1
|
Kanesaka I, Manoharan-Basil SS, De Block T, Kenyon C, Morita M, Ito T, Yamane N, Kanayama AK, Kobayashi I. Antimicrobial susceptibility of commensal Neisseria species in the Japanese population. J Infect Chemother 2025; 31:102670. [PMID: 40021006 DOI: 10.1016/j.jiac.2025.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVES We aimed to, for the first time, characterize the antimicrobial susceptibilities of commensal Neisseria species in the general population in Japan. In particular, we assessed if the tetracycline minimum inhibitory concentrations (MICs) of these isolates were changing over time and, given the recent interest in doxycycline post exposure prophylaxis (PEP), if the tetracycline MICs were associated with those of the other antimicrobials. METHODS Neisseria spp. were isolated from 1679 patients visiting dental clinics in Japan between 2018 and 2023. The MICs of tetracycline, ceftriaxone, cefixime, penicillin, azithromycin and ciprofloxacin against Neisseria spp. were determined using agar dilution. Linear regression was used to assess if there was an association between MIC and the year the isolate was obtained from, controlling for species identity. RESULTS Neisseria spp. were detected in 424 of 1679 individuals sampled. Of these, 417 (98.3 %) isolates were identified as Neisseria subflava, and the remaining 7 (1.7 %) as Neisseria mucosa. The median tetracycline MIC was 0.5 mg/L (IQR 0.5-1 mg/L). The MICs of penicillin, cefixime, ceftriaxone and ciprofloxacin were lower in N. mucosa than in N. subflava. The tetracycline MICs of Neisseria spp. were positively correlated with penicillin, azithromycin and ciprofloxacin. No significant correlations were found with cefixime or ceftriaxone. CONCLUSIONS Our results suggest that despite the overall decline in antimicrobial use in Japan, MICs for several antimicrobials have increased over time. In particular, the MIC of tetracycline tends to be high in Japan. These results suggest the need to include surveillance of tetracycline MICs of commensal Neisseria spp. in doxycycline PEP implementation studies.
Collapse
Affiliation(s)
- Izumo Kanesaka
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium; Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan.
| | - Sheeba Santhini Manoharan-Basil
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Tessa De Block
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium; University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Masahiro Morita
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Takamitsu Ito
- Higashiosaka City Medical Center, 3-4-5, Nishiiwata, Higashiosaka-shi, Osaka, 578-8588, Japan
| | - Natsue Yamane
- Natsu Dental Clinic, 4-31-10, Ikegami, Ota-ku, Tokyo, 146-0082, Japan
| | - Akiko Katsuse Kanayama
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo, 143-0015, Japan
| |
Collapse
|
2
|
Thomas IV JC, Cartee JC, Hebrank K, St. Cyr SB, Schlanger K, Raphael BH, Kersh EN, Joseph SJ. Emergence and evolution of mosaic penA-60 and penA-237 alleles in a Neisseria gonorrhoeae core genogroup that was historically susceptible to extended spectrum cephalosporins. Front Microbiol 2024; 15:1401303. [PMID: 39411431 PMCID: PMC11473337 DOI: 10.3389/fmicb.2024.1401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Neisseria gonorrhoeae (Ng) has successively developed resistance to all previously recommended antimicrobial therapies, with ceftriaxone being the last option for monotherapy of gonorrhea. Global emergence and international spread of the FC428 clone derived mosaic penA-60 allele, associated with highlevel ceftriaxone minimum inhibitory concentrations (MICs) in non FC428 clone Ng lineages, has become an increasing concern. The penA-60 allele carrying Ng was first identified in the U.S. in Las Vegas, Nevada (2019; GCWGS-102723), with a multi-locus sequence type (MLST)-1901 strain, in a non FC428 clone Ng lineage, which is associated with a historically ceftriaxone susceptible core genogroup. Later in 2022, an allele genetically similar to penA-60, mosaic penA-237, was identified in the UK (H22-722) and France (F92) with high-level ceftriaxone MICs and both belonged to MLST-1901. Methods In this study, we assessed phylogenomic relatedness and antimicrobial resistance (AMR) determinant profiles of these three isolates with high-level ceftriaxone MICs among a global collection of 2,104 genomes belonging to the MLST-1901 core genome cluster group 31, which includes strains separated by a locus threshold of 200 or fewer differences (Ng_cgc_200). Recombination events in and around the penA coding region were catalogued and potential sources of inter species recombinant DNA were also inferred. Results The global population structure of MLST-1901 core genogroup falls into 4 major lineages. Isolates GCWGS-10723, F92, and H22-722 clustered within Lineage 1, which was dominated by non-mosaic penA-5 alleles. These three isolates formed a clade within Lineage 1 that consisted of isolates from North America and southeast Asia. Neisseria subflava and Neisseria sicca were identified as likely progenitors of two independent recombination events that may have led to the generation of mosaic penA-60 and penA-237, within a possible non-mosaic penA-5 background. Discussions Our study suggests that there are multiple evolutionary pathways that could generate concerning mosaic penA alleles via homologous recombination of historically susceptible Ng lineages with Neisseria commensals. Enhanced surveillance of gonococcal strains and Neisseria commensals is crucial for understanding of the evolution of AMR, particularly in less-studied regions (e.g., Asia), where high-level ceftriaxone MICs and multi-drug resistance are more prevalent.
Collapse
Affiliation(s)
- Jesse C. Thomas IV
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John C. Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Katherine Hebrank
- Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, United States
| | - Sancta B. St. Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Schlanger
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian H. Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellen N. Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
3
|
David A, Golparian D, Jacobsson S, Stratton C, Lan PT, Shimuta K, Sonnenberg P, Field N, Ohnishi M, Davies C, Unemo M. In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions. J Antimicrob Chemother 2024; 79:2221-2226. [PMID: 39004438 PMCID: PMC11368423 DOI: 10.1093/jac/dkae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES The novel dual-target triazaacenaphthylene, gepotidacin, recently showed promising results in its Phase III randomized controlled trial for the treatment of gonorrhoea. We investigated alterations in the gepotidacin GyrA and ParC targets in gonococci by in silico mining of publicly available global genomes (n = 33 213) and determined gepotidacin MICs in isolates with GyrA A92 alterations combined with other GyrA and/or ParC alterations. METHODS We examined gonococcal gyrA and parC alleles available at the European Nucleotide Archive. MICs were determined using the agar dilution method (gepotidacin) or Etest (four antimicrobials). Models of DNA gyrase and topoisomerase IV were obtained from AlphaFold and used to model gepotidacin in the binding site. RESULTS GyrA A92 alterations were identified in 0.24% of genomes: GyrA A92P/S/V + S91F + D95Y/A/N (0.208%), A92P + S91F (0.024%) and A92P (0.003%), but no A92T (previously associated with gepotidacin resistance) was found. ParC D86 alterations were found in 10.6% of genomes: ParC D86N/G (10.5%), D86N + S87I (0.051%), D86N + S88P (0.012%) and D86G + E91G (0.003%). One isolate had GyrA A92P + ParC D86N alterations, but remained susceptible to gepotidacin (MIC = 0.125 mg/L). No GyrA plus ParC alterations resulted in a gepotidacin MIC > 4 mg/L. Modelling of gepotidacin binding to GyrA A92/A92T/A92P suggested that gepotidacin resistance due to GyrA A92T might be linked to the formation of a new polar contact with DNA. CONCLUSIONS In silico mining of 33 213 global gonococcal genomes (isolates from 1928 to 2023) showed that A92 is highly conserved in GyrA, while alterations in D86 of ParC are common. No GyrA plus ParC alterations caused gepotidacin resistance. MIC determination and genomic surveillance of potential antimicrobial resistance determinants are imperative.
Collapse
Affiliation(s)
- Alexandra David
- Institute for Global Health, Faculty of Population Health, University College London, London, UK
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Caleb Stratton
- Department of Biochemistry and Molecular Biology, University of South Alabama, AL, USA
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pam Sonnenberg
- Institute for Global Health, Faculty of Population Health, University College London, London, UK
| | - Nigel Field
- Institute for Global Health, Faculty of Population Health, University College London, London, UK
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of South Alabama, AL, USA
| | - Magnus Unemo
- Institute for Global Health, Faculty of Population Health, University College London, London, UK
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Jensen JS, Unemo M. Antimicrobial treatment and resistance in sexually transmitted bacterial infections. Nat Rev Microbiol 2024; 22:435-450. [PMID: 38509173 DOI: 10.1038/s41579-024-01023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Sexually transmitted infections (STIs) have been part of human life since ancient times, and their symptoms affect quality of life, and sequelae are common. Socioeconomic and behavioural trends affect the prevalence of STIs, but the discovery of antimicrobials gave hope for treatment, control of the spread of infection and lower rates of sequelae. This has to some extent been achieved, but increasing antimicrobial resistance and increasing transmission in high-risk sexual networks threaten this progress. For Neisseria gonorrhoeae, the only remaining first-line treatment (with ceftriaxone) is at risk of becoming ineffective, and for Mycoplasma genitalium, for which fewer alternative antimicrobial classes are available, incurable infections have already been reported. For Chlamydia trachomatis, in vitro resistance to first-line tetracyclines and macrolides has never been confirmed despite decades of treatment of this highly prevalent STI. Similarly, Treponema pallidum, the cause of syphilis, has remained susceptible to first-line penicillin.
Collapse
Affiliation(s)
- Jorgen S Jensen
- Department of Bacteria, Parasites and Fungi, Research Unit for Reproductive Microbiology, Statens Serum Institut, Copenhagen, Denmark.
