1
|
Wang X, Cui B, Lin H, Pan R, Zeng J, Fang X, Liu Y, Chen ZY, Chen Y, Zhu H. Research Progress in Saltiness Perception and Salty Substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2745-2759. [PMID: 39843245 DOI: 10.1021/acs.jafc.4c10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot. Despite the ongoing endeavors of global research, multiple studies have focused on the application of a single category of salty alternatives or food processing quality (such as preservative effects and process characteristics), and there is still little comprehensive evaluation of these alternatives in terms of nutritional value, health impact, and consumer acceptance in the literature. This review will first outline the urgency of global salt reduction, followed by thorough discussion of salty substitutes and associated mechanisms from the perspective of human salty taste perception. Second, the present review will explore the potential application of salty substitutes and highlight the interaction between taste and odor in foods. Additionally, the potential impacts of salty substitutes on human health will be discussed. The present review will provide a scientific basis for the development of low salt products by food industry.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Biyan Cui
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Huiqi Lin
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Rongzeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Jia Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Yanping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| |
Collapse
|
2
|
Merinas-Amo T, Merinas-Amo R, Alonso-Moraga Á, Font R, Del Río Celestino M. In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate. Foods 2024; 13:3981. [PMID: 39683053 DOI: 10.3390/foods13233981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption.
Collapse
Affiliation(s)
| | | | | | - Rafael Font
- Agri-Food Laboratory, CAGPDS, Av. Menéndez Pidal, s/n, 14080 Córdoba, Spain
| | | |
Collapse
|
3
|
Katrancı Y, Aydemir A, Kızılkaya B, Baştemur GY, Ozkorucuklu SP. Investigation of monosodium glutamate content in flavors, seasonings, and sauces from local markets in Turkey. Food Sci Nutr 2024; 12:7806-7813. [PMID: 39479609 PMCID: PMC11521682 DOI: 10.1002/fsn3.4406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
Monosodium glutamate (MSG) is a flavor-enhancing compound used to elevate the flavor profiles of various foods. This flavor enhancer is the sodium salt of L-glutamic acid and is widely used in foods, such as flavorings, seasonings, sauces, and instant soups. The potential health effects of MSG consumption, particularly the health issues that excessive consumption could lead to, have been the focus of social concerns. It is stated that excessive consumption of MSG can cause cardiovascular diseases, obesity and diabetes, kidney damage, hypertension, anxiety, and memory impairment. The maximum permissible amount of MSG in foods is set at 10 g/kg according to the Turkish Food Codex. The aim of this study is to develop an appropriate method for analyzing the MSG content within the various food samples like flavorings, seasonings, and spices sold in Turkish local markets. The validation parameters of the developed method were examined and it was found that the developed method corresponds to the recommended values. The limit of detection and the limit of quantitation values were calculated as 4.78 ng/mL and 15.93 ng/mL, respectively. Recovery % was determined to be 100.96% in intra-day and 132.22% in inter-day analyses for the precision of the method. The results compared to the values specified in the Turkish Food Codex Food Additives Regulation and samples that purportedly did not contain MSG on their labels were found to contain MSG.
Collapse
Affiliation(s)
- Yusuf Katrancı
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Aleyna Aydemir
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Beray Kızılkaya
- Programme of Molecular Biotechnology and GeneticsInstitute of Graduate Studies in Sciences, Istanbul UniversityIstanbulTurkey
| | - Gizem Yıldırım Baştemur
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | | |
Collapse
|
4
|
Soni S, W. AJ, Kurian C, Chakraborty P, Paari KA. Food additives and contaminants in infant foods: a critical review of their health risk, trends and recent developments. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:63. [DOI: 10.1186/s43014-024-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe infant food market has expanded rapidly over the past two decades. However, the industry faces significant challenges, including concerns over the health effects of infant food additives and issues with food safety. However, new evidences suggest that certain food additives, such as those used to preserve and transport infant formula to keep it fresh for longer, should be avoided. Science into the effects of additives on human behavior makes up a sizable sector of the additives market. Problems such as hypernatremic dehydration, malnutrition, and obesity in infants are directly linked to faulty formula production. The Food and Drug Administration (FDA) has established the toxicity types and chemical tests necessary for evaluating the safety of food additives and GRAS (Generally Recognized as Safe) compounds. These tests are crucial in understanding the food safety aspects of food additives. The health effects of different types of food additives on infants are discussed in this context. The article gives an outline of various national and global agencies that provides recommendations and standards to gauge the quality of baby food. The immunological responses, allergic reaction pathways and other related health hazards among the infants and young children caused by the food additive are discussed in this article.
