reliable intra-articular inflammatory response can be achieved with repeated injections of 0.25 ng LPS, with minimal impact on animal welfare, suggesting potential as a refined translational model of recurrent joint inflammation.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Margot C. Labberté
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Janny C. de Grauw
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Pieter A. J. Brama
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| |
Collapse
|
4
|
Cassano JM, Marycz K, Horna M, Nogues MP, Morgan JM, Herrmann DB, Galuppo LD, Vapniarsky N. Evaluating the Safety of Intra-Articular Mitotherapy in the Equine Model: A Potential Novel Treatment for Osteoarthritis. J Equine Vet Sci 2023; 120:104164. [PMID: 36384191 DOI: 10.1016/j.jevs.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
No current treatments available halt osteoarthritis progression in horses or humans. Intra-articular injection of mitochondria is a novel treatment that has the potential to improve cell metabolism and decrease inflammation, but safety of this treatment has yet to be established in the horse. Autologous blood-derived mitochondria isolated using a commercially available kit were injected into the left carpus joint of 3 horses which were monitored for 28 days. Horses received physical examinations, video recorded gait evaluations, joint diameter measurement, synovial fluid collection, and blood collection on day 0 (baseline prior to mitotherapy, day of mitochondria injection), 1, 3, 7, 14, and 28. Systemic inflammation was assessed via complete blood count, fibrinogen, and plasma serum amyloid A (SAA). Local inflammation was assessed via synovial fluid cytology and physical examination parameters. Physical exam parameters remained stable and no joint swelling was observed after mitotherapy. No change was noted in video recorded gait evaluations as determined by a blinded evaluator. Complete blood counts revealed no significant increase in white blood cells. SAA only increased mildly in 1 horse. Fibrinogen became slightly elevated above reference range in 2 horses at day 7, but later normalized. Mild increases in synovial fluid nucleated cell counts and total protein occurred on day 1 and 3, but resolved within 7 days without intervention. Autologous mitochondria injection into the equine intercarpal joint was well tolerated with no signs of inflammation. This safety information allows for future studies evaluating mitotherapy efficacy.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA.
| | - Krzysztof Marycz
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA; International Institute of Translational Medicine (MIMT), Malin, Wisznia Mała, Poland
| | - Marta Horna
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Marcos Perez Nogues
- Department of Surgical and Radiological Sciences, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Jessica M Morgan
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Daniel B Herrmann
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Larry D Galuppo
- Department of Surgical and Radiological Sciences, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
5
|
Kearney CM, Khatab S, van Buul GM, Plomp SGM, Korthagen NM, Labberté MC, Goodrich LR, Kisiday JD, Van Weeren PR, van Osch GJVM, Brama PAJ. Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Front Vet Sci 2022; 9:907616. [PMID: 35812845 PMCID: PMC9257274 DOI: 10.3389/fvets.2022.907616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAllogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation.ObjectivesTo investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation.Study DesignRandomized positively and negatively controlled experimental study.MethodIn phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology.ResultsIn phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs.Main LimitationsThis study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control.ConclusionsIn this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- *Correspondence: Clodagh M. Kearney
| | - Sohrab Khatab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerben M. van Buul
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Beacon Hospital, Dublin, Ireland
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Margot C. Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Laurie R. Goodrich
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - John D. Kisiday