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
5
|
Golparian D, Bazzo ML, Ahlstrand J, Schörner MA, Gaspar PC, de Melo Machado H, Martins JM, Bigolin A, Ramos MC, Ferreira WA, Pereira GFM, Miranda AE, Unemo M. Recent dynamics in Neisseria gonorrhoeae genomic epidemiology in Brazil: antimicrobial resistance and genomic lineages in 2017-20 compared to 2015-16. J Antimicrob Chemother 2024; 79:1081-1092. [PMID: 38517452 DOI: 10.1093/jac/dkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES Regular quality-assured WGS with antimicrobial resistance (AMR) and epidemiological data of patients is imperative to elucidate the shifting gonorrhoea epidemiology, nationally and internationally. We describe the dynamics of the gonococcal population in 11 cities in Brazil between 2017 and 2020 and elucidate emerging and disappearing gonococcal lineages associated with AMR, compare to Brazilian WGS and AMR data from 2015 to 2016, and explain recent changes in gonococcal AMR and gonorrhoea epidemiology. METHODS WGS was performed using Illumina NextSeq 550 and genomes of 623 gonococcal isolates were used for downstream analysis. Molecular typing and AMR determinants were obtained and links between genomic lineages and AMR (determined by agar dilution/Etest) examined. RESULTS Azithromycin resistance (15.6%, 97/623) had substantially increased and was mainly explained by clonal expansions of strains with 23S rRNA C2611T (mostly NG-STAR CC124) and mtr mosaics (mostly NG-STAR CC63, MLST ST9363). Resistance to ceftriaxone and cefixime remained at the same levels as in 2015-16, i.e. at 0% and 0.2% (1/623), respectively. Regarding novel gonorrhoea treatments, no known zoliflodacin-resistance gyrB mutations or gepotidacin-resistance gyrA mutations were found. Genomic lineages and sublineages showed a phylogenomic shift from sublineage A5 to sublineages A1-A4, while isolates within lineage B remained diverse in Brazil. CONCLUSIONS Azithromycin resistance, mainly caused by 23S rRNA C2611T and mtrD mosaics/semi-mosaics, had substantially increased in Brazil. This mostly low-level azithromycin resistance may threaten the recommended ceftriaxone-azithromycin therapy, but the lack of ceftriaxone resistance is encouraging. Enhanced gonococcal AMR surveillance, including WGS, is imperative in Brazil and other Latin American and Caribbean countries.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 85, Örebro, Sweden
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Josefine Ahlstrand
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 85, Örebro, Sweden
| | - Marcos André Schörner
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pamela Cristina Gaspar
- Department of HIV/AIDS, Tuberculosis, and Sexually Transmitted Infection, Secretariat of Health Surveillance and Environment, Ministry of Health of Brazil, Brasília, Brazil
| | - Hanalydia de Melo Machado
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jéssica Motta Martins
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alisson Bigolin
- Department of HIV/AIDS, Tuberculosis, and Sexually Transmitted Infection, Secretariat of Health Surveillance and Environment, Ministry of Health of Brazil, Brasília, Brazil
| | | | | | - Gerson Fernando Mendes Pereira
- Department of HIV/AIDS, Tuberculosis, and Sexually Transmitted Infection, Secretariat of Health Surveillance and Environment, Ministry of Health of Brazil, Brasília, Brazil
| | - Angelica Espinosa Miranda
- Department of HIV/AIDS, Tuberculosis, and Sexually Transmitted Infection, Secretariat of Health Surveillance and Environment, Ministry of Health of Brazil, Brasília, Brazil
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 85, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| |
Collapse
|
6
|
Pflüger LS, Nörz D, Grunwald M, Pfefferle S, Giersch K, Christner M, Weber B, Aepfelbacher M, Rohde H, Lütgehetmann M. Analytical and clinical validation of a multiplex PCR assay for detection of Neisseria gonorrhoeae and Chlamydia trachomatis including simultaneous LGV serotyping on an automated high-throughput PCR system. Microbiol Spectr 2024; 12:e0275623. [PMID: 38345391 PMCID: PMC10913481 DOI: 10.1128/spectrum.02756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
For effective infection control measures for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), a reliable tool for screening and diagnosis is essential. Here, we aimed to establish and validate a multiplex PCR assay on an automated system using a dual-target approach for the detection of CT/NG and differentiation between lymphogranuloma venereum (LGV) and non-LGV from genital and extra-genital specimens. Published primer/probe sets (CT: pmpH, cryptic plasmid; NG: porA, opa) were modified for the cobas 5800/6800/8800. Standards quantified by digital PCR were used to determine linearity and lower limit of detection (LLoD; eSwab, urine). For clinical validation, prospective samples (n = 319) were compared with a CE-marked in vitro diagnostics (CE-IVD) assay. LLoDs ranged from 21.8 to 244 digital copies (dcp)/mL and 10.8 to 277 dcp/mL in swab and urine, respectively. A simple linear regression analysis yielded slopes ranging from -4.338 to -2.834 and Pearson correlation coefficients from 0.956 to 0.994. Inter- and intra-run variability was <0.5 and <1 cycle threshold (ct), respectively. No cross-reactivity was observed (n = 42). Clinical validation showed a sensitivity of 94.74% (95% confidence interval (CI): 87.23%-97.93%) and 95.51% (95% CI: 89.01%-98.24%), a specificity of 99.59% (95% CI: 97.71%-99.98%) and 99.57% (95% CI: 97.58%-99.98%), positive predictive values of 89.91% (estimated prevalence: 3.7%; 95% CI: 80.91%-95.6%) and 88.61% (estimated prevalence: 3.4%; 95% CI: 80.18%-94.34%), and negative predictive values of 99.81% (95% CI: 98.14%-100%) and 99.85% (95% CI: 98.14%-100%) for the detection of CT and NG, respectively. In conclusion, we established a dual-target, internally controlled PCR on an automated system for the detectiwon of CT/NG from genital and extra-genital specimens. Depending on local regulations, the assay can be used as a screening or a confirmatory/typing assay.IMPORTANCEChlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent a major global health burden, with the World Health Organization estimating that >128 million and >82 million people, respectively, were newly infected in 2020. For effective infection control measures, a reliable tool for sensitive diagnosis and screening of CT/NG is essential. We established a multiplex PCR assay for the detection of CT/NG and simultaneous discrimination between lymphogranuloma venereum (LGV) and non-LGV strains, which has been validated for genital and extra-genital specimens on a fully automated system. To increase assay sensitivity, a dual-target approach has been chosen for both pathogens. This strategy reduces false-positive results in oropharyngeal swabs due to the detection of commensal N. species that may harbor NG DNA fragments targeted in the PCR due to horizontal gene transmission following previous infection. In sum, the established assay provides a powerful tool for use as either a screening/diagnostic or a typing/confirmatory assay.
Collapse
Affiliation(s)
- Lisa Sophie Pflüger
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dominik Nörz
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Moritz Grunwald
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Susanne Pfefferle
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katja Giersch
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Christner
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Beatrice Weber
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Holger Rohde
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Marc Lütgehetmann
- Center for Diagnostics, Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
7
|
Jacobsson S, Golparian D, Oxelbark J, Kong FYS, Da Costa RMA, Franceschi F, Brown D, Louie A, Drusano G, Unemo M. Pharmacodynamics of zoliflodacin plus doxycycline combination therapy against Neisseria gonorrhoeae in a gonococcal hollow-fiber infection model. Front Pharmacol 2023; 14:1291885. [PMID: 38130409 PMCID: PMC10733441 DOI: 10.3389/fphar.2023.1291885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance in the sexually transmitted bacterium Neisseria gonorrhoeae is compromising the management and control of gonorrhea globally. Optimized use and enhanced stewardship of current antimicrobials and development of novel antimicrobials are imperative. The first in class zoliflodacin (spiropyrimidinetrione, DNA Gyrase B inhibitor) is a promising novel antimicrobial in late-stage clinical development for gonorrhea treatment, i.e., the phase III randomized controlled clinical trial (ClinicalTrials.gov Identifier: NCT03959527) was recently finalized, and zoliflodacin showed non-inferiority compared to the recommended ceftriaxone plus azithromycin dual therapy. Doxycycline, the first-line treatment for chlamydia and empiric treatment for non-gonococcal urethritis, will be frequently given together with zoliflodacin because gonorrhea and chlamydia coinfections are common. In a previous static in vitro study, it was indicated that doxycycline/tetracycline inhibited the gonococcal killing of zoliflodacin in 6-h time-kill curve analysis. In this study, our dynamic in vitro hollow-fiber infection model (HFIM) was used to investigate combination therapies with zoliflodacin and doxycycline. Dose-range experiments using the three gonococcal strains WHO F (susceptible to relevant therapeutic antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone-resistant; zoliflodacin-susceptible), and SE600/18 (zoliflodacin-susceptible strain with GyrB S467N substitution) were conducted simulating combination therapy with a single oral dose of zoliflodacin 0.5-4 g combined with a doxycycline daily oral dose of 200 mg administered as 100 mg twice a day, for 7 days (standard dose for chlamydia treatment). Comparing combination therapy of zoliflodacin (0.5-4 g single dose) plus doxycycline (200 mg divided into 100 mg twice a day orally, for 7 days) to zoliflodacin monotherapy (0.5-4 g single dose) showed that combination therapy was slightly more effective than monotherapy in the killing of N. gonorrhoeae and suppressing emergence of zoliflodacin resistance. Accordingly, WHO F was eradicated by only 0.5 g single dose of zoliflodacin in combination with doxycycline, and WHO X and SE600/18 were both eradicated by a 2 g single dose of zoliflodacin in combination with doxycycline; no zoliflodacin-resistant populations occurred during the 7-day experiment when using this zoliflodacin dose. When using suboptimal (0.5-1 g) zoliflodacin doses together with doxycycline, gonococcal mutants with increased zoliflodacin MICs, due to GyrB D429N and the novel GyrB T472P, emerged, but both the mutants had an impaired biofitness. The present study shows the high efficacy of zoliflodacin plus doxycycline combination therapy using a dynamic HFIM that more accurately and comprehensively simulate gonococcal infection and their treatment, i.e., compared to static in vitro models, such as short-time checkerboard experiments or time-kill curve analysis. Based on our dynamic in vitro HFIM work, zoliflodacin plus doxycycline for the treatment of both gonorrhea and chlamydia can be an effective combination.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Joakim Oxelbark
- Division of Clinical Chemistry, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Fabian Y. S. Kong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Francois Franceschi
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - David Brown
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - Arnold Louie
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - George Drusano
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, United Kingdom
| |
Collapse
|
8
|
Zhang L, Hu L, Li Y, Xiu L, Wang D, Huang J, Gu W, Peng J. Identification of high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates with diverse penA alleles in Zhejiang, China. J Glob Antimicrob Resist 2023; 35:51-55. [PMID: 37611895 DOI: 10.1016/j.jgar.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVES The prevalence of ceftriaxone-resistant Neisseria gonorrhoeae poses a significant threat to the effectiveness of gonorrhoea treatment. The aim of the present study was to analyse the characteristics of ceftriaxone-resistant N. gonorrhoeae, with a specific focus on high-level ceftriaxone-resistant strains. METHODS A total of 207 strains of N. gonorrhoeae were collected from hospitals in Zhejiang, China, between 2019 and 2020. From this collection, we selected 8 strains of ceftriaxone-resistant N. gonorrhoeae for whole-genome sequencing, genotyping, and molecular profile analysis. For clonal strains (FC428-like), we conducted a phylogenetic analysis to understand their origin and evolutionary path. RESULTS Among the selected strains, 5 demonstrated high-level ceftriaxone resistance (MIC 1-2 mg/L). The genotyping results showed that these isolates had a higher diversity of penA alleles than expected. Four isolates had mosaic penA-60.001 allele and the remaining four had different non-mosaic penA alleles. Phylogenetic analysis suggested that the emergence of FC428-like clones containing penA-60.001 may result from further dissemination of different FC428 subclones from different regions of China. The identification of high-level ceftriaxone resistance in non-mosaic penA gonococci, specifically in the ZJ20-3 isolate (penA-21.001) with an MIC of 2 mg/L, is a groundbreaking discovery. CONCLUSIONS We present a comprehensive analysis of ceftriaxone-resistant N. gonorrhoeae isolates in Zhejiang, highlighting a significant diversity of penA alleles. The identification of strains exhibiting resistance to ceftriaxone at high levels in our study underscores the potential threat to existing protocols for gonorrhoea treatment. Consequently, we strongly emphasize the urgent need to enhance surveillance initiatives focused on ceftriaxone-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Lulu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihua Hu
- Zhejiang Provincial Institute of Dermatology, Deqing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Huang
- Zhejiang Provincial Institute of Dermatology, Deqing, China
| | - Weiming Gu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Song S, Wang S, Jiang X, Yang F, Gao S, Lin X, Cheng H, van der Veen S. Th1-polarized MtrE-based gonococcal vaccines display prophylactic and therapeutic efficacy. Emerg Microbes Infect 2023; 12:2249124. [PMID: 37584947 PMCID: PMC10467530 DOI: 10.1080/22221751.2023.2249124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/17/2023]
Abstract
ABSTRACTGlobal dissemination of high-level ceftriaxone-resistant Neisseria gonorrhoeae strains associated with the FC428 clone poses a threat to the efficacy ceftriaxone-based therapies. Vaccination is the best strategy to contain multidrug-resistant infections. In this study, we investigated the efficacy of MtrE and its surface Loop2 as vaccine antigens when combined with a Th1-polarizing adjuvant, which is expected to be beneficial for gonococcal vaccine development. Using in vitro dendritic cell maturation and T cell differentiation assays, CpG1826 was identified as the optimal Th1-polarizing adjuvant for MtrE and Loop2 displayed as linear epitope (Nloop2) or structural epitope (Intraloop2) on a carrier protein. Loop2-based antigens raised strongly Th1-polarized and bactericidal antibody responses in vaccinated mice. Furthermore, the vaccine formulations provided protection against a gonococcal challenge in mouse vaginal tract infection model when provided as prophylactic vaccines. Also, the vaccine formulations accelerated gonococcal clearance when provided as a single therapeutic dose to treat an already established infection, including against a strain associated with the FC428 clone. Therefore, this study demonstrated that MtrE and Loop 2 are effective gonococcal vaccine antigens when combined with the Th1-polarizing CpG1826 adjuvant.