Graphical Abstract
Collapse
|
5
|
Lagrange E, Vernoux JP, Chambon C, Camu W, Spencer PS. Cramp-Fasciculation Syndrome Associated with Natural and Added Chemicals in Popular Food Items. Foods 2024; 13:2257. [PMID: 39063341 PMCID: PMC11276323 DOI: 10.3390/foods13142257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Cramp-fasciculation syndrome (CFS) is a rare and benign neuromuscular disorder that may initially masquerade as motor neuron disease/amyotrophic lateral sclerosis. While CFS may have a familial disposition, we report on cases associated with high consumption of popular food items. One set of patients reversibly experienced acute onset of headache, flushing, muscle stiffness and fasciculations following the consumption of umami-flavored food containing a large concentration of monosodium glutamate. A second group of patients consuming food derived from lupin seed developed acute cholinergic toxicity, CFS, and, with chronic intake, significant, self-limiting, but incompletely reversible upper and lower motor neuron deficits. While these cases may improve our knowledge about the possible causes of CFS, our series also demonstrates that excessive consumption of some popular foods is not harmless. This warrants further research on their safety at all stages of human development from a neurological point of view.
Collapse
Affiliation(s)
- Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, 38043 Grenoble, France;
| | - Jean-Paul Vernoux
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (ABTE) EA 4651, Normandie University, UNICAEN, 14000 Caen, France
| | - Celia Chambon
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, 38043 Grenoble, France;
| | - William Camu
- The Neuroscience Institute of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97201, USA;
| |
Collapse
|
6
|
Hartl D, Frank O, Hänel VS, Heigl V, Dawid C, Hofmann TF. Isolation and Identification of Novel Taste-Modulating N2-Guanosine 5'-Monophosphate Derivatives Generated by Maillard-Type Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14284-14293. [PMID: 38869215 PMCID: PMC11212044 DOI: 10.1021/acs.jafc.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Several compounds with taste-modulating properties have been investigated, improving the taste impression without having a pronounced intrinsic taste. The best-known representatives of umami taste-modulating compounds are ribonucleotides and their derivatives. Especially the thio derivatives showed high taste-modulating potential in structure-activity relationship investigations. Therefore, this study focuses on the formation of guanosine 5'-monophosphate derivatives consisting of Maillard-type generated compounds like the aroma-active thiols (2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-furfurylthiol) and formaldehyde to gain insights into the potential of combinations of taste and aroma-active compounds. One literature-known (N2-(furfurylthiomethyl)-guanosine 5'-monophosphate) and three new derivatives (N2-(2-methyl-1-furylthiomethyl)-guanosine 5'-monophosphate, N2-((5-hydroxymethyl)-2-methyl-1-furylthiomethyl)-guanosine 5'-monophosphate, N2-((2-pentanon-1-yl)thiomethyl)-guanosine 5'-monophosphate) were successfully produced using green natural deep eutectic solvents and isolated, and their structures were completely elucidated. Besides the intrinsic taste properties, the kokumi and umami taste-modulating effects of the four derivatives were evaluated via psychophysical investigations, ranging from 19 to 22 μmol/L.
Collapse
Affiliation(s)
- Daniela
M. Hartl
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Oliver Frank
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Victoria S. Hänel
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Vinzenz Heigl
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship
for Functional Phytometabolomics, TUM School of Life Sciences, 10 Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
7
|
Mustika D, Nishimura Y, Ueno S, Tominaga S, Shimizu T, Tajiri N, Jung CG, Hida H. Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat. Front Nutr 2024; 11:1356189. [PMID: 38765817 PMCID: PMC11099272 DOI: 10.3389/fnut.2024.1356189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.