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - P. R. Van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pieter A. J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Mohammadi A, te Moller NCR, Ebrahimi M, Plomp S, Brommer H, van Weeren PR, Mäkelä JTA, Töyräs J, Korhonen RK. Site- and Zone-Dependent Changes in Proteoglycan Content and Biomechanical Properties of Bluntly and Sharply Grooved Equine Articular Cartilage. Ann Biomed Eng 2022; 50:1787-1797. [PMID: 35754073 PMCID: PMC9794534 DOI: 10.1007/s10439-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/09/2022] [Indexed: 12/31/2022]
Abstract
In this study, we mapped and quantified changes of proteoglycan (PG) content and biomechanical properties in articular cartilage in which either blunt or sharp grooves had been made, both close to the groove and more remote of it, and at the opposing joint surface (kissing site) in equine carpal joints. In nine adult Shetland ponies, standardized blunt and sharp grooves were surgically made in the radiocarpal and middle carpal joints of a randomly chosen front limb. The contralateral control limb was sham-operated. At 39 weeks after surgery, ponies were euthanized. In 10 regions of interest (ROIs) (six remote from the grooves and four directly around the grooves), PG content as a function of tissue-depth and distance-to-groove was estimated using digital densitometry. Biomechanical properties of the cartilage were evaluated in the six ROIs remote from the grooves. Compared to control joints, whole tissue depth PG loss was found in sites adjacent to sharp and, to a larger extent, blunt grooves. Also, superficial PG loss of the surgically untouched kissing cartilage layers was observed. Significant PG loss was observed up to 300 µm (sharp) and at 500 µm (blunt) from the groove into the surrounding tissue. Equilibrium modulus was lower in grooved cartilage than in controls. Grooves, in particular blunt grooves, gave rise to severe PG loss close to the grooved sites and to mild degeneration more remote from the grooves in both sharply and bluntly grooved cartilage and at the kissing sites, resulting in loss of mechanical strength over the 9-month period.
Collapse
Affiliation(s)
- Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland ,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Janne T. A. Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland ,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia ,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
te Moller NCR, Mohammadi A, Plomp S, Serra Bragança FM, Beukers M, Pouran B, Afara IO, Nippolainen E, Mäkelä JTA, Korhonen RK, Töyräs J, Brommer H, van Weeren PR. Structural, compositional, and functional effects of blunt and sharp cartilage damage on the joint: A 9-month equine groove model study. J Orthop Res 2021; 39:2363-2375. [PMID: 33368588 PMCID: PMC8597083 DOI: 10.1002/jor.24971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to quantify the long-term progression of blunt and sharp cartilage defects and their effect on joint homeostasis and function of the equine carpus. In nine adult Shetland ponies, the cartilage in the radiocarpal and middle carpal joint of one front limb was grooved (blunt or sharp randomized). The ponies were subjected to an 8-week exercise protocol and euthanized at 39 weeks. Structural and compositional alterations in joint tissues were evaluated in vivo using serial radiographs, synovial biopsies, and synovial fluid samples. Joint function was monitored by quantitative gait analysis. Macroscopic, microscopic, and biomechanical evaluation of the cartilage and assessment of subchondral bone parameters were performed ex vivo. Grooved cartilage showed higher OARSI microscopy scores than the contra-lateral sham-operated controls (p < 0.0001). Blunt-grooved cartilage scored higher than sharp-grooved cartilage (p = 0.007) and fixed charge density around these grooves was lower (p = 0.006). Equilibrium and instantaneous moduli trended lower in grooved cartilage than their controls (significant for radiocarpal joints). Changes in other tissues included a threefold to sevenfold change in interleukin-6 expression in synovium from grooved joints at week 23 (p = 0.042) and an increased CPII/C2C ratio in synovial fluid extracted from blunt-grooved joints at week 35 (p = 0.010). Gait analysis outcome revealed mild, gradually increasing lameness. In conclusion, blunt and, to a lesser extent, sharp grooves in combination with a period of moderate exercise, lead to mild degeneration in equine carpal cartilage over a 9-month period, but the effect on overall joint health remains limited.