Collapse
Affiliation(s)
- Shuaijie Song
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuyi Wang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaoyun Jiang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu’ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao Cheng
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Wang D, Li Y, Zhang C, Zeng Y, Peng J, Wang F. Genomic epidemiology of Neisseria gonorrhoeae in Shenzhen, China, during 2019-2020: increased spread of ceftriaxone-resistant isolates brings insights for strengthening public health responses. Microbiol Spectr 2023; 11:e0172823. [PMID: 37732794 PMCID: PMC10580820 DOI: 10.1128/spectrum.01728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
The antimicrobial resistance (AMR) in gonorrhea poses global threat of increasing public health concern. In response to this concern, molecular surveillance has been widely utilized to detail the changes in the evolution and distribution of Neisseria gonorrhoeae during AMR transmission. In this study, we performed a comprehensive molecular surveillance of 664 N. gonorrhoeae isolates collected in Shenzhen, one of the cities with the largest mobile population in China, 2019-2020. In 2020, ceftriaxone showed an unprecedented high resistance rate of 24.87%, and 67.83% of the ceftriaxone-resistant (Cro-R) isolates harbored a nonmosaic penA allele. The Cro-R isolates with nonmosaic penA alleles showed a tremendous increasing trend from 0.00% in 2014 to 20.45% in 2020, which proves the need for monitoring nonmosaic penA-related resistance. Importantly, genotyping indicated that multilocus sequence typing ST11231 (35.71%) had a notable rate of ceftriaxone resistance, which might become the focus of future surveillance. Whole-genome sequencing analysis showed that the internationally spreading FC428 clones have circulated in Shenzhen region with typical ceftriaxone resistance (MIC ≥ 0.5 mg/L) maintained. Our surveillance combined with genomic analysis provides current information to update gonorrhea management guidelines and emphasizes that continuous AMR surveillance for N. gonorrhoeae is essential. IMPORTANCE We conducted a comprehensive molecular epidemiology analysis for antimicrobial-resistant Neisseria gonorrhoeae in Shenzhen during 2019-2020, which provided important data for personalized treatment and adjustment of monitoring strategy. Briefly, the proportion of ceftriaxone-resistant (Cro-R) isolates reached a stunning prevalence rate of 24.87% in 2020. A typical increment of Cro-R isolates with nonmosaic penA alleles proves the necessity of monitoring nonmosaic AMR mechanism and involving it into developing molecular detection methods. Whole-genome sequencing analysis showed that the international spreading FC428 clone has been circulating in Shenzhen with typical ceftriaxone resistance (MIC ≥ 0.5 mg/L) maintained. In summary, we conducted a comprehensive epidemiology study, providing significant data for therapy management. Our results not only improve the understanding of the distribution and transmission of AMR in N. gonorrhoeae but also provide effective AMR data for improving surveillance strategies in China.
Collapse
Affiliation(s)
- Di Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaling Zeng
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, People’s Republic of China, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, People’s Republic of China, China
| |
Collapse
|
11
|
Sawatzky P, Lefebvre B, Diggle M, Hoang L, Wong J, Patel S, Van Caessele P, Minion J, Garceau R, Jeffrey S, Haldane D, Lourenco L, Gravel G, Mulvey M, Martin I. Antimicrobial susceptibilities of Neisseria gonorrhoeae in Canada, 2021. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:388-397. [PMID: 38463902 PMCID: PMC10919915 DOI: 10.14745/ccdr.v49i09a05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background In Canada, gonorrhea is the second most prevalent bacterial sexually transmitted infection. The Gonococcal Antimicrobial Surveillance Programme (GASP - Canada), a passive surveillance system monitoring antimicrobial resistance in Neisseria gonorrhoeae in Canada since 1985, is the source for this summary of demographics, antimicrobial resistance and N. gonorrhoeae multi-antigen sequence typing (NG-MAST) of gonococcal isolates collected in Canada in 2021. Methods Provincial and territorial public health laboratories submitted N. gonorrhoeae cultures and data to the National Microbiology Laboratory in Winnipeg as part of the surveillance system. The antimicrobial resistance and molecular type of each isolate received were determined. Results In total, 3,439 N. gonorrhoeae cultures were received from laboratories across Canada in 2021, a 9.9% increase since 2020 (n=3,130). Decreased susceptibility to cefixime increased significantly (p<0.001) in 2021 (1.5%) compared to 2017 (0.6%). No significant change in decreased susceptibility to ceftriaxone was detected between 2017 and 2021 (0.6%) (p>0.001); however, one ceftriaxone-resistant isolate was identified. Azithromycin resistance decreased significantly (p<0.001) in 2021 (7.6%) compared to 2017 (11.7%); however, there was a significant increase (p<0.001) in the proportion of cultures with an azithromycin minimum inhibitory concentration of at least 1 mg/L (2017=22.2% to 2021=28.1%). In 2021, NG-MAST-19875 (15.3%) was the most prevalent sequence type in Canada; 20.3% of isolates with this sequence type were resistant to azithromycin. Conclusion The spread of antimicrobial-resistant gonorrhea is a significant public health concern. The continued regional and national surveillance of antimicrobial resistance in N. gonorrhoeae is essential in ensuring effective treatment therapies are recommended.
Collapse
Affiliation(s)
- Pamela Sawatzky
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB
| | | | - Mathew Diggle
- Provincial Laboratory for Public Health, Edmonton, AB
| | - Linda Hoang
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC
| | - Jason Wong
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC
| | - Samir Patel
- Public Health Ontario Laboratory, Toronto, ON
| | | | | | - Richard Garceau
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB
| | - Sarah Jeffrey
- Government of Northwest Territories, Yellowknife, NT
| | - David Haldane
- Queen Elizabeth II Health Sciences Centre, Halifax, NS
| | - Lillian Lourenco
- Centre for Communicable Diseases and Infection Control Branch, Public Health Agency of Canada, Ottawa, ON
| | - Genevieve Gravel
- Centre for Communicable Diseases and Infection Control Branch, Public Health Agency of Canada, Ottawa, ON
| | - Michael Mulvey
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB
| | - Irene Martin
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB
| |
Collapse
|
12
|
Wang D, Wang Y, Li Y, Xiu L, Yong G, Yang Y, Gu W, Peng J. Identification of ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone and isolates harboring a novel mosaic penA gene in Chengdu in 2019-2020. Ann Clin Microbiol Antimicrob 2023; 22:73. [PMID: 37592240 PMCID: PMC10436653 DOI: 10.1186/s12941-023-00614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Antimicrobial resistance in gonorrhea has become a growing global public health burden. Neisseria gonorrhoeae isolates with resistance to ceftriaxone, the last remaining first-line option, represent an emerging threat of untreatable gonorrhea. METHODS A total of ten ceftriaxone-resistant N. gonorrhoeae FC428 isolates and two isolates harboring a novel mosaic penA-232.001 allele from 160 gonococcal isolates in Chengdu in 2019-2020 was described in the present study. Multilocus sequence typing (MLST) and N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) were performed to characterize the isolates. Whole genome sequencing and maximum-likelihood method were performed to infer how the genetic phylogenetic tree of these isolates looks like. Recombination analysis was performed using the RDP4 software. This study was registered in the Chinese Clinical Trial Registry (ChiCTR2100048771, registration date: 20210716). RESULTS The genetic phylogeny showed that the ten FC428 isolates sporadically clustered into different phylogenetic clades, suggesting different introductions and local transmission of FC428. Two isolates showed close genetic relatedness to ceftriaxone-resistant clone A8806, which was only reported from Australia in 2013. Homologous recombination events were detected in penA between Neisseria gonorrhoeae and commensal Neisseria species (N. perflava and N. polysaccharea), providing evidence of commensal Neisseria species might serve as reservoirs of ceftriaxone resistance-mediating penA sequences in clinical gonococcal strains. CONCLUSIONS Our results demonstrate further dissemination of FC428 in China and resurgence risks of sporadic ceftriaxone-resistant A8806 to become the next clone to spread.
Collapse
Affiliation(s)
- Di Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwei Wang
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Yong
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiming Gu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Kakooza F, Golparian D, Matoga M, Maseko V, Lamorde M, Krysiak R, Manabe YC, Chen JS, Kularatne R, Jacobsson S, Godreuil S, Hoffman I, Bercot B, Wi T, Unemo M. Genomic surveillance and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates from Uganda, Malawi and South Africa, 2015-20. J Antimicrob Chemother 2023; 78:1982-1991. [PMID: 37352017 DOI: 10.1093/jac/dkad193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVES Global antimicrobial resistance (AMR) surveillance in Neisseria gonorrhoeae is essential. In 2017-18, only five (10.6%) countries in the WHO African Region reported to the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO GASP). Genomics enhances our understanding of gonococcal populations nationally and internationally, including AMR strain transmission; however, genomic studies from Africa are extremely scarce. We describe the gonococcal genomic lineages/sublineages, including AMR determinants, and baseline genomic diversity among strains in Uganda, Malawi and South Africa, 2015-20, and compare with sequences from Kenya and Burkina Faso. METHODS Gonococcal isolates cultured in Uganda (n = 433), Malawi (n = 154) and South Africa (n = 99) in 2015-20 were genome-sequenced. MICs were determined using ETEST. Sequences of isolates from Kenya (n = 159), Burkina Faso (n = 52) and the 2016 WHO reference strains (n = 14) were included in the analysis. RESULTS Resistance to ciprofloxacin was high in all countries (57.1%-100%). All isolates were susceptible to ceftriaxone, cefixime and spectinomycin, and 99.9% were susceptible to azithromycin. AMR determinants for ciprofloxacin, benzylpenicillin and tetracycline were common, but rare for cephalosporins and azithromycin. Most isolates belonged to the more antimicrobial-susceptible lineage B (n = 780) compared with the AMR lineage A (n = 141), and limited geographical phylogenomic signal was observed. CONCLUSIONS We report the first multi-country gonococcal genomic comparison from Africa, which will support the WHO GASP and WHO enhanced GASP (EGASP). The high prevalence of resistance to ciprofloxacin (and empirical use continues), tetracycline and benzylpenicillin, and the emerging resistance determinants for azithromycin show it is imperative to strengthen the gonococcal AMR surveillance, ideally including genomics, in African countries.
Collapse
Affiliation(s)
- Francis Kakooza
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | | | - Venessa Maseko
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Yuka C Manabe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jane S Chen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ranmini Kularatne
- Labtests Laboratory and Head Office, Mt Wellington, Auckland, New Zealand
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, and MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Irving Hoffman
- UNC Project Malawi, Lilongwe, Malawi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beatrice Bercot
- Infectious Agents Department, French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, and APHP, Saint Louis Hospital, Paris, France
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
14
|
Golparian D, Jacobsson S, Holley CL, Shafer WM, Unemo M. High-level in vitro resistance to gentamicin acquired in a stepwise manner in Neisseria gonorrhoeae. J Antimicrob Chemother 2023; 78:1769-1778. [PMID: 37253051 PMCID: PMC10517096 DOI: 10.1093/jac/dkad168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVES Gentamicin is used in several alternative treatments for gonorrhoea. Verified clinical Neisseria gonorrhoeae isolates with gentamicin resistance are mainly lacking and understanding the mechanisms for gonococcal gentamicin resistance is imperative. We selected gentamicin resistance in gonococci in vitro, identified the novel gentamicin-resistance mutations, and examined the biofitness of a high-level gentamicin-resistant mutant. METHODS Low- and high-level gentamicin resistance was selected in WHO X (gentamicin MIC = 4 mg/L) on gentamicin-gradient agar plates. Selected mutants were whole-genome sequenced. Potential gentamicin-resistance fusA mutations were transformed into WT strains to verify their impact on gentamicin MICs. The biofitness of high-level gentamicin-resistant mutants was examined using a competitive assay in a hollow-fibre infection model. RESULTS WHO X mutants with gentamicin MICs of up to 128 mg/L were selected. Primarily selected fusA mutations were further investigated, and fusAR635L and fusAM520I + R635L were particularly interesting. Different mutations in fusA and ubiM were found in low-level gentamicin-resistant mutants, while fusAM520I was associated with high-level gentamicin resistance. Protein structure predictions showed that fusAM520I is located in domain IV of the elongation factor-G (EF-G). The high-level gentamicin-resistant WHO X mutant was outcompeted by the gentamicin-susceptible WHO X parental strain, suggesting lower biofitness. CONCLUSIONS We describe the first high-level gentamicin-resistant gonococcal isolate (MIC = 128 mg/L), which was selected in vitro through experimental evolution. The most substantial increases of the gentamicin MICs were caused by mutations in fusA (G1560A and G1904T encoding EF-G M520I and R635L, respectively) and ubiM (D186N). The high-level gentamicin-resistant N. gonorrhoeae mutant showed impaired biofitness.