Collapse
Affiliation(s)
- Dewi Mustika
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yu Nishimura
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Tominaga
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Food and Nutrition, Shokei University Junior College, Kumamoto, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
OLUWOLE DT, EBIWONJUMI O, AJAYI LO, ALABI OD, AMOS V, AKANBI G, ADEYEMI WJ, AJAYI AF. Disruptive consequences of monosodium glutamate on male reproductive function: A review. Curr Res Toxicol 2024; 6:100148. [PMID: 38287921 PMCID: PMC10823071 DOI: 10.1016/j.crtox.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Monosodium glutamate (MSG) is one of the most extensively used flavour enhancers worldwide. Although it is widely regarded as a safe food additive with no recommended daily dosage, its over-consumption has been associated with notably pathophysiological events in various tissues and organs of the body. Previous studies have reported of the neuro- cardio- and hepato- toxic effects of its excessive exposure. Moreover, the food additive instigates metabolic dysfunction. It has been established that MSG damages male reproductive accessory organs like prostate glands and epididymis. In addition, it impairs serum enzymatic activities and serum levels of testosterone, gonadotropin-releasing hormone, luteinizing hormone and cholesterol. Reduced sperm count, sperm motility, sperm morphology, and sperm viability, imbalances in male reproductive hormones, alongside alteration in the histoarchitecture of the testes and other male reproductive tissues have also been connected with excessive exposure to MSG. Literature reports affirm the link between the over-consumption of MSG and reproductive organ weight and male sexual behaviour. This review article addresses the multi-systemic effects of exposure to MSG and the possible mechanism of action of the compound with a focus on the negative implications of the food additive on male reproductive functions and the possible role of natural antioxidants in male reproductive functions. carefully selected keywords were used during the literature search to gather credible and up-to-date information about the subject matter.
Collapse
Affiliation(s)
- David Tolulope OLUWOLE
- Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Lydia Oluwatoyin AJAYI
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Dupe ALABI
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Victor AMOS
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Grace AKANBI
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Ayodeji Folorunsho AJAYI
- Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
9
|
Moldovan OL, Vari CE, Tero-Vescan A, Cotoi OS, Cocuz IG, Tabaran FA, Pop R, Fülöp I, Chis RF, Lungu IA, Rusu A. Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients 2023; 15:4436. [PMID: 37892513 PMCID: PMC10610236 DOI: 10.3390/nu15204436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Monosodium glutamate (MSG) is the sodium salt of glutamic acid (GLA), used as a flavour enhancer. MSG is considered a controversial substance. It is incriminated in disturbing the antioxidant system, but also has beneficial effects, as GLA metabolism plays a crucial role in homeostasis. This study highlights which positive or negative aspects of MSG sub-chronic consumption are better reflected in subjects potentially affected by advanced age. Daily doses of MSG were administered to four groups of two-year-old Wistar rats for 90 days: (I) 185 mg/kg bw, (II) 1500 mg/kg bw, (III) 3000 mg/kg bw and (IV) 6000 mg/kg bw, compared to a MSG non-consumer group. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, direct and total bilirubin, total cholesterol, triglycerides, creatinine and urea levels were analysed; stomach, liver and kidney samples were subjected to histopathological analysis. Although, in most cases, there were no statistical differences, interesting aspects of the dose-effect relationship were observed. After MSG sub-chronic consumption, the positive aspects of GLA seem to be reflected better than the negative ones. The hormesis effect, with low-level reactive oxygen species' protective effects and GLA metabolism, may represent the hypothesis of a potential defence mechanism triggered by MSG sub-chronic consumption in ageing rats.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Iuliu Gabriel Cocuz
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Flaviu Alexandru Tabaran
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Romelia Pop
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Ibolya Fülöp
- Toxicology and Biopharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Rafael Florin Chis
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
10
|
Tamés H, Sabater C, Margolles A, Ruiz L, Ruas-Madiedo P. Production of GABA in milk fermented by Bifidobacterium adolescentis strains selected on the bases of their technological and gastrointestinal performance. Food Res Int 2023; 171:113009. [PMID: 37330847 DOI: 10.1016/j.foodres.2023.113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