Collapse
Affiliation(s)
- Nikae C. R. te Moller
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Ali Mohammadi
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Filipe M. Serra Bragança
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Behdad Pouran
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Isaac O. Afara
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ervin Nippolainen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | | | - Rami K. Korhonen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
8
|
New mAbs facilitate quantification of secreted equine TNF-α and flow cytometric analysis in monocytes and T cells. Vet Immunol Immunopathol 2021; 238:110284. [PMID: 34126553 DOI: 10.1016/j.vetimm.2021.110284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine, that is involved in acute inflammation and is employed as a biomarker of inflammatory diseases in several species for which reliable quantification is available. We aimed to develop suitable tools to quantify TNF-α in equine samples. We generated two new mAbs against equine TNF-α (clones 48 and 292), evaluated their specificity for this cytokine, and confirmed detection of native TNF-α in stimulated equine PBMC. The TNF-α mAbs were paired in a fluorescent bead-based assay for quantification of equine TNF-α. The TNF-α assay had a wide quantification range of 12 pg/mL - 38.4 ng/mL. In addition, TNF-α mAb 48 was used for a detailed analysis of TNF-α production in PBMC by intracellular staining and flow cytometry. TNF-α was expressed by CD14+ monocytes after LPS stimulation and by monocytes and lymphocytes after polyclonal stimulation with PMA and ionomycin in vitro. TNF-α expressing lymphocytes consisted mainly of CD4+ T cells. CD8+ T cells and other lymphocytes also expressed TNF-α. The new mAbs evaluated here for soluble and intracellular TNF-α will enable the detailed analysis of this important pro-inflammatory cytokine during equine immune responses and inflammatory diseases of the horse.
Collapse
|
9
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Van de Water E, Oosterlinck M, Korthagen NM, Duchateau L, Dumoulin M, van Weeren PR, Olijve J, van Doorn DA, Pille F. The lipopolysaccharide model for the experimental induction of transient lameness and synovitis in Standardbred horses. Vet J 2021; 270:105626. [PMID: 33641810 DOI: 10.1016/j.tvjl.2021.105626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/04/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
An established lipopolysaccharide (LPS) model previously described in Warmbloods, was inconsistent in Standardbred horses, where lameness was not detected despite the presence of synovitis. The present study aimed to determine the dose of LPS from E. coli O55:B5 required to induce mild to moderate lameness following middle carpal joint injection in Standardbred horses and to quantitate the induced lameness over time, with and without anti-inflammatory pre-treatment. In a baseline trial, eight healthy, clinically sound Standardbred horses were used in a rule-based dose-escalation design trial, starting at a dose of 10 endotoxin units (EU). Lameness at trot was evaluated visually and quantitatively (using an inertial-sensor system and pressure plate analysis). Synovial fluid aspirates were analysed for total nucleated cell counts, total protein and prostaglandin E2 (PGE2). Following 2 months wash-out, the effective LPS-dose determined in the baseline trial was used to evaluate the effect of anti-inflammatory treatment. A mixed model for repeated measures with horse as random effect was used for analysis. After injection of 10 EU LPS, the desired degree of lameness was observed in the baseline trial, with maximal lameness at post-injection hour (PIH) 4, followed by a rapid decline and return to baseline by PIH 48. No lameness was observed following pre-treatment with meloxicam. In synovial fluid, PGE2 was significantly higher at PIH 8 and PIH 24 in the baseline trial compared with following meloxicam pre-treatment. In conclusion, injection of the middle carpal joint with 10 EU LPS consistently induces a transient lameness and synovitis in Standardbred horses.