Collapse
Affiliation(s)
- Daniel Golparian
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Örebro University, Örebro, Sweden
| | - Concerta L Holley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Magnus Unemo
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| |
Collapse
|
15
|
Zhao Y, Le W, Genco CA, Rice PA, Su X. Increase in Multidrug Resistant Neisseria gonorrhoeae FC428-Like Isolates Harboring the Mosaic penA 60.001 Gene, in Nanjing, China (2017-2020). Infect Drug Resist 2023; 16:4053-4064. [PMID: 37383603 PMCID: PMC10295622 DOI: 10.2147/idr.s408896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Background Since the first Chinese report of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in 2016, additional FC428-like, penA 60.001 isolates have been identified in China. Objective To document the rise in penA 60.001 isolates in Nanjing, China, and characterize their molecular and epidemiological features. Methods N. gonorrhoeae minimum inhibitory concentrations (MICs, mg/L) for ceftriaxone, cefixime, penicillin, tetracycline, ciprofloxacin, azithromycin, spectinomycin, gentamicin and zoliflodacin were determined by agar dilution. MICs for ertapenem were measured by E-test. N. gonorrhoeae antimicrobial sequence typing (NG-STAR) of seven loci (penA, mtrR, porB, ponA, gyrA, parC and 23S rRNA) was analyzed together with N. gonorrhoeae multiantigen sequence typing (NG-MAST) and multilocus sequence typing (MLST). Phylogenetic analysis was also performed using whole genomic sequencing (WGS). Results Fourteen FC428-related penA 60.001 N. gonorrhoeae infections were identified out of 677 infections from 2017 to 2020, in Nanjing, representing an incremental yearly rise in the percentage of the city's N. gonorrhoeae isolates that were FC428-related. Seven FC428-related N. gonorrhoeae infections were acquired in Nanjing, proper; four others in eastern Chinese cities and three from unknown locations. All FC428-related isolates were resistant to ceftriaxone, cefixime, ciprofloxacin, tetracycline and penicillin but susceptible to spectinomycin, gentamicin, ertapenem and zoliflodacin; three strains were resistant to azithromycin. penA 60.001 isolates displayed closely related MLST types and NG-STAR types but relatively distant NG-MAST types. WGS showed a phylogenetic analysis that intermingled with other international isolates. Conclusion penA 60.001 N. gonorrhoeae isolates emerged in Nanjing, China, beginning in 2017, and have continued to rise.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Sexually Transmitted Disease Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| | - Wenjing Le
- Sexually Transmitted Disease Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| | - Caroline A Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaohong Su
- Sexually Transmitted Disease Clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| |
Collapse
|
16
|
Golparian D, Vestberg N, Södersten W, Jacobsson S, Ohnishi M, Fang H, Bhattarai KH, Unemo M. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Euro Surveill 2023; 28:2300125. [PMID: 36892469 PMCID: PMC9999460 DOI: 10.2807/1560-7917.es.2023.28.10.2300125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
We report a ceftriaxone-resistant, multidrug-resistant urogenital Neisseria gonorrhoeae in a female sex worker in Sweden, September 2022, who was treated with ceftriaxone 1 g, but did not return for test-of-cure. Whole genome sequencing of isolate SE690 identified MLST ST8130, NG-STAR CC1885 (new NG-STAR ST4859) and mosaic penA-60.001. The latter, causing ceftriaxone resistance in the internationally spreading FC428 clone, has now also spread to the more antimicrobial-susceptible genomic lineage B, showing that strains across the gonococcal phylogeny can develop ceftriaxone resistance.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Ӧrebro University, Ӧrebro, Sweden
| | - Nora Vestberg
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Wiktor Södersten
- Department of Venerology at Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Ӧrebro University, Ӧrebro, Sweden
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hong Fang
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Karin Haij Bhattarai
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Magnus Unemo
- Institute for Global Health, University College London (UCL), London, United Kingdom.,WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Ӧrebro University, Ӧrebro, Sweden
| |
Collapse
|
17
|
Shewell LK, Day CJ, De Bisscop X, Edwards JL, Jennings MP. Repurposing Carbamazepine To Treat Gonococcal Infection in Women: Oral Delivery for Control of Epilepsy Generates Therapeutically Effective Levels in Vaginal Secretions. Antimicrob Agents Chemother 2023; 67:e0096822. [PMID: 36602335 PMCID: PMC9872610 DOI: 10.1128/aac.00968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neisseria gonorrhoeae has developed resistance to all previous antibiotics used for treatment. This highlights a crucial need for novel antimicrobials to treat gonococcal infections. We previously showed that carbamazepine (Cz), one of the most commonly prescribed antiepileptic drugs, can block the interaction between gonococcal pili and the I-domain region of human complement receptor 3 (CR3)-an interaction that is vital for infection of the female cervix. We also show that Cz can completely clear an established N. gonorrhoeae infection of primary human cervical cells. In this study, we quantified Cz in serum, saliva, and vaginal fluid collected from 16 women who were, or were not, regularly taking Cz. We detected Cz in lower reproductive tract mucosal secretions in the test group (women taking Cz) at potentially therapeutic levels using a competitive ELISA. Furthermore, we found that Cz concentrations present in vaginal fluid from women taking this drug were sufficient to result in a greater than 99% reduction (within 24 h) in the number of viable gonococci recovered from ex vivo, human, primary cervical cell infections. These data provide strong support for the further development of Cz as a novel, host-targeted therapy to treat gonococcal cervicitis.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Xavier De Bisscop
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Jennifer L. Edwards
- The Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
18
|
Yang F, Liu J, Gu Y, Jiao R, Yan J, Gao S, Lin X, van der Veen S. Antimicrobial Activity of Auranofin, Cannabidivarin, and Tolfenamic Acid against Multidrug-Resistant Neisseria gonorrhoeae. Microbiol Spectr 2022; 10:e0395222. [PMID: 36350125 PMCID: PMC9769797 DOI: 10.1128/spectrum.03952-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative antimicrobial therapies are urgently required for the multidrug-resistant bacterial pathogen Neisseria gonorrhoeae, for which currently ceftriaxone is the only remaining recommended first-line therapy. Repurposing of drugs that are approved for other clinical applications offers an efficient approach for development of alternative antimicrobial therapies. Auranofin, cannabidivarin, and tolfenamic acid were recently identified to display antimicrobial activity against N. gonorrhoeae. Here, we investigated their activity against a collection of 575 multidrug-resistant clinical isolates. All three compounds displayed consistent antimicrobial activity against all isolates, including against strains associated with the high-level ceftriaxone-resistant FC428 clone, with both the mode and MIC90 for auranofin of 0.5 mg/L, while both the mode and MIC90 for cannabidivarin and tolfenamic acid were 8 mg/L. Correlations between MICs of ceftriaxone and auranofin, cannabidivarin or tolfenamic acid were low, indicating that development of cross-resistance is unlikely. Furthermore, antimicrobial synergy analysis between ceftriaxone and auranofin, cannabidivarin, or tolfenamic acid by determination of the fractional inhibitory concentration index (FICI) resulted in an interpretation of indifference. Finally, time-kill analyses showed that all three compounds are bactericidal against both the N. gonorrhoeae ATCC 49226 reference strain and an FC428-associated clinical isolate, with particularly cannabidivarin displaying rapid bactericidal activity. Overall, auranofin, cannabidivarin, and tolfenamic acid displayed consistent antimicrobial activity against multidrug-resistant N. gonorrhoeae, warranting further exploration of their suitability as alternative antimicrobials for treatment of gonococcal infections. IMPORTANCE Neisseria gonorrhoeae is a major public health concern because of the high incidence of gonorrhea and the increasingly limited options for antimicrobial therapy. Strains associated with the FC428 clone are a particular concern because they have shown global dissemination and they display high-level resistance against the currently recommended ceftriaxone therapy. Therefore, development of alternative antimicrobial therapies is urgently required to ensure treatment of gonorrhea remains available in the future. Repurposing of clinically approved drugs could be a rapid approach for the development of such alternative antimicrobials. In this study, we showed that repurposing of auranofin, cannabidivarin, and tolfenamic acid for antimicrobial therapy of gonorrhea deserves further clinical explorations because these compounds displayed consistent antimicrobial activity against a large collection of contemporary multidrug-resistant gonococcal isolates that included strains associated with the FC428 clone.
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jin Liu
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yuhua Gu
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ruilin Jiao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jing Yan
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu’ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, People’s Republic of China
| |
Collapse
|
19
|
Radovanovic M, Kekic D, Jovicevic M, Kabic J, Gajic I, Opavski N, Ranin L. Current Susceptibility Surveillance and Distribution of Antimicrobial Resistance in N. gonorrheae within WHO Regions. Pathogens 2022; 11:1230. [PMID: 36364980 PMCID: PMC9697523 DOI: 10.3390/pathogens11111230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
Neisseria gonorrhoeae (N. gonorrhoeae) is the etiological agent of the second most common sexually transmitted disease in the world, gonorrhoea. Currently recommended and last available first-line therapy is extended-spectrum cephalosporins most often combined with azitromycin. However, misuse of antibiotics and the abilities of N. gonorrhoeae to acquire new genetic and plasmid-borne resistance determinants has gradually led to the situation where this bacterium has become resistant to all major classes of antibiotics. Together with a generally slow update of treatment guidelines globally, as well as with the high capacity of gonococci to develop and retain AMR, this may lead to the global worsening of gonococcal AMR. Since effective vaccines are unavailable, the management of gonorrhoea relies mostly on prevention and accurate diagnosis, together with antimicrobial treatment. The study overviews the latest results of mostly WHO-initiated studies, primarily focusing on the data regarding the molecular basis of the resistance to the current and novel most promising antibacterial agents, which could serve to establish or reinforce the continual, quality-assured and comparable AMR surveillance, including systematic monitoring and treatment with the use of molecular AMR prediction methods.
Collapse
Affiliation(s)
- Marina Radovanovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade 11000, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
20
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
21
|
Antibiotic Resistance in Neisseria gonorrhoeae: Challenges in Research and Treatment. Microorganisms 2022; 10:microorganisms10091699. [PMID: 36144300 PMCID: PMC9505656 DOI: 10.3390/microorganisms10091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gonococcal infection caused by the Gram-negative bacteria Neisseria gonorrhoeae is one of the most common sexually transmitted infections (STIs) worldwide [...]
Collapse
|
22
|
Golparian D, Kittiyaowamarn R, Paopang P, Sangprasert P, Sirivongrangson P, Franceschi F, Jacobsson S, Wi T, Unemo M. Genomic surveillance and antimicrobial resistance in Neisseria gonorrhoeae isolates in Bangkok, Thailand in 2018. J Antimicrob Chemother 2022; 77:2171-2182. [PMID: 35542983 DOI: 10.1093/jac/dkac158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/20/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a substantial global public health problem. Gonococcal infections acquired in or from Asia represent most verified ceftriaxone treatment failures, and several ceftriaxone-resistant strains have emerged in Asia and subsequently spread globally. Additionally, in Thailand the gonorrhoea incidence remains high. Herein, we investigate the genomic diversity, AMR and AMR determinants in gonococcal isolates cultured in 2018 in Bangkok, Thailand. METHODS Gonococcal isolates from males (n = 37) and females (n = 62) were examined by Etest and WGS. AMR determinants and molecular epidemiological STs were characterized. For phylogenomic comparison, raw sequence data were included from China (432 isolates), Japan (n = 270), Vietnam (n = 229), Thailand (n = 3), a global dataset (n = 12 440) and the 2016 WHO reference strains plus WHO Q (n = 15). RESULTS In total, 88, 66 and 41 different NG-MAST, NG-STAR and MLST STs, respectively, and 31 different NG-STAR clonal complexes were found. A remarkably high frequency (88%) of β-lactamase TEM genes was detected and two novel TEM alleles were found. The phylogenomic analysis divided the isolates into the previously described lineages A and B, with a large proportion of Thai isolates belonging to the novel sublineage A3. CONCLUSIONS We describe the first molecular epidemiological study using WGS on gonococcal isolates from Thailand. The high prevalence of AMR and AMR determinants for ciprofloxacin, tetracycline and benzylpenicillin, and some strains belonging to clones/clades especially in sublineage A2 that are prone to develop resistance to extended-spectrum cephalosporins (ESCs) and azithromycin, should prompt continued and strengthened AMR surveillance, including WGS, of N. gonorrhoeae in Thailand.