There is an increasing interest in producing foods enriched in gamma-aminobutyric acid (GABA), due to their purported health promoting attributes. GABA is the main inhibitor neurotransmitter of the central nervous system, and several microbial species are capable to produce it through decarboxylation of glutamate. Among them, several lactic acid bacteria species have been previously investigated as an appealing alternative to produce GABA enriched foods via microbial fermentation. In this work we report for the first time an investigation into the possibility of utilizing high GABA-producing Bifidobacterium adolescentis strains as a mean to produce fermented probiotic milks naturally enriched in GABA. To this end, in silico and in vitro analyses were conducted in a collection of GABA-producing B. adolescentis strains, with the main goal to scrutinize their metabolic and safety traits, including antibiotic resistance patterns, as well as their technological robustness and performance to survive a simulated gastrointestinal passage. One of the strains, IPLA60004, exhibited better survival to lyophilization and cold storage (for up to 4 weeks at 4 °C), as well as survival to gastrointestinal passage, as compared to the other strains under investigation. Besides, the elaboration of milk drinks fermented with this strain, yielded products with the highest GABA concentration and viable bifidobacterial cell counts, achieving conversion rates of the precursor, monosodium glutamate (GMS), up to 70 %. To our knowledge, this is the first report on the elaboration of GABA enriched milks through fermentation with B. adolescentis.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
11
|
Zhou Y, Sui H, Wang Y, Yong L, Zhang L, Liang J, Zhou J, Xu L, Zhong Y, Chen J, Song Y. Dietary Exposure to Glutamates of 2- to 5-Year-Old Toddlers in China Using the Duplicate Diet Method. Foods 2023; 12:foods12091898. [PMID: 37174436 PMCID: PMC10178738 DOI: 10.3390/foods12091898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A duplicate diet collection method was used to estimate dietary exposure to glutamates in children aged 2-5 years in selected provinces of China. Daily duplicate diet samples were collected from 86 healthy toddlers over three consecutive days. Glutamates were analyzed using ultra-high-pressure liquid chromatography-MS/MS (UHPLC-MS/MS). Results showed that the highest glutamates content was found in mixed meals, at 5.12 mg/kg, followed by powdered formula (3.89 mg/kg), and milk and dairy products (2.29 mg/kg). The total mean daily dietary exposure for subjects was 0.20 mg/kg BW, and P95 daily dietary exposure was 0.44 mg/kg BW, both below the acceptable daily intake (ADI) (120 mg/kg BW) recommended by the Joint (FAO/WHO) Expert Committee on Food Additives (JECFA) and the ADI (30 mg/kg BW) set by the European Food Safety Authority (EFSA). Hence it can be considered that glutamates exposure would cause low risk in this group.
Collapse
Affiliation(s)
- Yanjun Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yibaina Wang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jiang Liang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jing Zhou
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Lili Xu
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Yanxu Zhong
- Guangxi Center for Disease Prevention and Control, Nanning 530028, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
12
|
Malik M, Kumar V, Singh J, Bhatt P, Dixit R, Kumar S. Phosphorylation of Alkali Extracted Mandua Starch by STPP/STMP for Improving Digestion Resistibility. ACS OMEGA 2023; 8:11750-11767. [PMID: 37033860 PMCID: PMC10077428 DOI: 10.1021/acsomega.2c05783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The chemical modifications of starch granules have been adopted to improve the characteristics, viz., paste clarity, resistant starch content, thermal stability, and so forth. The modified starch has been applied as a biopolymer in developing various preparations of food, nutraceutical, and pharmaceutical importance. The present work is focused on phosphorylation of alkali extracted mandua starch for improving digestion resistibility. The phosphorylation of mandua starch extracted from grains of Eleusine coracana (family Poaceae) was carried out by sodium tripolyphosphate/sodium trimetaphosphate at alkaline pH. After chemical treatment of mandua starch, the resistant starch (RS) content was increased significantly. The digestibility of chemically modified starch (CMS) was decreased down after treating by the phosphorylation process. The digestibility of CMS and alkali extracted mandua starch (AMS) in simulated intestinal fluid was found to be 32.64 ± 1.98% w/w and 61.12 ± 2.54% w/w, respectively. After chemical modification of mandua starch, a decrement was observed in amylose content, water-binding capacity, and swelling power. In the three-stage decomposition pattern of CMS studied by thermal gravimetric analysis, the significant changes in decomposition behavior also affirmed the impact of cross-linking in the improvement of stability of internal structure and resistibility of starch. In Fourier transform infrared (FTIR), the formation of the P=O bond was observed in CMS at 1250 cm-1. The acute and sub-acute toxicity studies in terms of behavioral, haematological, and enzymological parameters for CMS were not different significantly from AMS and control (p > 0.05). The cellular architecture of the liver and the kidney were found normal after consumption of CMS. The results revealed that significant increment in RS fraction occurred after cross-linking of mandua starch. The prepared starch may be applied in developing various formulations of food and pharmaceutical importance.
