1
|
Ha R, Heilmann A, Lother SA, Turenne C, Alexander D, Keynan Y, Rueda ZV. The Adequacy of Current Legionnaires' Disease Diagnostic Practices in Capturing the Epidemiology of Clinically Relevant Legionella: A Scoping Review. Pathogens 2024; 13:857. [PMID: 39452728 PMCID: PMC11510479 DOI: 10.3390/pathogens13100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Legionella is an underdiagnosed and underreported etiology of pneumonia. Legionella pneumophila serogroup 1 (LpSG1) is thought to be the most common pathogenic subgroup. This assumption is based on the frequent use of a urinary antigen test (UAT), only capable of diagnosing LpSG1. We aimed to explore the frequency of Legionella infections in individuals diagnosed with pneumonia and the performance of diagnostic methods for detecting Legionella infections. We conducted a scoping review to answer the following questions: (1) "Does nucleic acid testing (NAT) increase the detection of non-pneumophila serogroup 1 Legionella compared to non-NAT?"; and (2) "Does being immunocompromised increase the frequency of pneumonia caused by non-pneumophila serogroup 1 Legionella compared to non-immunocompromised individuals with Legionnaires' disease (LD)?". Articles reporting various diagnostic methods (both NAT and non-NAT) for pneumonia were extracted from several databases. Of the 3449 articles obtained, 31 were included in our review. The most common species were found to be L. pneumophila, L. longbeachae, and unidentified Legionella species appearing in 1.4%, 0.9%, and 0.6% of pneumonia cases. Nearly 50% of cases were caused by unspecified species or serogroups not detected by the standard UAT. NAT-based techniques were more likely to detect Legionella than non-NAT-based techniques. The identification and detection of Legionella and serogroups other than serogroup 1 is hampered by a lack of application of broader pan-Legionella or pan-serogroup diagnostics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; (R.H.); (A.H.); (D.A.); (Y.K.)
| | - Ashley Heilmann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; (R.H.); (A.H.); (D.A.); (Y.K.)
| | - Sylvain A. Lother
- Department of Internal Medicine, University of Manitoba, 750 Bannatyne Ave., Winnipeg, MB R3A 1R9, Canada;
| | - Christine Turenne
- Shared Health, Diagnostic Services, 1502-155 Carlton St, Winnipeg, MB R3C 3H8, Canada;
| | - David Alexander
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; (R.H.); (A.H.); (D.A.); (Y.K.)
- Cadham Provincial Laboratory, Shared Health, 750 William Ave., Winnipeg, MB R3E 3J7, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; (R.H.); (A.H.); (D.A.); (Y.K.)
- Department of Internal Medicine, University of Manitoba, 750 Bannatyne Ave., Winnipeg, MB R3A 1R9, Canada;
- Department of Community Health Sciences, University of Manitoba, 750 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; (R.H.); (A.H.); (D.A.); (Y.K.)
- School of Medicine, Universidad Pontificia Bolivariana, Circular 1ª 70-01, Barrio Laureles, Medellín 050031, Colombia
| |
Collapse
|
2
|
Palomeque A, Cilloniz C, Soler-Comas A, Canseco-Ribas J, Rovira-Ribalta N, Motos A, Torres A. A review of the value of point-of-care testing for community-acquired pneumonia. Expert Rev Mol Diagn 2024; 24:729-742. [PMID: 39135321 DOI: 10.1080/14737159.2024.2391027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/07/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Community-acquired pneumonia (CAP) is an infectious disease associated with high mortality worldwide. Although Streptococcus pneumoniae remains the most frequent pathogen in CAP, data from recent studies using molecular tests have shown that respiratory viruses play a key role in adults with pneumonia. The impact of difficult-to-treat pathogens on the outcomes of pneumonia is also important even though they represent only a small proportion of overall cases. Despite improvements in the microbiological diagnosis of CAP in recent decades, the identification of the causative pathogen is often delayed because of difficulties in obtaining good-quality sputum samples, issues in transporting samples, and slow laboratory processes. Therefore, the initial treatment of CAP is usually empirical. Point-of-care testing (POCT) was introduced to avoid treatment delays and reduce reliance on empirical antibiotics. AREAS COVERED This review summarizes the main scientific evidence on the role of POCT in the diagnosis and management of patients with CAP. The authors searched for articles on POCT in pneumonia on PubMed from inception to 20 January 2024. The references in the identified articles were also searched. EXPERT OPINION POCT involves rapid diagnostic assays that can be performed at the bedside especially in cases of severe CAP and immunocompromised patients. These tests can produce results that could help guide initial therapy and management.