Collapse
Affiliation(s)
- E Van de Water
- Department of Surgery and Anaesthesiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - M Oosterlinck
- Department of Surgery and Anaesthesiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - N M Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - L Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Dumoulin
- Department of Surgery and Anaesthesiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - P R van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - J Olijve
- Rousselot, Meulestedekaai 81, 9000 Gent, Belgium
| | - D A van Doorn
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands; Equivado, Equine Nutrition Consultancy, Marnixlaan 80, 3552 HG Utrecht, The Netherlands
| | - F Pille
- Department of Surgery and Anaesthesiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Niemelä TM, Tulamo RM, Carmona JU, López C. Evaluation of the effect of experimentally induced cartilage defect and intra-articular hyaluronan on synovial fluid biomarkers in intercarpal joints of horses. Acta Vet Scand 2019; 61:24. [PMID: 31146775 PMCID: PMC6543688 DOI: 10.1186/s13028-019-0460-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory and degenerative activity inside the joint can be studied in vivo by analysis of synovial fluid biomarkers. In addition to pro-inflammatory mediators, several anabolic and anti-inflammatory substances are produced during the disease process. They counteract the catabolic effects of the pro-inflammatory cytokines and thus diminish the cartilage damage. The response of synovial fluid biomarkers after intra-articular hyaluronan injection, alone or in combination with other substances, has been examined only in a few equine studies. The effects of hyaluronan on some pro-inflammatory mediators, such as prostaglandin E2, have been documented but especially the effects on synovial fluid anti-inflammatory mediators are less studied. In animal models hyaluronan has been demonstrated to reduce pain via protecting nociceptive nerve endings and by blocking pain receptor channels. However, the results obtained for pain-relief of human osteoarthritis are contradictory. The aim of the study was to measure the synovial fluid IL-1ra, PDGF-BB, TGF-β1 and TNF-α concentrations before and after surgically induced cartilage defect, and following intra-articular hyaluronan injection in horses. Eight Standardbred horses underwent bilateral arthroscopic surgeries of their intercarpal joints under general anaesthesia, and cartilage defect was created on the dorsal edge of the third carpal bone of one randomly selected intercarpal joint of each horse. Five days post-surgery, one randomly selected intercarpal joint was injected intra-articular with 3 mL HA (20 mg/mL). RESULTS Operation type had no significant effect on the synovial fluid IL-1ra, PDGF-BB, TGF-β1 and TNF-α concentrations but compared with baseline, synovial fluid IL-1ra and TNF-α concentrations increased. Intra-articular hyaluronan had no significant effect on the biomarker concentrations but a trend of mild improvement in the clinical signs of intra-articular inflammation was seen. CONCLUSIONS Creation of the cartilage defect and sham-operation lead to an increase of synovial fluid IL-1ra and TNF-α concentrations but changes in concentrations of anabolic growth factors TGF-β1 and PDGF-BB could not be documented 5 days after the arthroscopy. Intra-articular hyaluronan was well tolerated. Further research is needed to document possible treatment effects of intra-articular hyaluronan on the synovial fluid biomarkers of inflammation and cartilage metabolism.
Collapse
Affiliation(s)
- Tytti Maaria Niemelä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| | - Riitta-Mari Tulamo
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| | - Jorge Uriel Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No26-10, Manizales, Caldas, Colombia
| | - Catalina López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No26-10, Manizales, Caldas, Colombia
| |
Collapse
|
12
|
Andreassen SM, Vinther AML, Nielsen SS, Andersen PH, Tnibar A, Kristensen AT, Jacobsen S. Changes in concentrations of haemostatic and inflammatory biomarkers in synovial fluid after intra-articular injection of lipopolysaccharide in horses. BMC Vet Res 2017. [PMID: 28629364 PMCID: PMC5477303 DOI: 10.1186/s12917-017-1089-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Septic arthritis is a common and potentially devastating disease characterized by severe intra-articular (IA) inflammation and fibrin deposition. Research into equine joint pathologies has focused on inflammation, but recent research in humans suggests that both haemostatic and inflammatory pathways are activated in the joint compartment in arthritic conditions. The aim of this study was to characterize the IA haemostatic and inflammatory responses in horses with experimental lipopolysaccharide (LPS)-induced joint inflammation. Inflammation was induced by IA injection of LPS into one antebrachiocarpal joint of six horses. Horses were evaluated clinically with subjective grading of lameness, and blood and synovial fluid (SF) samples were collected at post injection hours (PIH) -120, −96, −24, 0, 2, 4, 8, 16, 24, 36, 48, 72 and 144. Total protein (TP), white blood cell counts (WBC), serum amyloid A (SAA), haptoglobin, iron, fibrinogen, thrombin-antithrombin (TAT) and d-dimer concentrations were assessed in blood and SF. Results Intra-articular injection of LPS caused local and systemic signs of inflammation including increased rectal temperature, lameness and increased joint circumference and skin temperature. Most of the biomarkers (TP, WBC, haptoglobin, fibrinogen and TAT) measured in SF increased quickly after LPS injection (at PIH 2–4), whereas SAA and d-dimer levels increased more slowly (at PIH 16 and 144, respectively). SF iron concentrations did not change statistically significantly. Blood WBC, SAA, haptoglobin and fibrinogen increased and iron decreased significantly in response to the IA LPS injection, while TAT and d-dimer concentrations did not change. Repeated pre-injection arthrocenteses caused significant changes in SF concentrations of TP, WBC and haptoglobin. Conclusion Similar to inflammatory joint disease in humans, joint inflammation in horses was accompanied by an IA haemostatic response with changes in fibrinogen, TAT and d-dimer concentrations. Inflammatory and haemostatic responses were induced simultaneously and may likely interact. Further studies of interactions between the two responses are needed for a better understanding of pathogenesis of joint disease in horses. Knowledge of effects of repeated arthrocenteses on levels of SF biomarkers may be of value when markers are used for diagnostic purposes.