Collapse
Affiliation(s)
- Mayank
Kumar Malik
- Department
of Chemistry, Gurukula Kangri (Deemed to
be University), Haridwar 249407, India
| | - Vipin Kumar
- Department
of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukula Kangri (Deemed to be University), Haridwar 249407, India
| | - Jaspal Singh
- Department
of Chemistry, Gurukula Kangri (Deemed to
be University), Haridwar 249407, India
| | - Pankaj Bhatt
- KIET
School of Pharmacy, Ghaziabad 201206, India
| | - Raghav Dixit
- Department
of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukula Kangri (Deemed to be University), Haridwar 249407, India
| | - Sunil Kumar
- Gurukula
Kangri (Deemed to be University), Haridwar 249407, India
| |
Collapse
|
13
|
Duy-Thanh D, Bich-Ngoc N, Van den Bossche F, Lai-Thanh N, Muller M. Discovering Novel Bioactivities of Controversial Food Additives by Means of Simple Zebrafish Embryotoxicity (ZET) Assays. TOXICS 2022; 11:8. [PMID: 36668734 PMCID: PMC9861749 DOI: 10.3390/toxics11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The rising concerns about controversial food additives' potential hazardous properties require extensive yet animal-minimized testing strategies. Zebrafish embryos are the ideal in vivo model representing both human and environmental health. In this study, we exposed zebrafish embryos to eight controversial food additives. Our results indicate that Sodium Benzoate is a Cat.3 aquatic toxicant, while Quinoline Yellow is a strong teratogen. At high concentrations, non-toxic chemicals induced similar phenotypes, suggesting the impact of ionic strength and the applicability of the darkened yolk phenotype as an indicator of nephrotoxicity. Three food additives showed unpredicted bioactivities on the zebrafish embryos: Brilliant Blue could weaken the embryonic yolk, Quinoline Yellow may interfere with nutrient metabolism, and Azorubine induced precocious zebrafish hatching. In conclusion, the zebrafish embryo is ideal for high throughput chemical safety and toxicity screening, allowing systematic detection of biological effects-especially those unexpected by targeted in vitro and in silico models. Additionally, our data suggest the need to reconsider the safety status of food additives Quinoline Yellow, Brilliant Blue, Sodium Benzoate, and other controversial food additives in further studies, as well as pave the way to further applications based on the newly found properties of Brilliant Blue and Azorubine.
Collapse
Affiliation(s)
- Dinh Duy-Thanh
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Nguyen Bich-Ngoc
- LEMA, Urban and Environmental Engineering Department, University of Liège, 4000 Liège, Belgium
| | - François Van den Bossche
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Molecular Physiology Research Unit, Faculty of Medicine, University of Namur, 5000 Namur, Belgium
| | - Nguyen Lai-Thanh
- Department of Cell Biology, Faculty of Biology, VNU University of Science, Hanoi 100000, Vietnam
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
14
|
Witkowski M, Grajeta H, Gomułka K. Hypersensitivity Reactions to Food Additives-Preservatives, Antioxidants, Flavor Enhancers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11493. [PMID: 36141765 PMCID: PMC9517530 DOI: 10.3390/ijerph191811493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
There have been reports of food hypersensitivity reactions to food additives (HFA) for many years. The mechanisms of HFA and their frequency are difficult to precisely define, as most of the data come from outdated studies with poor methodology. In 2020, the European Food Safety Authority completed a review of additives, examining their influence on the occurrence of HFA, but did not include all of them. The aim of this review is to systematise knowledge about selected groups of food additives (FAs) and the HFA induced by them. We also briefly discuss the issues of diagnosis and therapy in this disease. FAs are commonly used in prosscessed foods, but HFA appears to be a rare phenomenon. Identification of the FA responsible for hypersensitivity and its treatment is difficult. Diagnosis is a challenge for the clinician and for the patient. A food diary is a helpful diagnostic tool. It allows diet therapy to be monitored based on the partial or complete elimination of products containing a harmful additive. An elimination diet must not be deficient, and symptomatic pharmacotherapy may be necessary if its application is ineffective. Taking all this into account, we conclude that it is necessary to conduct randomised multicentre studies based on the double-blind placebo control protocol in this field.