Collapse
Affiliation(s)
- Andrea Palomeque
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona (UB), Barcelona, Spain
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Catia Cilloniz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona (UB), Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Alba Soler-Comas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Nona Rovira-Ribalta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Motos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona (UB), Barcelona, Spain
| | - Antoni Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona (UB), Barcelona, Spain
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Riccò M, Ferraro P, Ranzieri S, Boldini G, Zanella I, Marchesi F. Legionnaires' Disease in Occupational Settings: A Cross-Sectional Study from Northeastern Italy (2019). Trop Med Infect Dis 2023; 8:364. [PMID: 37505660 PMCID: PMC10384770 DOI: 10.3390/tropicalmed8070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
In Italy, Legionnaires' Disease (LD) causes >1000 hospital admissions per year, with a lethality rate of 5 to 10%. Occupational exposures could reasonably explain a substantial share of total cases, but the role of Occupational Physicians (OPs) in management and prevention of LD has been scarcely investigated. The present survey therefore evaluates the knowledge, attitudes and practices (KAP) regarding LD from a convenience sample of Italian OPs, focusing on their participation in preventive interventions. A total of 165 OPs were recruited through a training event (Parma, Northeastern Italy, 2019), and completed a specifically designed structured questionnaire. The association between reported participation in preventive interventions and individual factors was analyzed using a binary logistic regression model, calculating corresponding multivariable Odds Ratio (aOR). Overall, participants exhibited satisfactory knowledge of the clinical and diagnostic aspects of LD, while substantial uncertainties were associated epidemiological factors (i.e., notification rate and lethality). Although the majority of participating OPs reportedly assisted at least one hospital (26.7%) and/or a nursing home (42.4%) and/or a wastewater treatment plant, only 41.8% reportedly contributed to the risk assessment for LD and 18.8% promoted specifically designed preventive measures. Working as OPs in nursing homes (aOR 8.732; 95% Confidence Intervals [95%CI] 2.991 to 25.487) and wastewater treatment plants (aOR 8.710; 95%CI 2.844 to 26.668) was associated with participation in the risk assessment for LD, while the promotion of preventive practice was associated with working as an OP in hospitals (aOR 6.792; 95%CI 2.026 to 22.764) and wastewater treatment plants (aOR 4.464, 95%CI 1.363 to 14.619). In other words, the effective participation of the OP in the implementation of preventive measures appears uncommon and is limited to certain occupational settings. Collectively, these results highlight the importance of tailoring specifically designed information campaigns aimed to raise the involvement of OPs in the prevention of LD in occupational settings other than healthcare.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
| | - Pietro Ferraro
- Occupational Medicine Unit, Direzione Sanità, Italian Railways' Infrastructure Division, RFI SpA, I-00161 Rome, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Giorgia Boldini
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
- Servizio di Igiene Pubblica, AUSL di Parma, Via Vasari n.13/a, I-43123 Parma, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| |
Collapse
|
4
|
Ouradou A, Veillette M, Bélanger Cayouette A, Corbin S, Boulanger C, Dorner S, Duchaine C, Bédard E. Effect of odor treatment systems on bioaerosol microbial concentration and diversity from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162419. [PMID: 36858219 DOI: 10.1016/j.scitotenv.2023.162419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biofiltration, activated carbon and chemical scrubbing are technologies used for odor control in wastewater treatment plants. These systems may also influence the airborne microbial load in treated air. The study objectives were to 1) evaluate the capacity of three odor control system technologies to reduce the airborne concentration of total bacteria, Legionella, L. pneumophila, non-tuberculous mycobacteria (NTM) and Cladosporium in winter and summer seasons and 2) to describe the microbial ecology of the biofiltration system and evaluate its impact on treated air microbial diversity. A reduction of the total bacterial concentration up to 25 times was observed after odor treatment. Quantification by qPCR revealed the presence of Legionella spp. in all air samples ranging between 26 and 1140 GC/m3, while L. pneumophila was not detected except for three samples below the limit of quantification. A significant increase of up to 25-fold of Legionella spp. was noticed at the outlet of two of the three treatment systems. NTM were ubiquitously detected before air treatment (up to 2500 GC/m3) and were significantly reduced by all 3 systems (up to 13-fold). Cladosporium was measured at low concentrations for each system (< 190 GC/m3), with 68 % of the air samples below the limit of detection. Biodiversity results revealed that biofiltration system is an active process that adapts to air pollutants over time. Legionella spp. were detected in significant abundance in the air once treated in winter (up to 27 %). Nevertheless, the abundance of protozoan hosts is low and does not explain the multiplication of Legionella spp. The season remains the most influential factor shaping biodiversity. In summer only, air biofiltration caused a significant enrichment of the biodiversity. Although odor control technologies are not designed for bacterial mitigation, findings from this study suggest their potential to reduce the abundance of some genera harboring pathogenic species.