Collapse
Affiliation(s)
- Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rossaphorn Kittiyaowamarn
- Bangrak STIs Center, Division of AIDS and STIs, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Porntip Paopang
- Bangrak STIs Center, Division of AIDS and STIs, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Pongsathorn Sangprasert
- Bangrak STIs Center, Division of AIDS and STIs, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | | | - Francois Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), Geneva, Switzerland
| | - Susanne Jacobsson
- World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI programmes, World Health Organization, Geneva, Switzerland
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
23
|
Yang F, Gao S, Yan J, Lin X, van der Veen S. Moenomycin is broadly active against multidrug-resistant Neisseria gonorrhoeae and clears an infection from a murine vaginal tract infection model. J Antimicrob Chemother 2022; 77:2461-2469. [PMID: 35762496 DOI: 10.1093/jac/dkac202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Ceftriaxone therapy for gonorrhoea has become under increasing pressure due to waning susceptibility levels and emergence of high-level resistant strains such as the FC428 clone. Moenomycin was recently identified to display potent anti-gonococcal activity against some reference strains. Therefore, the aim of this study was to investigate moenomycin in vitro and in vivo antimicrobial activity. METHODS Moenomycin in vitro antimicrobial activity was investigated against 575 clinical isolates, including strains associated with the FC428 clone, using the agar dilution method. Moenomycin in vivo activity was investigated in a mouse vaginal tract gonococcal infection model. RESULTS The moenomycin MIC range for the strain collection was 0.004-0.06 mg/L, with a MIC50 of 0.016 mg/L and a MIC90 of 0.03 mg/L. The correlation between moenomycin and ceftriaxone susceptibility levels was poor (R = 0.13), while the fractional inhibitory concentration index (FICI) resulted in indifference for all tested strains. Therefore, development of cross-resistance between moenomycin and ceftriaxone is unlikely for N. gonorrhoeae. Determination of the moenomycin mode of activity against N. gonorrhoeae by time-kill assays showed that moenomycin is bactericidal, with over 104-fold inactivation observed after 4 h exposure. Finally, an intramuscular moenomycin dose of 10 mg/kg given on 2 consecutive days was able to clear a gonococcal infection in a mouse vaginal tract infection model within 1-3 days after the second dose, which was significantly faster than for mice treated with the vehicle control (P < 0.0001). CONCLUSIONS Moenomycin displays potent in vitro and in vivo antimicrobial activity against N. gonorrhoeae, warranting further exploration as alternative therapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Yan
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xu'ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Day MJ, Jacobsson S, Spiteri G, Kulishev C, Sajedi N, Woodford N, Blumel B, van der Werf MJ, Amato-Gauci AJ, Unemo M, Cole MJ. Significant increase in azithromycin "resistance" and susceptibility to ceftriaxone and cefixime in Neisseria gonorrhoeae isolates in 26 European countries, 2019. BMC Infect Dis 2022; 22:524. [PMID: 35672671 PMCID: PMC9171984 DOI: 10.1186/s12879-022-07509-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) performs annual sentinel surveillance of Neisseria gonorrhoeae susceptibility to therapeutically relevant antimicrobials across the European Union/European Economic Area (EU/EEA). We present the Euro-GASP results from 2019 (26 countries), linked to patient epidemiological data, and compared with data from previous years. Methods Agar dilution and minimum inhibitory concentration (MIC) gradient strip methodologies were used to determine the antimicrobial susceptibility (using EUCAST clinical breakpoints, where available) of 3239 N. gonorrhoeae isolates from 26 countries across the EU/EEA. Significance of differences compared with Euro-GASP results in previous years was analysed using Z-test and the Pearson's χ2 test was used to assess significance of odds ratios for associations between patient epidemiological data and antimicrobial resistance. Results European N. gonorrhoeae isolates collected between 2016 and 2019 displayed shifting MIC distributions for; ceftriaxone, with highly susceptible isolates increasing over time and occasional resistant isolates each year; cefixime, with highly-susceptible isolates becoming increasingly common; azithromycin, with a shift away from lower MICs towards higher MICs above the EUCAST epidemiological cut-off (ECOFF); and ciprofloxacin which is displaying a similar shift in MICs as observed for azithromycin. In 2019, two isolates displayed ceftriaxone resistance, but both isolates had MICs below the azithromycin ECOFF. Cefixime resistance (0.8%) was associated with patient sex, with resistance higher in females compared with male heterosexuals and men-who-have-sex-with-men (MSM). The number of countries reporting isolates with azithromycin MICs above the ECOFF increased from 76.9% (20/26) in 2016 to 92.3% (24/26) in 2019. Isolates with azithromycin MICs above the ECOFF (9.0%) were associated with pharyngeal infection sites. Following multivariable analysis, ciprofloxacin resistance remained associated with isolates from MSM and heterosexual males compared with females, the absence of a concurrent chlamydial infection, pharyngeal infection sites and patients ≥ 25 years of age. Conclusions Resistance to ceftriaxone and cefixime remained uncommon in EU/EEA countries in 2019 with a significant decrease in cefixime resistance observed between 2016 and 2019. The significant increase in azithromycin “resistance” (azithromycin MICs above the ECOFF) threatens the effectiveness of the dual therapy (ceftriaxone + azithromycin), i.e., for ceftriaxone-resistant cases, currently recommended in many countries internationally and requires close monitoring.
Collapse
Affiliation(s)
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden
| | | | | | | | | | - Benjamin Blumel
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden.,University College London (UCL), London, UK
| | | | | |
Collapse
|
25
|
Pleininger S, Indra A, Golparian D, Heger F, Schindler S, Jacobsson S, Heidler S, Unemo M. Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35713023 PMCID: PMC9205165 DOI: 10.2807/1560-7917.es.2022.27.24.2200455] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe a gonorrhoea case with ceftriaxone plus high-level azithromycin resistance. In April 2022, an Austrian heterosexual male was diagnosed with gonorrhoea after sexual intercourse with a female sex worker in Cambodia. Recommended treatment with ceftriaxone (1 g) plus azithromycin (1.5 g) possibly failed. Worryingly, this is the second strain in an Asian Neisseria gonorrhoeae genomic sublineage including high-level azithromycin-resistant strains that developed ceftriaxone resistance by acquisition of mosaic penA-60.001. Enhanced resistance surveillance and actions are imperative to prevent spread.
Collapse
Affiliation(s)
| | | | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Florian Heger
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Magnus Unemo
- Institute for Global Health, University College London, London, United Kingdom.,WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
26
|
Maeda K, Shigemura K, Yang Y, Nakano Y, Arakawa S, Fujisawa M. A case of refractory urethritis with repeated doctor shopping. IJU Case Rep 2022; 5:129-131. [PMID: 35252799 PMCID: PMC8888020 DOI: 10.1002/iju5.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION In the field of sexually transmitted diseases, resistance and diversification of causative organisms are becoming a problem. We report a case in which the course of the disease was complicated by doctor shopping. CASE PRESENTATION A man in his 40s visited his local doctor for painful urination and cloudy urine. Due to the lack of improvement in symptoms after antibiotic treatment, he self-selected to visit six hospitals in just five months. He visited our clinic only a few times and then stopped coming. CONCLUSION Doctor shopping, as well as self-diagnosis and self-treatment, will continue to increase. Patient education is important, but medical professionals also need to be aware of the possibility of doctor shopping when treating patients.
Collapse
Affiliation(s)
- Koki Maeda
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Katsumi Shigemura
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Yong‐Ming Yang
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Yuzo Nakano
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | | | - Masato Fujisawa
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
27
|
Hadad R, Golparian D, Velicko I, Ohlsson AK, Lindroth Y, Ericson EL, Fredlund H, Engstrand L, Unemo M. First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Front Microbiol 2022; 12:820998. [PMID: 35095823 PMCID: PMC8794790 DOI: 10.3389/fmicb.2021.820998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing transmission and antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health concern with worrying trends of decreasing susceptibility to also the last-line extended-spectrum cephalosporin (ESC) ceftriaxone. A dramatic increase of reported gonorrhea cases has been observed in Sweden from 2016 and onward. The aim of the present study was to comprehensively investigate the genomic epidemiology of all cultured N. gonorrhoeae isolates in Sweden during 2016, in conjunction with phenotypic AMR and clinical and epidemiological data of patients. In total, 1279 isolates were examined. Etest and whole-genome sequencing (WGS) were performed, and epidemiological data obtained from the Public Health Agency of Sweden. Overall, 51.1%, 1.7%, and 1.3% resistance to ciprofloxacin, cefixime, and azithromycin, respectively, was found. No isolates were resistant to ceftriaxone, however, 9.3% of isolates showed a decreased susceptibility to ceftriaxone and 10.5% to cefixime. In total, 44 penA alleles were found of which six were mosaic (n = 92). Using the typing schemes of MLST, NG-MAST, and NG-STAR; 133, 422, and 280 sequence types, respectively, and 93 NG-STAR clonal complexes were found. The phylogenomic analysis revealed two main lineages (A and B) with lineage A divided into two main sublineages (A1 and A2). Resistance and decreased susceptibility to ESCs and azithromycin and associated AMR determinants, such as mosaic penA and mosaic mtrD, were predominantly found in sublineage A2. Resistance to cefixime and azithromycin was more prevalent among heterosexuals and MSM, respectively, and both were predominantly spread through domestic transmission. Continuous surveillance of the spread and evolution of N. gonorrhoeae, including phenotypic AMR testing and WGS, is essential for enhanced knowledge regarding the dynamic evolution of N. gonorrhoeae and gonorrhea epidemiology.
Collapse
Affiliation(s)
- Ronza Hadad
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Anna-Karin Ohlsson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Ylva Lindroth
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Skåne Laboratory Medicine, Lund, Sweden
| | - Eva-Lena Ericson
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Hans Fredlund
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lars Engstrand
- Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
28
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
29
|
Kanesaka I, Ohno A, Katsuse AK, Takahashi H, Kobayashi I. The emergence of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone by transfer of resistance from an oral Neisseria subflava reservoir of resistance. J Antimicrob Chemother 2021; 77:364-373. [PMID: 34747462 DOI: 10.1093/jac/dkab390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone was first discovered in Japan in 2015. OBJECTIVES We investigated the possibility of horizontal gene transfer from Neisseria subflava harbouring the mosaic-like PBP-2 in the emergence of the FC428 clone. We also analysed whether there were fitness costs associated with the sustained international dissemination of the clone. METHODS Sequencing of the penA gene in ceftriaxone-resistant N. subflava strains was performed. For transformation experiments between donor N. subflava and ciprofloxacin-resistant wild-type penA N. gonorrhoeae recipient, the full-length PCR amplification product of the penA gene, including DUS regions, was used as the donor DNA. Biological fitness of the transformants was measured by growth competition assays. The impact of QRDR and mtrR mutations, which have been reported as compensatory mutations, on fitness was also assessed. RESULTS The penA mosaic allele of the FC428 clone showed 100%, 91.8%, and 89.8% homology, respectively, with penA genes of three ceftriaxone-resistant N. subflava strains, No. 30, No. 9 and No. 14. Results were consistent with homologous recombination with the donated penA mosaic allele. In co-cultures with the parent strain, transformants showed comparable growth indicating that a gyrA mutation compensates for the fitness cost of mosaic penA alleles. CONCLUSIONS Our findings support the hypothesis that the FC428 clone was generated by transformation of the mosaic penA allele from oropharyngeal N. subflava to N. gonorrhoeae. Furthermore, it suggests that mutations in the gyrA QRDR region compensate for fitness costs and contribute to the continued transmission of the FC428 clone.
Collapse
Affiliation(s)
- Izumo Kanesaka
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akira Ohno
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Hiroshi Takahashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| |
Collapse
|
30
|
Zhang L, Zhang C, Zeng Y, Li Y, Huang S, Wang F, Peng J. Emergence and Characterization of a Ceftriaxone-Resistant Neisseria gonorrhoeae FC428 Clone Evolving Moderate-Level Resistance to Azithromycin in Shenzhen, China. Infect Drug Resist 2021; 14:4271-4276. [PMID: 34703253 PMCID: PMC8541749 DOI: 10.2147/idr.s336212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
We here described a ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone (YL201) with moderate-level resistance to azithromycin in Shenzhen, South China in 2020. The NG-STAR type of YL201 is ST2238, containing a mosaic penA-60.001 allele, which is a typical characteristic of FC428 clone. YL201 harbours four copies of the 23S rRNA C2611T mutation, conferring moderate-level resistance to azithromycin. The MLST type is ST1600, identical with two N. gonorrhoeae FC428 clones identified in Hangzhou. Genome-wide phylogeny analysis demonstrates that YL201 is clustered with other FC428 clones from Hangzhou (South-east China) and Chengdu (South-west China). Isolates within this cluster have relatively higher MIC for ceftriaxone and display closely related MLST STs (ST1600 and ST7363) but are different from the ST of typical FC428 clone (ST1903). As ST1600 and ST7363 are common STs in Shenzhen, the further spread of FC428 clones may increase the severity of gonococcal resistance. In summary, identifying a multidrug-resistant (MDR) N. gonorrhoeae isolate in Shenzhen showed FC428 clones have undergone further transmission in China and presented more extensive and concerning antimicrobial resistance (AMR) characteristics during the spread.