Collapse
Affiliation(s)
- Stine Mandrup Andreassen
- Department of Veterinary Clinical Sciences, Section of Large Animal Medicine and Surgery, University of Copenhagen, Højbakkegård Allé 5, DK-2630, Tåstrup, Denmark
| | - Anne Mette Lindberg Vinther
- Department of Veterinary Clinical Sciences, Section of Large Animal Medicine and Surgery, University of Copenhagen, Højbakkegård Allé 5, DK-2630, Tåstrup, Denmark
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark
| | - Pia Haubro Andersen
- Department of Veterinary Clinical Sciences, Section of Large Animal Medicine and Surgery, University of Copenhagen, Højbakkegård Allé 5, DK-2630, Tåstrup, Denmark.,Department of Clinical Sciences, Swedish Agricultural University, 75007, Uppsala, Sweden
| | - Aziz Tnibar
- Department of Veterinary Clinical Sciences, Section of Large Animal Medicine and Surgery, University of Copenhagen, Højbakkegård Allé 5, DK-2630, Tåstrup, Denmark
| | - Annemarie T Kristensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, DK-1870, Frederiksberg C, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Section of Large Animal Medicine and Surgery, University of Copenhagen, Højbakkegård Allé 5, DK-2630, Tåstrup, Denmark.
| |
Collapse
|
13
|
te Moller NC, van Weeren PR. How exercise influences equine joint homeostasis. Vet J 2017; 222:60-67. [DOI: 10.1016/j.tvjl.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 02/02/2023]
|
14
|
Interleukin-1 Receptor Antagonist and Interleukin-1 Beta Levels in Equine Synovial Fluid of Normal and Osteoarthritic Joints: Influence of Anatomic Joint Location and Repeated Arthrocentesis. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Ross-Jones TN, McIlwraith CW, Kisiday JD, Hess TM, Hansen DK, Black J. Influence of an n-3 long-chain polyunsaturated fatty acid-enriched diet on experimentally induced synovitis in horses. J Anim Physiol Anim Nutr (Berl) 2015; 100:565-77. [PMID: 26189710 DOI: 10.1111/jpn.12359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
Dietary n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementation has previously been shown to modify joint-related inflammation in several species, although information in the horse is lacking. We investigated whether dietary supplementation with n-3 LCPUFA would modify experimentally induced synovitis in horses. Twelve, skeletally mature, non-pregnant mares were randomly assigned to either a control diet (CONT) or an n-3 long-chain fatty acid-enriched treatment diet (N3FA) containing 40 g/day of n-3 LCPUFA for 91 days. Blood samples taken on days 0, 30, 60 and 90, and synovial fluid collected on days 0 and 90 were processed for lipid composition. On day 91, joint inflammation was stimulated using an intra-articular (IA) injection of 100 ng of recombinant equine IL-1beta (reIL-1β). Synovial fluid samples taken at post-injection hours (PIH) 0, 4, 8 and 24 were analysed for prostaglandin E2 (PGE2 ), matrix metalloproteinase (MMP) activity and routine cytology. Synovium and articular cartilage samples collected at PIH 8 were analysed for gene expression of MMP 1 and MMP 13, interleukin-1beta (IL-1β), cyclooxygenase 2 (COX-2), tumour necrosis factor-alpha and the aggrecanases, a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. A 90-day feeding period of n-3 LCPUFA increased serum phospholipid and synovial fluid lipid compositions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) compared to CONT horses. The reIL-1β injection caused an inflammatory response; however, there was no effect of dietary treatment on synovial fluid PGE2 content and MMP activity. Synovial tissue collected from N3FA horses exhibited lower expression of ADAMTS-4 compared to CONT horses. Despite the presence of EPA and DHA in the synovial fluid of N3FA horses, dietary n-3 LCPUFA supplementation did not modify synovial fluid biomarkers compared to CONT horses; however, the lower ADAMTS-4 mRNA expression in N3FA synovium warrants further investigation of n-3 LCPUFA as a joint therapy.