Collapse
Affiliation(s)
- Mateusz Witkowski
- Department of Dietetics and Food Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Halina Grajeta
- Department of Dietetics and Food Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Disease, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
15
|
AL-Nasser MN, Mellor IR, Carter WG. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci 2022; 12:577. [PMID: 35624964 PMCID: PMC9139234 DOI: 10.3390/brainsci12050577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.
Collapse
Affiliation(s)
- Maryam N. AL-Nasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
16
|
Wiesner L, Araya S, Lovsin Barle E. Identifying non-hazardous substances in pharmaceutical manufacturing and setting default Health-Based Exposure Limits (HBELs). J Appl Toxicol 2022; 42:1443-1457. [PMID: 35315528 DOI: 10.1002/jat.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Contract Development and Manufacturing Organizations (CDMOs) that manufacture large, diverse portfolio of chemical and pharmaceutical substances require pragmatic risk-based decisions with respect to the safe carry-over between different chemical entities, as well as for worker protection. Additionally, CDMOs may not have access to primary study data or data is generally lacking for a specific substance. While pharmaceuticals require the establishment of health-based exposure limits (HBELs) (e.g., occupational exposure limits, permitted daily exposure limits), the limits for non-hazardous substances could be set in a protective and pragmatic way by using default values, when internally required. Since there is no aligned definition provided by authorities, nor agreed default values for non-hazardous substances, we provide a decision tree in order to help qualified experts (such as qualified toxicologists) to identify the group of non-hazardous substances and to assign default HBEL values for specific routes of exposure. The non-hazardous substances discussed within this publication are part of the following subgroups: (I) inactive pharmaceutical ingredients, (II) pharmaceutical excipients or cosmetic ingredients, (III) substances Generally Recognized as Safe (GRAS), and (IV) food ingredients, additives and contact materials. The proposed default limit values are 1 mg/m3 for the OEL, and 50 mg/day for the PDE oral and IV (intravenous) route.
Collapse
|
17
|
Gao W, Zhao H, Wei X, Meng X, Wu K, Liu Y. A Green and Economical Method for Preparing Potassium Glutamate through Electrodialysis Metathesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenjie Gao
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Huan Zhao
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Xinlai Wei
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiangwu Meng
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Ke Wu
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
- Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei 230088, PR China
| | - Yun Liu
- Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| |
Collapse
|
18
|
Kochmar M. MY, Golosh JV, Hetsko OI. EFFECT OF MONOSODIUM GLUTAMATE ON ORGANS OF THE DIGESTIVE SYSTEM IN HUMANS AND RATS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-58-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Miralles P, López A, Dualde P, Coscollà C, Yusà V. Liquid chromatography-Orbitrap Tribrid high-resolution mass spectrometry using data dependent-tandem mass spectrometry with triple stage fragmentation as a screening tool to perform identification and risk assessment of unknown substances in food contact epoxy resin. J Sep Sci 2021; 44:3020-3030. [PMID: 34101978 DOI: 10.1002/jssc.202100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A new, fast, and automatic approach has been applied for the tentative identification of unknown substances released by food contact epoxy resin after performing a migration test with food simulant. This approach combines intelligent data acquisition with AcquireX linked to liquid chromatography-Orbitrap Tribrid high-resolution mass spectrometry using data dependent-tandem mass spectrometry with triple stage fragmentation coupled to Compound Discoverer™ software for automated data processing and compound identification. The identification of the observed features was performed using a set of identification criteria, including exact mass, isotope pattern, tandem mass spectrometry spectra match, and retention time. With these criteria, 263 substances were tentatively identified. Most of the identified compounds were additives, such as plasticisers, stabilizers, and antioxidants, used in different plastic applications. However, metabolites, biological constituents with pharmacological activity, and other substances with industrial applications were also detected. In order to perform a risk assessment of the food contact epoxy resin, threshold of toxicological concern approach was applied for the identified compounds. There was not risk associated with the migration of the identified substances.