Collapse
Affiliation(s)
- Lulu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yaling Zeng
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, People's Republic of China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shuhong Huang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, People's Republic of China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, People's Republic of China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
31
|
A Unique Sequence Is Essential for Efficient Multidrug Efflux Function of the MtrD Protein of Neisseria gonorrhoeae. mBio 2021; 12:e0167521. [PMID: 34465021 PMCID: PMC8406276 DOI: 10.1128/mbio.01675-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae has reached an alarming level, severely impacting the effective treatment of gonorrhea. Belonging to the resistance-nodulation-cell division (RND) superfamily of efflux transporters, the MtrD membrane protein of N. gonorrhoeae provides resistance to a broad range of antimicrobial compounds. A unique feature of MtrD is an 11-residue sequence (from N917 to P927 [N917-P927]) that connects transmembrane helices (TMS) 9 and 10; this sequence is not present in homologous RND proteins. This study explores the structural and functional roles of the N917-P927 region by means of mutant analysis and molecular dynamics simulations. We show that N917-P927 plays a key role in modulating substrate access to the binding cleft and influences the overall orientation of the protein within the inner membrane necessary for optimal functioning. Removal of N917-P927 significantly reduced MtrD-mediated resistance to a range of antimicrobials and mutations of three single amino acids impacted MtrD-mediated multidrug resistance. Furthermore, molecular dynamics simulations showed deletion of N917-P927 in MtrD may dysregulate access of the substrate to the binding cleft and closure of the substrate-binding pocket during the transport cycle. These findings indicate that N917-P927 is a key region for interacting with the inner membrane, conceivably influencing substrate capture from the membrane-periplasm interface and thus is essential for full multidrug resistance capacity of MtrD. IMPORTANCE The historical sexually transmitted infection gonorrhea continues to be a major public health concern with an estimated global annual incidence of 86.9 million cases. N. gonorrhoeae has been identified by the World Health Organization as one of the 12 antimicrobial-resistant bacterial species that poses the greatest risk to human health. As the major efflux pump in gonococci, the MtrD transporter contributes to the cell envelope barrier in this organism and pumps antimicrobials from the periplasm and inner membrane, resulting in resistance. This study demonstrates that a unique region of the MtrD protein that connects TMS 9 and TMS 10 forms a structure that may interact with the inner membrane positioning TMS 9 and stabilizing the protein facilitating substrate capture from the inner membrane-periplasm interface. Analysis of mutants of this region identified that it was essential for MtrD-mediated multidrug resistance. Characterization of the structure and function of this unique local region of MtrD has implications for drug efflux mechanisms used by related proteins and is important knowledge for development of antibiotics that bypass efflux.
Collapse
|
32
|
Egli K, Roditscheff A, Flückiger U, Risch M, Risch L, Bodmer T. Molecular characterization of a ceftriaxone-resistant Neisseria gonorrhoeae strain found in Switzerland: a case report. Ann Clin Microbiol Antimicrob 2021; 20:52. [PMID: 34362393 PMCID: PMC8349002 DOI: 10.1186/s12941-021-00456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different β-lactams and fluoroquinolones. CASE PRESENTATION A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. CONCLUSION The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.
Collapse
Affiliation(s)
- Konrad Egli
- Centre of Laboratory Medicine (CLM) Dr Risch, 3097, Liebefeld, Switzerland.
| | - Anna Roditscheff
- Centre of Laboratory Medicine (CLM) Dr Risch, 3097, Liebefeld, Switzerland
| | - Ursula Flückiger
- Zentrum Für Innere Medizin, Hirslanden Klinik Aarau, 5000, Aarau, Switzerland
| | - Martin Risch
- Centre of Laboratory Medicine (CLM) Dr Risch, 9470, Buchs, Switzerland
| | - Lorenz Risch
- Centre of Laboratory Medicine (CLM) Dr Risch, 3097, Liebefeld, Switzerland.,Private University of the Principality of Liechtenstein, 9495, Triesen, Liechtenstein
| | - Thomas Bodmer
- Centre of Laboratory Medicine (CLM) Dr Risch, 3097, Liebefeld, Switzerland
| |
Collapse
|
33
|
Demographic and behavioural risk factors associated with reduced susceptibility of Neisseria gonorrhoeae to first-line antimicrobials in South African men with gonococcal urethral discharge. Antimicrob Agents Chemother 2021; 65:e0038921. [PMID: 34339277 DOI: 10.1128/aac.00389-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is the predominant cause of male urethral discharge in South Africa, and escalating prevalence of gonococcal antimicrobial resistance (AMR) is a major health concern, both in-country and globally. We analysed the demographic, behavioural and clinical characteristics of 685 men presenting with gonococcal urethral discharge to sentinel surveillance clinics over a three-year period (2017 - 2019), to determine the burden of factors that are known to be associated with N. gonorrhoeae AMR to first-line therapy (defined as Group 1 isolates exhibiting resistance or reduced susceptibility to extended-spectrum cephalosporins or azithromycin). Among 685 men with gonococcal urethral discharge, median age was 28 years (IQR 24-32). Only two men (2/632; 0.3%) self-identified as homosexual; however, on further enquiry, another 16 (2%) confirmed that they had sex with men only. Almost 30% practised oral sex, and were at risk for pharyngeal gonococcal infection. In univariate analysis, male circumcision (OR 0.69; 95%CI 0.49-0.99), and recent sex outside the country (OR 1.83; 95%CI 1.21-2.76) were significantly associated with having a Category 1 N. gonorrhoeae isolate. In a multivariable model, only sex outside South Africa increased the odds of being infected with a decreased susceptible/resistant N. gonorrhoeae isolate (aOR 1.64; 95%CI 1.05-2.55). These findings warrant the intensification of N. gonorrhoeae AMR surveillance among recently-arrived migrant and overseas traveler populations, as well as the inclusion of extragenital specimens for N. gonorrhoeae AMR surveillance purposes.
Collapse
|
34
|
Haese EC, Thai VC, Kahler CM. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines (Basel) 2021; 9:vaccines9070804. [PMID: 34358218 PMCID: PMC8310131 DOI: 10.3390/vaccines9070804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
The World Health Organization (WHO) has placed N. gonorrhoeae on the global priority list of antimicrobial resistant pathogens and is urgently seeking the development of new intervention strategies. N. gonorrhoeae causes 86.9 million cases globally per annum. The effects of gonococcal disease are seen predominantly in women and children and especially in the Australian Indigenous community. While economic modelling suggests that this infection alone may directly cost the USA health care system USD 11.0–20.6 billion, indirect costs associated with adverse disease and pregnancy outcomes, disease prevention, and productivity loss, mean that the overall effect of the disease is far greater still. In this review, we summate the current progress towards the development of a gonorrhea vaccine and describe the clinical trials being undertaken in Australia to assess the efficacy of the current formulation of Bexsero® in controlling disease.
Collapse
|
35
|
Golparian D, Sánchez-Busó L, Cole M, Unemo M. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes are consistent with genomic phylogeny and provide simple nomenclature, rapid visualization and antimicrobial resistance (AMR) lineage predictions. J Antimicrob Chemother 2021; 76:940-944. [PMID: 33411920 DOI: 10.1093/jac/dkaa552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Surveillance of antimicrobial resistance (AMR) in Neisseria gonorrhoeae, supported by molecular typing, ideally through genome sequencing, is imperative. We defined N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes (CCs) and validated their usefulness in gonococcal AMR surveillance. METHODS All NG-STAR alleles and STs available in the public database (https://ngstar.canada.ca/) were analysed using PHYLOViZ 2.0 to define CCs according to the closest founder ST with ≥5 identical alleles and founding ST with the highest number of links. The published 2013 European gonococcal dataset (n = 1054), the 2016 WHO reference strain panel (n = 14) and N. gonorrhoeae isolates with ceftriaxone resistance determinant penA-60.001 (n = 7) from several countries were used for validation. RESULTS The majority of the isolates (n = 1063) were designated to 71 CCs. The most common CC was CC90 (n = 194), followed by CC63 (n = 166), CC139 (n = 73), CC158 (n = 73) and CC127 (n = 62). CC90 included isolates belonging to the internationally spread MDR clone N. gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST) G1407 (predominantly MLST ST1901). The ceftriaxone-resistant isolates with penA-60.001 (n = 7) belonged to CC73 or STs linking between CC90 and CC73 (ST233 and ST1133). Phylogenomic analysis revealed that NG-STAR CCs more appropriately correlated to phylogenomic AMR clusters compared with MLST STs, NG-MAST STs, NG-MAST genogroups and NG-STAR STs. CONCLUSIONS NG-STAR CCs: are consistent with the gonococcal genome phylogeny; allow rapid visualizations with limited computational requirements; provide a simple, reproducible and portable nomenclature (for WGS and conventional Sanger sequencing data); and predict AMR lineages. Phenotypic AMR surveillance, supplemented with WGS, is imperative and NG-STAR CCs can effectively support this.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
| | - Michelle Cole
- National Infection Service, Public Health England, London, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
36
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
37
|
Singh R, Kusalik A, Dillon JAR. Bioinformatics tools used for whole-genome sequencing analysis of Neisseria gonorrhoeae: a literature review. Brief Funct Genomics 2021; 21:78-89. [PMID: 34170311 DOI: 10.1093/bfgp/elab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing (WGS) data are well established for the investigation of gonococcal transmission, antimicrobial resistance prediction, population structure determination and population dynamics. A variety of bioinformatics tools, repositories, services and platforms have been applied to manage and analyze Neisseria gonorrhoeae WGS datasets. This review provides an overview of the various bioinformatics approaches and resources used in 105 published studies (as of 30 April 2021). The challenges in the analysis of N. gonorrhoeae WGS datasets, as well as future bioinformatics requirements, are also discussed.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology
| | - Anthony Kusalik
- Department of Computer Science at the University of Saskatchewan
| | - Jo-Anne R Dillon
- Department of Biochemistry Microbiology and Immunology, College of Medicine, c/o Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| |
Collapse
|
38
|
Jacobsson S, Mason C, Khan N, Meo P, Unemo M. High in vitro activity of DIS-73285, a novel antimicrobial with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 75:3244-3247. [PMID: 32712655 PMCID: PMC7566547 DOI: 10.1093/jac/dkaa322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022] Open
Abstract
Background The rising incidence of antimicrobial resistance in Neisseria gonorrhoeae may result in untreatable gonorrhoea in certain circumstances and development of novel antimicrobials is urgently needed. Objectives To evaluate the in vitro activity of a novel small-molecule antimicrobial with a new mechanism of action, DIS-73285, against a large geographically, temporally and genetically diverse collection of clinical N. gonorrhoeae isolates and reference strains, including various types of high-level resistant, MDR and XDR gonococcal isolates (n = 262). Methods MICs (mg/L) of DIS-73285 were determined by agar dilution and by Etest for ceftriaxone, cefixime, azithromycin, ciprofloxacin, ampicillin, spectinomycin and tetracycline. Results DIS-73285 was substantially more potent than any of the currently or previously used therapeutic antimicrobials, with MICs ranging from ≤0.001 to 0.004 mg/L, and the MIC50, MIC90 and modal MIC all ≤0.001 mg/L (lowest MIC tested). No correlation with the MICs of DIS-73285 and the MICs of any of the currently or previously used antimicrobials was observed. Conclusions The novel chemotype, small-molecule antimicrobial DIS-73285, demonstrated high in vitro potency against all tested N. gonorrhoeae isolates. Further in vitro and in vivo studies, evaluating efficacy, resistance emergence, pharmacokinetic/pharmacodynamic parameters, toxicity and safety, should be conducted to evaluate DIS-73285 as a therapy specifically for urogenital and extra-genital gonorrhoea.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Clive Mason
- Summit Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, UK
| | - Nawaz Khan
- Summit Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, UK
| | - Paul Meo
- Summit Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
39
|
Chen SC, Yuan LF, Zhu XY, van der Veen S, Yin YP. Sustained transmission of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China. J Antimicrob Chemother 2021; 75:2499-2502. [PMID: 32473014 DOI: 10.1093/jac/dkaa196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ceftriaxone resistance in Neisseria gonorrhoeae has become an imminent threat to effective control of gonorrhoea globally. In recent years, the ceftriaxone-resistant FC428 clone has shown international dissemination. After our first report of the FC428 clone in China in 2016, we now describe another six cases of FC428-related ceftriaxone-resistant N. gonorrhoeae isolates from 2017 and 2018. OBJECTIVES To identify the phenotypic and molecular characteristics of newly reported ceftriaxone-resistant isolates in China and to investigate the relationship between these isolates and FC428 clones reported globally. METHODS Antimicrobial susceptibility to ceftriaxone, cefixime, azithromycin, spectinomycin, penicillin, ciprofloxacin and tetracycline was determined by the agar dilution method. N. gonorrhoeae multi-antigen sequence typing (NG-MAST), MLST and N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) were performed for genotyping and SNPs extracted from whole-genome sequences were used for phylogenetic analysis. RESULTS All isolates were resistant to ceftriaxone, cefixime, penicillin, tetracycline and ciprofloxacin, but were susceptible to azithromycin and spectinomycin. NG-MAST, MLST and NG-STAR genotyping showed that all isolates shared identical or similar STs (<10 bp difference) to FC428 (NG-MAST ST3435, MLST ST1903, NG-STAR ST233) and contained the same mosaic penA allele 60.001. Phylogenetic analysis showed the Chinese isolates spreading in the whole phylogenetic tree and fully mixed with other international isolates. Half of the Chinese isolates were more closely related (<100 SNPs) to Japanese isolates than other international isolates. CONCLUSIONS The newly reported cases in China were related to the internationally spreading FC428 clone. These isolates might have played a central role in international transmission of the FC428 clone. High ceftriaxone doses (1-2 g) still provide effective therapy.