Collapse
Affiliation(s)
- T N Ross-Jones
- Department of Animal Science, Colorado State University, Fort Collins, CO, USA
| | - C W McIlwraith
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J D Kisiday
- Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - T M Hess
- Department of Animal Science, Colorado State University, Fort Collins, CO, USA
| | - D K Hansen
- Department of Animal Science, Colorado State University, Fort Collins, CO, USA
| | - J Black
- Department of Animal Science, Colorado State University, Fort Collins, CO, USA.,Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Moreira JJ, Moraes APL, Brossi PM, Machado TSL, Michelacci YM, Massoco CO, Baccarin RYA. Autologous processed plasma: cytokine profile and effects upon injection into healthy equine joints. J Vet Sci 2014; 16:47-55. [PMID: 25269714 PMCID: PMC4367149 DOI: 10.4142/jvs.2015.16.1.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 09/26/2014] [Indexed: 01/15/2023] Open
Abstract
This experimental controlled study was performed to evaluate the composition of autologous processed plasma (APP), and the effects of APP intra-articular injection into healthy equine metacarpophalangeal joints. The effects on joints were analysed with a short-phase protocol and a prolonged-phase protocol using saline-injected joints as controls. For the short protocol, horses received one intra-articular APP injection. Synovial fluid samples were collected prior to the injection and 3, 6, 24, 48, and 16 h after treatment. For the prolonged protocol, the joints received three weekly injections of APP, and samples were collected at 0, 7, 14, 21, and 28 days before APP administration. IL1-ra level was found to be increased in APP compared to plasma. Upon intra-articular administration of APP, transient (up to 24 h) increases in white blood cell (WBC) counts along with elevated protein and prostaglandin E2 (PGE2) concentrations were observed in the treated joints. Over the 28-day observation period, APP did not elicit changes relative to baseline levels, but WBC counts, PGE2 and chondroitin sulphate concentrations were lower than those found in the control. In conclusion, APP intra-articular injection induced a mild and transitory inflammatory response but no inflammation reaction was observed over a longer period of treatment and observation.