Collapse
Affiliation(s)
- Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain.,Public Health Laboratory of Valencia, Health Department of Valencia Regional Government, Valencia, Spain.,Analytical Chemistry Department, University of Valencia, Burjassot, Spain
| |
Collapse
|
20
|
Duncanson K, Burns G, Pryor J, Keely S, Talley NJ. Mechanisms of Food-Induced Symptom Induction and Dietary Management in Functional Dyspepsia. Nutrients 2021; 13:1109. [PMID: 33800668 PMCID: PMC8066021 DOI: 10.3390/nu13041109] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Functional dyspepsia (FD) is a common disorder of gut-brain interaction, characterised by upper gastrointestinal symptom profiles that differentiate FD from the irritable bowel syndrome (IBS), although the two conditions often co-exist. Despite food and eating being implicated in FD symptom induction, evidence-based guidance for dietetic management of FD is limited. The aim of this narrative review is to collate the possible mechanisms for eating-induced and food-related symptoms of FD for stratification of dietetic management. Specific carbohydrates, proteins and fats, or foods high in these macronutrients have all been reported as influencing FD symptom induction, with removal of 'trigger' foods or nutrients shown to alleviate symptoms. Food additives and natural food chemicals have also been implicated, but there is a lack of convincing evidence. Emerging evidence suggests the gastrointestinal microbiota is the primary interface between food and symptom induction in FD, and is therefore a research direction that warrants substantial attention. Objective markers of FD, along with more sensitive and specific dietary assessment tools will contribute to progressing towards evidence-based dietetic management of FD.
Collapse
Affiliation(s)
- Kerith Duncanson
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Grace Burns
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer Pryor
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nicholas J. Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (G.B.); (J.P.); (S.K.)
- Centre for Research Excellence, Digestive Health, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Department of Gastroenterology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
21
|
Differential effects of sodium chloride and monosodium glutamate on kidney of adult and aging mice. Sci Rep 2021; 11:481. [PMID: 33436880 PMCID: PMC7804302 DOI: 10.1038/s41598-020-80048-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Monosodium Glutamate (MSG) is used as flavour enhancer, with potential beneficial effects due to its nutritional value. Given the decline in kidney functions during aging, we investigated the impact of MSG voluntary intake on the kidney of male mice, aged 6 or 18 months. For 2 months, they freely consumed water (control group), sodium chloride (0.3% NaCl) or MSG (1% MSG) in addition to standard diet. Young animals consuming sodium chloride presented signs of proteinuria, hyperfiltration, enhanced expression and excretion of Aquaporin 2 and initial degenerative reactions suggestive of fibrosis, while MSG-consuming mice were similar to controls. In old mice, aging-related effects including proteinuria and increased renal corpuscle volume were observed in all groups. At an advanced age, MSG caused no adverse effects on the kidney compared to controls, despite the presence of a sodium moiety, similar to sodium chloride. These data show that prolonged MSG intake in mice has less impact on kidney compared to sodium chloride, that already in young animals induced some effects on kidney, possibly related to hypertension.
Collapse
|
22
|
Slyva Y, Pokhodylo E. APPLICATION OF THE IMPEDANCE METHOD FOR DETERMINATION OF MONOSODIUM GLUTAMATE IN FOOD PRODUCTS. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.15673/fst.v14i2.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The article presents the results of studying how impedance analysis can be used for determination of monosodium glutamate in order to identify food fraud. We have suggested that the parameters of complex conductivity (admittance) of a two-terminal circuit could allow detecting monosodium glutamate (E 621), an additive used in the food industry to enrich the taste. The method involves passing current of different frequencies through solid foodstuffs and a cell with liquid foodstuffs, measuring the electrical conductivity, and determining and analysing the frequency dependence of admittance. The active G component and the reactive B component of the admittance have been measured at different frequencies, from 100 Hz to 100 kHz. For the experiment, food samples were prepared in accordance with the Codex Alimentarius recommendations for the dosage of the food additive E 621: orange juice with monosodium glutamate added in the amount of 0.3%, and mashed potatoes with glutamate added in the amount of 1%, of the total weight of the products. The temperature of the tested products was 22 ± 0.2°С. The results of the studies have shown the dependences of the admittance components on the frequency for the control samples of juice and mashed potatoes and for the samples with monosodium glutamate added. The dependence of the active component and the reactive component of the foodstuff admittance have been established, with monosodium glutamate (added in the above-specified proportion) and without it. The difference is in how the dependences change in their nature. The monosodium glutamate curves both in juice and in mashed potatoes are similar. The samples containing monosodium glutamate have far higher values of the active and reactive admittance component than the control samples do, with a distinct peak of the reactive component characteristic. Therefore, impedance analysis is a possible method to detect quickly the flavour enhancer monosodium glutamate in foods of different consistency and thus identify food fraud.
