1
|
McKimm-Breschkin JL, Hay AJ, Cao B, Cox RJ, Dunning J, Moen AC, Olson D, Pizzorno A, Hayden FG. COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment - Meeting report from an isirv-WHO virtual conference. Antiviral Res 2021; 197:105227. [PMID: 34933044 PMCID: PMC8684224 DOI: 10.1016/j.antiviral.2021.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.
Collapse
Affiliation(s)
- Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Jake Dunning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Ann C Moen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel Olson
- University of Colorado School of Medicine and Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrés Pizzorno
- International Center for Research in Infectious Diseases, University of Lyon, Lyon, France.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Overeem NJ, Hamming PHE, Grant OC, Di Iorio D, Tieke M, Bertolino MC, Li Z, Vos G, de Vries RP, Woods RJ, Tito NB, Boons GJPH, van der Vries E, Huskens J. Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS CENTRAL SCIENCE 2020; 6:2311-2318. [PMID: 33376792 PMCID: PMC7760459 DOI: 10.1021/acscentsci.0c01175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Understanding how emerging influenza viruses recognize host cells is critical in evaluating their zoonotic potential, pathogenicity, and transmissibility between humans. The surface of the influenza virus is covered with hemagglutinin (HA) proteins that can form multiple interactions with sialic acid-terminated glycans on the host cell surface. This multivalent binding affects the selectivity of the virus in ways that cannot be predicted from the individual receptor-ligand interactions alone. Here, we show that the intrinsic structural and energetic differences between the interactions of avian- or human-type receptors with influenza HA translate from individual site affinity and orientation through receptor length and density on the surface into virus avidity and specificity. We introduce a method to measure virus avidity using receptor density gradients. We found that influenza viruses attached stably to a surface at receptor densities that correspond to a minimum number of approximately 8 HA-glycan interactions, but more interactions were required if the receptors were short and human-type. Thus, the avidity and specificity of influenza viruses for a host cell depend not on the sialic acid linkage alone but on a combination of linkage and the length and density of receptors on the cell surface. Our findings suggest that threshold receptor densities play a key role in virus tropism, which is a predicting factor for both their virulence and zoonotic potential.
Collapse
Affiliation(s)
- Nico J. Overeem
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - P. H. Erik Hamming
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Oliver C. Grant
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
| | - Daniele Di Iorio
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - M. Candelaria Bertolino
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zeshi Li
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gaël Vos
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert J. Woods
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
- E-mail:
| | - Nicholas B. Tito
- Electric
Ant Lab, Science Park
106, 1098 XG Amsterdam, The Netherlands
| | - Geert-Jan P. H. Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United
States
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Bijvoet Center
for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- E-mail:
| | - Erhard van der Vries
- Division
of Virology, Department of Infectious Diseases and Immunology, Faculty
of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal
GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
- Department
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- E-mail:
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- E-mail:
| |
Collapse
|
3
|
Jansen AJG, Spaan T, Low HZ, Di Iorio D, van den Brand J, Tieke M, Barendrecht A, Rohn K, van Amerongen G, Stittelaar K, Baumgärtner W, Osterhaus A, Kuiken T, Boons GJ, Huskens J, Boes M, Maas C, van der Vries E. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv 2020; 4:2967-2978. [PMID: 32609845 PMCID: PMC7362372 DOI: 10.1182/bloodadvances.2020001640] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Thrombocytopenia is a common complication of influenza virus infection, and its severity predicts the clinical outcome of critically ill patients. The underlying cause(s) remain incompletely understood. In this study, in patients with an influenza A/H1N1 virus infection, viral load and platelet count correlated inversely during the acute infection phase. We confirmed this finding in a ferret model of influenza virus infection. In these animals, platelet count decreased with the degree of virus pathogenicity varying from 0% in animals infected with the influenza A/H3N2 virus, to 22% in those with the pandemic influenza A/H1N1 virus, up to 62% in animals with a highly pathogenic A/H5N1 virus infection. This thrombocytopenia is associated with virus-containing platelets that circulate in the blood. Uptake of influenza virus particles by platelets requires binding to sialoglycans and results in the removal of sialic acids by the virus neuraminidase, a trigger for hepatic clearance of platelets. We propose the clearance of influenza virus by platelets as a paradigm. These insights clarify the pathophysiology of influenza virus infection and show how severe respiratory infections, including COVID-19, may propagate thrombocytopenia and/or thromboembolic complications.
Collapse
MESH Headings
- Animals
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Blood Platelets/virology
- Disease Models, Animal
- Ferrets
- Host-Pathogen Interactions
- Humans
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/pathogenicity
- Influenza A virus/physiology
- Influenza, Human/complications
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Influenza, Human/virology
- N-Acetylneuraminic Acid/metabolism
- Orthomyxoviridae Infections/complications
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Polysaccharides/metabolism
- Thrombocytopenia/etiology
- Thrombocytopenia/metabolism
- Thrombocytopenia/pathology
- Thrombocytopenia/virology
- Virus Internalization
Collapse
Affiliation(s)
- A J Gerard Jansen
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC, Cancer Institute, Rotterdam, The Netherlands
| | - Thom Spaan
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
| | - Hui Zhi Low
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Daniele Di Iorio
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | - Malte Tieke
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Arjan Barendrecht
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerstin Rohn
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Pharmacy, University of Utrecht, Utrecht, The Netherlands; and
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erhard van der Vries
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJA, van den Brand JMA, Mänz B, Bodewes R, Herfst S. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 2015; 1:1-13. [PMID: 26309905 PMCID: PMC4542011 DOI: 10.1016/j.onehlt.2015.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Centre, the Netherlands ; School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | - Debby van Riel
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | | | - Benjamin Mänz
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| |
Collapse
|
5
|
SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem J 2015; 468:215-26. [PMID: 25764917 DOI: 10.1042/bj20141170] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.
Collapse
|