Collapse
Affiliation(s)
- Juliana J Moreira
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508 270, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Vet J 2013; 198:217-23. [DOI: 10.1016/j.tvjl.2013.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/05/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022]
|
18
|
Piat P, Richard H, Beauchamp G, Laverty S. In Vivo Effects of a Single Intra-Articular Injection of 2% Lidocaine or 0.5% Bupivacaine on Articular Cartilage of Normal Horses. Vet Surg 2012; 41:1002-10. [DOI: 10.1111/j.1532-950x.2012.01039.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Perrine Piat
- Comparative Orthopaedic Research Laboratory; Département de Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory; Département de Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Guy Beauchamp
- Département de pathologie et microbiologie vétérinaires Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory; Département de Sciences Cliniques; Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe; Canada
| |
Collapse
|
19
|
Biomarkers of antioxidant status, inflammation, and cartilage metabolism are affected by acute intense exercise but not superoxide dismutase supplementation in horses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:920932. [PMID: 22919442 PMCID: PMC3423952 DOI: 10.1155/2012/920932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/06/2012] [Indexed: 12/22/2022]
Abstract
Objectives were to evaluate effects of (1) repetitive arthrocentesis on biomarkers of inflammation (prostaglandin E(2), PGE(2)) and aggrecan synthesis (chondroitin sulfate-846; CS) in synovial fluid (SF); (2) exercise and superoxide dismutase (SOD) supplementation on biomarkers of inflammation, antioxidant status, and aggrecan synthesis, in horses. Preliminary trial. Standardbreds underwent four arthrocentesis procedures within 48 h and exhibited elevated CS and no changes in PGE(2). Exercise trial. this randomized crossover design used twelve Standardbred mares which received either treatment (3000 IU d(-1) oral SOD powder) or placebo (cellulose powder) for 6 wks which culminated with them running a repeated sprint exercise test (RSET). Samples were collected before (PRE), during (PEAK), and following exercise (POST). Exercise resulted in increased (P < 0.05) antioxidant defenses including erythrocyte SOD, total glutathione, glutathione peroxidase, gene transcripts for interferon-gamma, interleukin-10, and interleukin-1β in blood, and decreased plasma nitric oxide. Exercise increased (P < 0.05) SF CS and adjusted-PGE(2), and higher (P < 0.05) CS and PGE(2) were found in hock versus carpus joints. No treatment effects were detected. Results suggest normal adaptive responses likely due to exercise-induced tissue microdamage and oxidative stress. Additional research is needed to identify benefit(s) of SOD supplementation in horses.
Collapse
|
20
|
van den Boom R, van de Lest CHA, Bull S, Brama RAJ, van Weeren PR, Barneveld A. Influence of repeated arthrocentesis and exercise on synovial fluid concentrations of nitric oxide, prostaglandin E2 and glycosaminoglycans in healthy equine joints. Equine Vet J 2010; 37:250-6. [PMID: 15892235 DOI: 10.2746/0425164054530740] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY The importance of osteoarthritis (OA) in the horse and the difficulty in its early diagnosis have led to a search for potential biomarkers of joint disease. If the levels of such markers are to be interpreted accurately, clinicians and researchers need to know whether they are influenced by environmental factors and/or interventions such as exercise and repeated arthrocentesis. OBJECTIVE To investigate the influence of repeated arthrocentesis and exercise on nitric oxide (NO), prostaglandin E2 (PGE2) and glycosaminoglycan (GAG) concentrations in synovial fluid (SF) from normal equine joints. METHODS SF was collected from the left metacarpophalangeal (MCP), radiocarpal and tarsocrural joints of 16 horses. Half of the horses were exercised and arthrocentesis was repeated 14, 14.5, 17 and 24 days after the start of the exercise programme, in both exercised and control horses. Nitric oxide was determined in SF from the MCP joint only and PGE2 and GAG concentrations were determined in SF from all joints. RESULTS Repeated arthrocentesis caused an increase in NO concentration in the MCP joint on Day 145, in PGE2 concentrations in the radiocarpal and tarsocrural joints on Day 145 and the release of GAGs into SF of the MCP and radiocarpal joints on Day 17. Exercise resulted in an increase in PGE2 levels in all joints but did not influence the other parameters measured. POTENTIAL RELEVANCE Repeated arthrocentesis is a potential confounding factor for the use of synovial NO, PGE2 and GAG concentrations as markers of joint disease. Based on this study, such a confounding effect can be avoided if one week or more separates arthrocentesis procedures. Moderate exercise causes a transient rise in PGE2 in SF.