Collapse
Affiliation(s)
- A Ouradou
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - M Veillette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada.
| | - A Bélanger Cayouette
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada.
| | - S Corbin
- City of Repentigny, Repentigny, QC, Canada.
| | | | - S Dorner
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - C Duchaine
- Research Center of the University Institute of Cardiology and Pneumology of Quebec-University Laval, Québec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, University Laval, Québec, QC, Canada; Canada Research Chair on Bioaerosols, University Laval, Québec, QC, Canada.
| | - E Bédard
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Lombardi A, Borriello T, De Rosa E, Di Duca F, Sorrentino M, Torre I, Montuori P, Trama U, Pennino F. Environmental Monitoring of Legionella in Hospitals in the Campania Region: A 5-Year Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085526. [PMID: 37107807 PMCID: PMC10138562 DOI: 10.3390/ijerph20085526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Legionella is a pathogen that colonizes soils, freshwater, and building water systems. People who are most affected are those with immunodeficiencies, so it is necessary to monitor its presence in hospitals. The purpose of this study was to evaluate the presence of Legionella in water samples collected from hospitals in the Campania region, Southern Italy. A total of 3365 water samples were collected from January 2018 to December 2022 twice a year in hospital wards from taps and showers, tank bottoms, and air-treatment units. Microbiological analysis was conducted in accordance with the UNI EN ISO 11731:2017, and the correlations between the presence of Legionella and water temperature and residual chlorine were investigated. In total, 708 samples (21.0%) tested positive. The most represented species was L. pneumophila 2-14 (70.9%). The serogroups isolated were 1 (27.7%), 6 (24.5%), 8 (23.3%), 3 (18.9%), 5 (3.1%), and 10 (1.1%). Non-pneumophila Legionella spp. represented 1.4% of the total. Regarding temperature, the majority of Legionella positive samples were found in the temperature range of 26.0-40.9 °C. An influence of residual chlorine on the presence of the bacterium was observed, confirming that chlorine disinfection is effective for controlling contamination. The positivity for serogroups other than serogroup 1 suggested the need to continue environmental monitoring of Legionella and to focus on the clinical diagnosis of other serogroups.
Collapse
Affiliation(s)
- Annalisa Lombardi
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Tonia Borriello
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Elvira De Rosa
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Fabiana Di Duca
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Michele Sorrentino
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Ida Torre
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
| | - Ugo Trama
- General Directorate of Health, Campania Region, Centro Direzionale C3, 80143 Naples, Italy
| | - Francesca Pennino
- Department of Public Health, University “Federico II”, Via Sergio Pansini N° 5, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
6
|
Vaccinomics to Design a Multiepitope Vaccine against Legionella pneumophila. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4975721. [PMID: 36164443 PMCID: PMC9509222 DOI: 10.1155/2022/4975721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.
Collapse
|
7
|
Pascale MR, Bisognin F, Mazzotta M, Girolamini L, Marino F, Dal Monte P, Cordovana M, Scaturro M, Ricci ML, Cristino S. Use of Fourier-Transform Infrared Spectroscopy With IR Biotyper® System for Legionella pneumophila Serogroups Identification. Front Microbiol 2022; 13:866426. [PMID: 35558114 PMCID: PMC9090449 DOI: 10.3389/fmicb.2022.866426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Legionella spp. are Gram-negative bacteria that inhabit freshwater environments representing a serious risk for human health. Legionella pneumophila (Lp) is the species most frequently responsible for a severe pneumonia known as Legionnaires' disease. Lp consists of 15 serogroups (Sgs), usually identified by monoclonal or polyclonal antibodies. With regard to Lp serogrouping, it is well known that phenotyping methods do not have a sufficiently high discriminating power, while genotypic methods although very effective, are expensive and laborious. Recently, mass spectrometry and infrared spectroscopy have proved to be rapid and successful approaches for the microbial identification and typing. Different biomolecules (e.g., lipopolysaccharides) adsorb infrared radiation originating from a specific microbial fingerprint. The development of a classification system based on the intra-species identification features allows a rapid and reliable typing of strains for diagnostic and epidemiological purposes. The aim of the study was the evaluation of Fourier Transform Infrared Spectroscopy using the IR Biotyper® system (Bruker Daltonik, Germany) for the identification of Lp at the serogroup (Sg) level for diagnostic purposes as well as in outbreak events. A large dataset of Lp isolates (n = 133) and ATCC reference strains representing the 15 Lp serogroups were included. The discriminatory power of the instrument's classifier, was tested by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). All isolates were classified as follows: 12/133 (9.0%) as Lp Sg1 and 115/133 (86.5%) as Lp Sg 2-15 (including both ATCC and environmental Lp serogroup). Moreover, a mis-classification for 2/133 (1.5%) isolates of Lp Sg 2-15 that returned as Lp Sg1 was observed, and 4/133 (3.0%) isolates were not classified. An accuracy of 95.49% and an error rate of 4.51% were calculated. IR Biotyper® is able provide a quick and cost-effective reliable Lp classification with advantages compared with agglutination tests that show ambiguous and unspecific results. Further studies including a larger number of isolates could be useful to implement the classifier obtaining a robust and reliable tool for the routine Lp serogrouping. IR Biotyper® could be a powerful and easy-to-use tool to identify Lp Sgs, especially during cluster/outbreak investigations, to trace the source of the infection and promptly adopt preventive and control strategies.