Collapse
Affiliation(s)
- Shao-Chun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,National Center for Sexually Transmitted Disease Control, China Center for Disease Control and Prevention, Nanjing, China
| | - Liu-Feng Yuan
- Department of Dermatology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Yu Zhu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,National Center for Sexually Transmitted Disease Control, China Center for Disease Control and Prevention, Nanjing, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue-Ping Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,National Center for Sexually Transmitted Disease Control, China Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
40
|
Golparian D, Bazzo ML, Golfetto L, Gaspar PC, Schörner MA, Schwartz Benzaken A, Ramos MC, Ferreira WA, Alonso Neto JB, Mendes Pereira GF, Unemo M. Genomic epidemiology of Neisseria gonorrhoeae elucidating the gonococcal antimicrobial resistance and lineages/sublineages across Brazil, 2015-16. J Antimicrob Chemother 2021; 75:3163-3172. [PMID: 32785692 DOI: 10.1093/jac/dkaa318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Neisseria gonorrhoeae antimicrobial resistance (AMR) surveillance is imperative internationally, but only eight (22.9%) countries in the WHO Region of the Americas reported complete AMR data to the WHO Global Gonococcal Antimicrobial Surveillance Program (WHO GASP) in 2016. Genomic studies are ideal for enhanced understanding of gonococcal populations, including the spread of AMR strains. To elucidate the circulating gonococcal lineages/sublineages, including their AMR determinants, and the baseline genomic diversity among gonococcal strains in Brazil, we conducted WGS on 548 isolates obtained in 2015-16 across all five macroregions in Brazil. METHODS A total of 548 gonococcal isolates cultured across Brazil in 2015-16 were genome sequenced. AMR was determined using agar dilution and/or Etest. Genome sequences of isolates from Argentina (n = 158) and the 2016 WHO reference strains (n = 14) were included in the analysis. RESULTS We found 302, 68 and 214 different NG-MAST, MLST and NG-STAR STs, respectively. The phylogenomic analysis identified one main antimicrobial-susceptible lineage and one AMR lineage, which was divided into two sublineages with different AMR profiles. Determination of NG-STAR networks of clonal complexes was shown as a new and valuable molecular epidemiological analysis. Several novel mosaic mtrD (and mtrR and mtrE) variants associated with azithromycin resistance were identified. CONCLUSIONS We describe the first genomic baseline data to support the Brazilian GASP. The high prevalence of resistance to ciprofloxacin, tetracycline and benzylpenicillin, and the high number of isolates with mosaic penA and azithromycin resistance mutations, should prompt continued and strengthened AMR surveillance, including WGS, of N. gonorrhoeae in Brazil.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lisléia Golfetto
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pamela Cristina Gaspar
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Marcos André Schörner
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | - José Boullosa Alonso Neto
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Gerson Fernando Mendes Pereira
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
41
|
Kularatne R, Kufa T, Gumede L, Maseko V. Comparison of gentamicin MICs by agar dilution and Etest for clinical isolates of Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 75:2599-2604. [PMID: 32544235 DOI: 10.1093/jac/dkaa202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In South Africa, Neisseria gonorrhoeae (NG) is the predominant cause of male urethritis syndrome (MUS). The national MUS treatment guidelines recommend gentamicin as salvage therapy for ceftriaxone treatment failures. We ascertained and compared gentamicin MICs obtained by agar dilution and Etest for clinical isolates of NG. METHODS Gentamicin MICs for NG culture isolates obtained from 272 MUS cases in 2017 were determined using agar dilution, as per CLSI agar dilution methods, and Etest® (bioMérieux, Marcy-l'Étoile, France). Previously published interpretive criteria were used: MIC ≤4 mg/L, susceptible (S); MIC 8-16 mg/L, intermediately resistant (IR); and MIC ≥32 mg/L, resistant (R). WHO 2008 NG reference strains were used as comparison standards. RESULTS Gentamicin agar dilution versus Etest MIC results (mg/L) were as follows: MIC50 = 16 versus 4; MIC90 = 16 versus 8; minimum MIC = 4 versus 1; and maximum MIC = 32 versus 16. Interpretive categories for agar dilution versus Etest were as follows: S, 4.4% versus 86.8%; IR, 86.0% versus 13.4%; and R, 9.6% versus 0%. The gentamicin MIC50 by agar dilution was significantly higher than by Etest (sign test P value <0.001); overall MIC agreement was 7.4% [kappa statistic (κ) = -0.014 (95% CI -0.039 to 0.010)]. Correlation with expected MICs for WHO reference strains was consistently better with Etest than with agar dilution. CONCLUSIONS There was a significant discordance between NG gentamicin MICs by agar dilution versus Etest. NG gentamicin AST methodology must be standardized and interpretive criteria established to optimize the monitoring of susceptibility trends.
Collapse
Affiliation(s)
- Ranmini Kularatne
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,Department of Clinical Microbiology & Infectious Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Tendesayi Kufa
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindy Gumede
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Venessa Maseko
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
42
|
Wang H, Wang Y, Yong G, Li X, Yu L, Ma S, Luo T. Emergence and genomic characterization of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in Chengdu, China. J Antimicrob Chemother 2021; 75:2495-2498. [PMID: 32363389 DOI: 10.1093/jac/dkaa123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To verify the contribution of the globally disseminated Neisseria gonorrhoeae FC428 clone to the emergence of ceftriaxone resistance in Chengdu in south-west China during 2018. METHODS Antimicrobial susceptibility of the N. gonorrhoeae isolates to six antibiotics was determined using the agar dilution method. A real-time PCR assay and WGS were used to identify the FC428 clone. Phylogenomic and molecular antimicrobial resistance analyses were conducted to characterize the transmission and evolution of related strains. RESULTS Four out of 112 N. gonorrhoeae isolates were confirmed as the ceftriaxone-resistant FC428 clone. Phylogenomic analysis revealed that they resulted from multiple introductions and subsequent local transmissions. The strains have undergone further evolutions characterized by the accumulation of mutations in resistance-associated genes and/or the acquisition of plasmids encoding penicillin and tetracycline resistance genes. CONCLUSIONS The N. gonorrhoeae FC428 clone has spread to south-west China. Efforts should be made to enhance gonococcal antimicrobial surveillance to control further dissemination of this successful clone at both local and national levels.
Collapse
Affiliation(s)
- Hongren Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Youwei Wang
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Gang Yong
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xueru Li
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Linchong Yu
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shuaijing Ma
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Luo
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Trembizki E, Jennison AV, Buckley C, Bright A, Holds J, Ward A, Pitt J, Pendle S, Baird R, Freeman K, Robson J, Mhango L, Lowry K, Lahra M, Whiley D. Enhanced molecular surveillance in response to the detection of extensively resistant gonorrhoea in Australia. J Antimicrob Chemother 2021; 76:270-271. [PMID: 33020835 DOI: 10.1093/jac/dkaa402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ella Trembizki
- The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Health Support Queensland, Brisbane, Queensland, Australia
| | - Cameron Buckley
- The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Amy Bright
- Office of Health Protection, Australian Government Department of Health, ACT, Australia
| | - Judith Holds
- South Australia Pathology, Adelaide, South Australia, Australia
| | - Alison Ward
- Adelaide Sexual Health Centre, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John Pitt
- Adelaide City General Practice, South Australia, Australia
| | - Stella Pendle
- Australian Clinical Labs, Bella Vista, New South Wales, Australia
| | - Rob Baird
- Royal Darwin Hospital, Darwin, Territory Pathology, Northern Territory, Australia
| | - Kevin Freeman
- Royal Darwin Hospital, Darwin, Territory Pathology, Northern Territory, Australia
| | - Jenny Robson
- Sullivan Nicolaides Pathology, Queensland, Australia
| | - Lebogang Mhango
- The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Monica Lahra
- World Health Organization Collaborating Centre for STI and AMR, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, Australia
| | - David Whiley
- The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia.,Pathology Queensland Central Laboratory, Brisbane, Australia
| |
Collapse
|
44
|
Li Y, Xiu L, Liu J, Zhang C, Wang F, Yin Y, Peng J. A multiplex assay for characterization of antimicrobial resistance in Neisseria gonorrhoeae using multi-PCR coupled with mass spectrometry. J Antimicrob Chemother 2021; 75:2817-2825. [PMID: 32688393 DOI: 10.1093/jac/dkaa269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Complicated mechanisms and variable determinants related to drug resistance pose a major challenge to obtain comprehensive antimicrobial resistance (AMR) profiles of Neisseria gonorrhoeae. Meanwhile, cephalosporin-resistant mosaic penA alleles have been reported worldwide. Therefore, it is urgent to monitor the expansion of cephalosporin-resistant mosaic penA alleles. OBJECTIVES To develop a comprehensive high-throughput method to efficiently screen AMR determinants. METHODS We developed a method based on multiplex PCR with MALDI-TOF MS, which can simultaneously screen for 24 mutations associated with multiple antimicrobial agents in 19 gonococcal AMR loci (NG-AMR-MS). The performance of the NG-AMR-MS method was assessed by testing 454 N. gonorrhoeae isolates with known MICs of six antibiotics, eight non-gonococcal Neisseria strains, 214 clinical samples and three plasmids with a confirmed mosaic penA allele. RESULTS The results show that NG-AMR-MS had a specificity of 100% with a sensitivity as low as 10 copies per reaction (except for PorB A121D/N/G, 100 copies per reaction). For clinical samples with gonococcal load >5 copies/μL, the method can accurately identify 20 AMR mutations. In addition, the method successfully detected specific cephalosporin-resistant strains with the A311V mutation in the penA allele. CONCLUSIONS Our high-throughput method can provide comprehensive AMR profiles within a multiplex format. Furthermore, the method can be directly applied to screening for AMR among clinical samples, serving as an effective tool for overall monitoring of N. gonorrhoeae AMR and also provides a powerful means to comprehensively improve the level of monitoring.
Collapse
Affiliation(s)
- Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwei Liu
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Yueping Yin
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Karymbaeva S, Boiko I, Jacobsson S, Mamaeva G, Ibraeva A, Usupova D, Golparian D, Unemo M. Antimicrobial resistance and molecular epidemiological typing of Neisseria gonorrhoeae isolates from Kyrgyzstan in Central Asia, 2012 and 2017. BMC Infect Dis 2021; 21:559. [PMID: 34118893 PMCID: PMC8195719 DOI: 10.1186/s12879-021-06262-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 04/04/2023] Open
Abstract
Background Gonorrhoea and antimicrobial resistance (AMR) in Neisseria gonorrhoeae are significant public health concerns globally. Nearly no gonococcal AMR data are available from Central Asia, and no data from Kyrgyzstan has been published. We examined, for the first time, AMR and molecular epidemiology of N. gonorrhoeae isolates cultured in Kyrgyzstan in 2012 and 2017, in order to inform refinements of the Kyrgyz national gonorrhoea management guidelines. Methods N. gonorrhoeae isolates cultured in 2012 (n = 84) and 2017 (n = 72) in Kyrgyzstan were examined. MICs of nine antimicrobials were determined using Etest and, where available, clinical breakpoints from the EUCAST were applied. N. gonorrhoeae multiantigen sequence typing (NG-MAST) was also performed. Results The overall resistance levels were high to ciprofloxacin (88.5%), tetracycline (56.9%), benzylpenicillin (39.1%), and kanamycin (4.7%). Resistance to cefixime (0.6%, n = 1 isolate), azithromycin (0.6%, n = 1), and gentamicin (0.6%, n = 1) was rare. No resistance to ceftriaxone or spectinomycin was found. However, the proportion of isolates with decreased susceptibility (MIC = 0.125 mg/L) to ceftriaxone and cefixime was 12.8 and 11.5%, respectively. Gonococcal isolates were assigned 69 sequence types, of which 52 (75.4%) were new. Conclusions The gonococcal population in Kyrgyzstan in 2012 and 2017 showed a high genetic diversity. Ceftriaxone, 500–1000 mg, in combination with azithromycin 2 g or doxycycline, particularly when chlamydial infection has not been excluded, should be recommended as empiric first-line treatment. Spectinomycin 2 g could be an alternative treatment, and given with azithromycin 2 g if pharyngeal gonorrhoea has not been excluded. Fluoroquinolones, aminoglycosides, benzylpenicillin, or tetracyclines should not be used for empiric treatment of gonorrhoea in Kyrgyzstan. Timely updating and high compliance to national gonorrhoea treatment guidelines based on quality-assured AMR data is imperative. Expanded and improved gonococcal AMR surveillance in Kyrgyzstan is crucial.