Collapse
Affiliation(s)
- R van den Boom
- Departments of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 12, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
McIlwraith CW. Use of synovial fluid and serum biomarkers in equine bone and joint disease: a review. Equine Vet J 2010; 37:473-82. [PMID: 16163952 DOI: 10.2746/042516405774480102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- C W McIlwraith
- Gall Holmes Equine Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
22
|
de Grauw JC, van de Lest CHA, van Weeren R, Brommer H, Brama PAJ. Arthrogenic lameness of the fetlock: synovial fluid markers of inflammation and cartilage turnover in relation to clinical joint pain. Equine Vet J 2010; 38:305-11. [PMID: 16866196 DOI: 10.2746/042516406777749236] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING THE STUDY Joint pain is one of the most common causes of lameness in the horse but its pathogenesis is poorly understood. OBJECTIVES To investigate which synovial fluid markers may be related to the presence of clinically detectable joint pain in the horse. METHODS Concentrations of structural (CPII, C2C, GAG) and inflammatory markers (PGE2, LTB4, CysLTs, bradykinin and substance P) were measured in fetlock joint fluid from 22 horses in which lameness was localised to the fetlock region by perineural anaesthesia. Levels of these markers were then compared in horses that responded (n = 15) to those that did not (n = 7) to subsequent intra-articular anaesthesia (IAA). RESULTS Of all markers analysed, only substance P levels were significantly higher (P = 0.0358) in synovial fluid of horses that showed a positive response to IAA compared to those with a negative response to IAA. Notably, while PGE2 levels were found to be elevated in all 22 lame horses compared to sound controls (P = 0.0025), they were not related to the response to IAA. CONCLUSIONS While levels of PGE2 are elevated in synovial fluid of lame horses that respond to perineural anaesthesia, only substance P is related to joint pain as detected by the response to intra-articular anaesthesia. POTENTIAL RELEVANCE Substance P is associated with clinically detectable joint pain in the horse. Elevated levels of PGE2 in fetlock-lame horses, regardless of their response to IAA, indicate that either this mediator does not reflect intra-articular pain or that IAA might have limitations in differentiating between intra- and peri-articular sources of pain. Either way, a negative response to IAA may not exclude intra-articular pathology.
Collapse
Affiliation(s)
- J C de Grauw
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Inflammatory responses to three modes of intense exercise in Standardbred mares – a pilot study. COMPARATIVE EXERCISE PHYSIOLOGY 2009. [DOI: 10.1017/s1478061509294448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
van Weeren PR, Firth EC. Future Tools for Early Diagnosis and Monitoring of Musculoskeletal Injury: Biomarkers and CT. Vet Clin North Am Equine Pract 2008; 24:153-75. [DOI: 10.1016/j.cveq.2007.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Ley C, Ekman S, Elmén A, Nilsson G, Eloranta ML. Interleukin-6 and tumour necrosis factor in synovial fluid from horses with carpal joint pathology. ACTA ACUST UNITED AC 2007; 54:346-51. [PMID: 17718806 DOI: 10.1111/j.1439-0442.2007.00956.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carpal joints are common sites of traumatic arthritis and osteoarthritis (OA) in athletic horses. The pro-inflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF) may be of great importance in the development of intra-articular lesions. The aim of the present study was to investigate possible associations between synovial fluid levels of bioactive IL-6 and TNF and different types of joint lesions seen in traumatic arthritis and OA. Synovial fluid was collected from horses with carpal lameness immediately before arthroscopic surgery. Articular cartilage, synovial membranes and intra-articular ligaments were assessed macroscopically at arthroscopy. Synovial fluid levels of IL-6 and TNF were determined by bioassays, and the cytokine levels between different grades of morphologic changes in each type of assessed tissue were compared. The highest levels of IL-6 were detected in joints with chip fractures. All joints with chip fractures also showed some degree of synovitis. Tumour necrosis factor bioactivity was low and not associated with any joint lesion. Hence, TNF is not useful as a biomarker indicating a specific joint lesion in equine traumatic arthritis or OA. We conclude that a dramatic increase of IL-6 in synovial fluid indicates the presence of osteochondral fragmentation, although low or undetectable levels of IL-6 do not exclude chip fractures. The role of IL-6 in the disease process of osteochondral fragmentation needs further investigation.
Collapse
Affiliation(s)
- C Ley
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Arthrocentesis—Incentives for Using This Minimally Invasive Approach for Temporomandibular Disorders. Oral Maxillofac Surg Clin North Am 2006; 18:311-28, vi. [DOI: 10.1016/j.coms.2006.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|