Collapse
Affiliation(s)
- Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Francesco Bisognin
- Microbiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paola Dal Monte
- Microbiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Maria Scaturro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Luisa Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Delaney S, Arcari T, O'Connor O. Legionella water testing and the EU Drinking Water Directive: could potentially harmful Legionella bacteria slip through the gaps? Biotechniques 2022; 72:229-231. [PMID: 35469440 DOI: 10.2144/btn-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sarah Delaney
- BioProbe Diagnostics, Room 218, Business Innovation Centre, Newcastle Road, NUI Galway, H91 NV29, Ireland
| | - Talia Arcari
- BioProbe Diagnostics, Room 218, Business Innovation Centre, Newcastle Road, NUI Galway, H91 NV29, Ireland
| | - Orla O'Connor
- BioProbe Diagnostics, Room 218, Business Innovation Centre, Newcastle Road, NUI Galway, H91 NV29, Ireland
| |
Collapse
|
9
|
Riccò M, Peruzzi S, Ranzieri S, Giuri PG. Epidemiology of Legionnaires' Disease in Italy, 2004-2019: A Summary of Available Evidence. Microorganisms 2021; 9:microorganisms9112180. [PMID: 34835307 PMCID: PMC8624895 DOI: 10.3390/microorganisms9112180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023] Open
Abstract
Legionnaires’ disease (LD) incidence has been increasing in several European countries since 2011. Currently, Italy is experiencing high notification rates for LD, whose cause still remains scarcely understood. We sought to summarize the available evidence on the epidemiology of LD in Italy (2004–2019), characterizing the risk of LD by region, sex, age group, and settings of the case (i.e., community, healthcare, or travel-associated cases). Environmental factors (e.g., average air temperatures and relative humidity) were also included in a Poisson regression model in order to assess their potential role on the annual incidence of new LD cases. National surveillance data included a total of 23,554 LD cases occurring between 2004 and 2019 (70.4% of them were of male gender, 94.1% were aged 40 years and older), with age-adjusted incidence rates increasing from 1.053 cases per 100,000 in 2004 to 4.559 per 100,000 in 2019. The majority of incident cases came from northern Italy (43.2% from northwestern Italy, 25.6% from northeastern Italy). Of these, 5.9% were healthcare-related, and 21.1% were travel-associated. A case-fatality ratio of 5.2% was calculated for the whole of the assessed timeframe, with a pooled estimate for mortality of 0.122 events per 100,000 population per year. Poisson regression analysis was associated with conflicting results, as any increase in average air temperature resulted in reduced risk for LD cases (Incidence Rate Ratio [IRR] 0.807, 95% Confidence Interval [95% CI] 0.744–0.874), while higher annual income in older individuals was associated with an increased IRR (1.238, 95% CI 1.134–1.351). The relative differences in incidence between Italian regions could not be explained by demographic factors (i.e., age and sex distribution of the population), and also a critical reappraisal of environmental factors failed to substantiate both the varying incidence across the country and the decennial trend we were able to identify.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL—IRCCS di Reggio Emilia, Via Amendola n.2, I-42022 Reggio Emilia, Italy
- Correspondence: or ; Tel.: +39-3392-994-343 or +39-522-837-587
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, I-42016 Guastalla, Italy;
| | - Silvia Ranzieri
- Department of Medicine and Surgery, School of Occupational Medicine, University of Parma, Via Gramsci n.14, I-43123 Parma, Italy;
| | - Pasquale Gianluca Giuri
- Dipartimento Internistico Interaziendale, Struttura Operativa Semplice Dipartimentale “Medicina Infettivologica”, AUSL—IRCCS di Reggio Emilia, Ospedale “Sant’Anna”, I-42035 Castelnovo ne’ Monti, Italy;
| |
Collapse
|