Collapse
Affiliation(s)
- Saliya Karymbaeva
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85, Örebro, Sweden
| | - Iryna Boiko
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85, Örebro, Sweden.,Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85, Örebro, Sweden
| | - Galina Mamaeva
- Republican Dermatovenerological Centre, Bishkek, Kyrgyzstan
| | | | - Dilara Usupova
- Republican Dermatovenerological Centre, Bishkek, Kyrgyzstan
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, SE-701 85, Örebro, Sweden.
| |
Collapse
|
46
|
Antimicrobial resistance in Neisseria gonorrhoeae isolates and gonorrhoea treatment in the Republic of Belarus, Eastern Europe, 2009-2019. BMC Infect Dis 2021; 21:520. [PMID: 34078300 PMCID: PMC8173742 DOI: 10.1186/s12879-021-06184-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background Limited antimicrobial resistance (AMR) data for Neisseria gonorrhoeae are available in Eastern Europe. We investigated AMR in N. gonorrhoeae isolates in the Republic of Belarus from 2009 to 2019, antimicrobial treatment recommended nationally, and treatment given to patients with gonorrhoea. Methods N. gonorrhoeae isolates (n = 522) cultured in three regions of Belarus in 2009–2019 were examined. Determination of minimum inhibitory concentrations (MICs) of eight antimicrobials was performed using Etest. Resistance breakpoints from the European Committee on Antimicrobial Susceptibility Testing were applied where available. A Nitrocefin test identified β-lactamase production. Gonorrhoea treatment for 1652 patients was also analysed. Statistical significance was determined by the Z-test, Fisher’s exact test, or Mann-Whitney U test with p-values of < 0.05 indicating significance. Results In total, 27.8% of the N. gonorrhoeae isolates were resistant to tetracycline, 24.7% to ciprofloxacin, 7.0% to benzylpenicillin, 2.7% to cefixime, and 0.8% to azithromycin. No isolates were resistant to ceftriaxone, spectinomycin, or gentamicin. However, 14 (2.7%) isolates had a ceftriaxone MIC of 0.125 mg/L, exactly at the resistance breakpoint (MIC > 0.125 mg/L). Only one (0.2%) isolate, from 2013, produced β-lactamase. From 2009 to 2019, the levels of resistance to ciprofloxacin and tetracycline were relatively high and stable. Resistance to cefixime was not identified before 2013 but peaked at 22.2% in 2017. Only sporadic isolates with resistance to azithromycin were found in 2009 (n = 1), 2012 (n = 1), and 2018–2019 (n = 2). Overall, 862 (52.2%) patients received first-line treatment according to national guidelines (ceftriaxone 1 g). However, 154 (9.3%) patients received a nationally recommended alternative treatment (cefixime 400 mg or ofloxacin 400 mg), and 636 (38.5%) were given non-recommended treatment. Conclusions The gonococcal resistance to ciprofloxacin and tetracycline was high, however, the resistance to azithromycin was low and no resistance to ceftriaxone was identified. Ceftriaxone 1 g can continuously be recommended as empiric first-line gonorrhoea therapy in Belarus. Fluoroquinolones should not be prescribed for treatment if susceptibility has not been confirmed by testing. Timely updating and high compliance with national evidence-based gonorrhoea treatment guidelines based on quality-assured AMR data are imperative. The need for continued, improved and enhanced surveillance of gonococcal AMR in Belarus is evident.
Collapse
|
47
|
Typing of Neisseria Gonorrhoeae isolates in Shenzhen, China from 2014-2018 reveals the shift of genotypes associated with antimicrobial resistance. Antimicrob Agents Chemother 2021; 65:AAC.02311-20. [PMID: 33593843 PMCID: PMC8092899 DOI: 10.1128/aac.02311-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The growing antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a serious global threat to gonococcal therapy. Molecular typing is an ideal tool to reveal the association between specific genotype and resistance phenotype that provides effective data for tracking the transmission of resistant clones of N. gonorrhoeae In our study, we aimed to describe the molecular epidemiology of AMR and the distribution of resistance-associated genotypes in Shenzhen during 2014-2018. In total, 909 isolates were collected from Shenzhen from 2014-2018. Two typing schemes, multilocus sequence typing (MLST) and N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), were performed for all isolates. The distribution of resistance-associated genotypes was described using goeBURST analysis combined with data of logistic regression. Among 909 isolates, ST8123, ST7363, ST1901, ST7365, and ST7360 were most the common MLST sequence types (STs), and ST348, ST2473, ST497, and ST199 were the most prevalent NG-STAR STs. The logistic regression analysis showed that NG-STARST497, MLSTST7365, and MLSTST7360 were typically associated with decreased susceptibility to ceftriaxone. Furthermore, the internationally spreading ESC-resistant clone MLSTST1901 has been prevalent at least in 2014 in Shenzhen and showed a significant increase during 2014-2018. Additionally, MLSTST7363 owns the potential to become the next internationally spreading ceftriaxone-resistant ST. In conclusions, we performed a comprehensive epidemiological study to explore the correlation between AMR and specific STs, which provided important data for future studies of the molecular epidemiology of AMR in N. gonorrhoeae Besides, these findings provide insight for adjusting surveillance strategies and therapy management in Shenzhen.
Collapse
|
48
|
Xiu L, Zhang C, Li Y, Wang F, Peng J. High-resolution melting analysis for rapid detection of the internationally spreading ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone. J Antimicrob Chemother 2021; 75:106-109. [PMID: 31834402 DOI: 10.1093/jac/dkz395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Increased awareness of the international spread of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone, which threatens recommended dual therapy, is essential. The objective of the present study was to develop and evaluate a rapid, simple and cost-effective method based on high-resolution melting (HRM) analysis for direct detection of the FC428 clone from clinical isolates and specimens. METHODS The singleplex HRM assay was designed to identify the FC428 clone by using specific primers, which flank the alteration A311V in the penA-60.001 allele. Analytical performance was initially evaluated by testing 623 isolates and a panel of non-gonococcal strains. To ensure the method can be directly applied in clinical samples, two internal control targets (opa and porA) were also designed and included in the final multiplex HRM assay. Two hundred and eighty-two clinical samples (94 urine and 188 urethral/genital swabs) were then analysed using this multiplex HRM assay. RESULTS The FC428 clone was easily differentiated from the non-mosaic alleles and other mosaic alleles without A311 mutations by comparing the differences in melt curves. Cross-reactivity was not observed for the penA-60.001 allele when testing 15 non-gonococcal Neisseria strains. When applied to the 623 isolates, the HRM assay successfully characterized one isolate as an FC428 clone (MLST1903, NG-MAST3435, NG-STAR233). Our data show that the multiplex HRM assay with high specificity can be directly applied in clinical samples. CONCLUSIONS This method can generate results within 90 min at a cost of less than US$0.5 per isolate or sample, making this assay an ideal tool for large epidemiological studies to enhance surveillance of the internationally transmitted ceftriaxone-resistant N. gonorrhoeae FC428 clone.
Collapse
Affiliation(s)
- Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Jacobsson S, Cole MJ, Spiteri G, Day M, Unemo M. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in European Union/European Economic Area and patients' gender, sexual orientation and anatomical site of infection, 2009-2016. BMC Infect Dis 2021; 21:273. [PMID: 33736608 PMCID: PMC7976712 DOI: 10.1186/s12879-021-05931-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The emergence and spread of antimicrobial resistance (AMR) in Neisseria gonorrhoeae, nationally and internationally, is a serious threat to the management and control of gonorrhoea. Limited and conflicting data regarding the epidemiological drivers of gonococcal AMR internationally have been published. We examined the antimicrobial susceptibility/resistance of gonococcal isolates (n = 15,803) collected across 27 European Union/European Economic Area (EU/EEA) countries in 2009-2016, in conjunction to epidemiological and clinical data of the corresponding patients, to elucidate associations between antimicrobial susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection. METHODS In total, 15,803 N. gonorrhoeae isolates from the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP), 2009-2016, were examined. Associations between gonococcal susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection were investigated using univariate and multivariate logistic regression analysis. Statistical significance was determined by Pearson χ2-test or Fisher's exact test with two-tailed p-values of < 0.05 indicating significance. RESULTS The overall gonococcal resistance from 2009 to 2016 was 51.7% (range during the years: 46.5-63.5%), 7.1% (4.5-13.2%), 4.3% (1.8-8.7%), and 0.2% (0.0-0.5%) to ciprofloxacin, azithromycin, cefixime, and ceftriaxone, respectively. The level of resistance combined with decreased susceptibility to ceftriaxone was 10.2% (5.7-15.5%). Resistance to cefixime and ciprofloxacin, and resistance combined with decreased susceptibility to ceftriaxone were positively associated with urogenital infections and heterosexual males, males with sexual orientation not reported and females (except for ciprofloxacin), i.e. when compared to men-who-have-sex-with-men (MSM). Azithromycin resistance was positively associated with heterosexual males, but no association was significant regarding anatomical site of infection. CONCLUSIONS Overall, sexual orientation was the main variable associated with gonococcal AMR. Strongest positive associations were identified with heterosexual patients, particularly males, and not MSM. To provide evidence-based understanding and mitigate gonococcal AMR emergence and spread, associations between antimicrobial susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection need to be further investigated in different geographic settings. In general, these insights will support identification of groups at increased risk and targeted public health actions such as intensified screening, 3-site testing using molecular diagnostics, sexual contact tracing, and surveillance of treatment failures.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, Colindale, UK
| | | | - Michaela Day
- National Infection Service, Public Health England, Colindale, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
50
|
Harding-Esch EM, Huntington SE, Harvey MJ, Weston G, Broad CE, Adams EJ, Sadiq ST. Antimicrobial resistance point-of-care testing for gonorrhoea treatment regimens: cost-effectiveness and impact on ceftriaxone use of five hypothetical strategies compared with standard care in England sexual health clinics. ACTA ACUST UNITED AC 2021; 25. [PMID: 33124553 PMCID: PMC7596918 DOI: 10.2807/1560-7917.es.2020.25.43.1900402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Widespread ceftriaxone antimicrobial resistance (AMR) threatens Neisseria gonorrhoeae (NG) treatment, with few alternatives available. AMR point-of-care tests (AMR POCT) may enable alternative treatments, including abandoned regimens, sparing ceftriaxone use. We assessed cost-effectiveness of five hypothetical AMR POCT strategies: A-C included a second antibiotic alongside ceftriaxone; and D and E consisted of a single antibiotic alternative, compared with standard care (SC: ceftriaxone and azithromycin). Aim Assess costs and effectiveness of AMR POCT strategies that optimise NG treatment and reduce ceftriaxone use. Methods The five AMR POCT treatment strategies were compared using a decision tree model simulating 38,870 NG-diagnosed England sexual health clinic (SHC) attendees; A micro-costing approach, representing cost to the SHC (for 2015/16), was employed. Primary outcomes were: total costs; percentage of patients given optimal treatment (regimens curing NG, without AMR); percentage of patients given non-ceftriaxone optimal treatment; cost-effectiveness (cost per optimal treatment gained). Results All strategies cost more than SC. Strategy B (azithromycin and ciprofloxacin (azithromycin preferred); dual therapy) avoided most suboptimal treatments (n = 48) but cost most to implement (GBP 4,093,844 (EUR 5,474,656)). Strategy D (azithromycin AMR POCT; monotherapy) was most cost-effective for both cost per optimal treatments gained (GBP 414.67 (EUR 554.53)) and per ceftriaxone-sparing treatment (GBP 11.29 (EUR 15.09)) but with treatment failures (n = 34) and suboptimal treatments (n = 706). Conclusions AMR POCT may enable improved antibiotic stewardship, but require net health system investment. A small reduction in test cost would enable monotherapy AMR POCT strategies to be cost-saving.
Collapse
Affiliation(s)
- Emma M Harding-Esch
- National Infection Service, Public Health England, London, United Kingdom.,Applied Diagnostic Research and Evaluation Unit, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | | | | | | | - Claire E Broad
- Applied Diagnostic Research and Evaluation Unit, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | | | - S Tariq Sadiq
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,National Infection Service, Public Health England, London, United Kingdom.,Applied Diagnostic Research and Evaluation Unit, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|