Collapse
|
23
|
Bampidis V, Azimonti G, de Lourdes Bastos M, Christensen H, Dusemund B, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Glandorf B, Gropp J, Herman L, Rychen G, Saarela M, Anguita M, Galobart J, Holczkecht O, Manini P, Pettenati E, Pizzo F, Tarrés‐Call J. Safety and efficacy of l-glutamine produced using Corynebacterium glutamicum NITE BP-02524 for all animal species. EFSA J 2020; 18:e06075. [PMID: 32874286 PMCID: PMC7447988 DOI: 10.2903/j.efsa.2020.6075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of l-glutamine (≥ 98.0%) produced by fermentation using a genetically modified strain of Corynebacterium glutamicum (NITE BP-02524). It is intended to be used in feed for all animal species and categories as nutritional additive (amino acid) and as sensory additive (flavouring compound). Viable cells of the production strain and its recombinant DNA were not detected in the additive. l-Glutamine manufactured by fermentation using C. glutamicum NITE BP-02524 does not give rise to any safety concern with regard to the genetic modification of the production strain. The use of l-glutamine produced by fermentation using C. glutamicum NITE BP-02524 in animal nutrition is considered safe for all animal species when applied as a nutritional additive to achieve an adequate amino acid profile in feed and to overcome potential glutamine shortages during critical periods of life. The proposed use level (25 mg/kg feed) when used as sensory additive (flavouring compound) is safe for all animal species. The uses of l-glutamine produced using C. glutamicum NITE BP-02524 as nutritional additive or as flavouring compound are considered safe for the consumer. l-Glutamine produced using C. glutamicum NITE BP-02524 is not toxic by inhalation, is non-irritant to skin and eyes and is not a skin sensitiser. l-Glutamine produced using C. glutamicum NITE BP-02524 is considered safe for the environment. l-glutamine is a non-essential amino acid and it plays a physiological role as such. Recent evidence shows that glutamine may act as conditionally essential amino acid mainly in growing animals and has some specific effects e.g. in improving intestinal development and immune response. This amino acid produced by fermentation using C. glutamicum NITE BP-02524 is regarded as an efficacious source of glutamine for all animal species. For supplemental l-glutamine to be as efficacious in ruminants as in non-ruminants, it would require protection against degradation in the rumen. The use of l-glutamine as sensory additive at 25 mg/kg feed is considered efficacious.
Collapse
|
24
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Herman L, Glandorf B, Saarela M, Galobart J, Holczknecht O, Manini P, Pettenati E, Tarrés Call J, Pizzo F, Anguita M. Safety and efficacy of monosodium l-glutamate monohydrate produced by Corynebacterium glutamicum KCCM 80188 as a feed additive for all animal species. EFSA J 2020; 18:e06085. [PMID: 32874293 PMCID: PMC7448065 DOI: 10.2903/j.efsa.2020.6085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of monosodium l-glutamate monohydrate produced by fermentation using Corynebacterium glutamicum KCCM 80188 when used as a sensory additive (flavouring compound) in feed and water for drinking for all animal species. The production strain is not genetically modified. Viable cells of the production strain were not detected in the final additive. The additive does not give rise to any safety concern regarding the production strain. Monosodium l-glutamate monohydrate produced using C. glutamicum KCCM 80188 is considered safe for the target species, for the consumer and for the environment. Monosodium l-glutamate monohydrated produced by C. glutamicum KCCM 80188 is considered not toxic by inhalation, not irritant to skin or eyes and not a dermal sensitiser. The FEEDAP Panel expressed reservations on the use of the additive in water for drinking due to concerns on its impact on the hygienic conditions of the water. The Panel concluded that the additive is efficacious to contribute to the flavour of feed.
Collapse
|
25
|
In vitro genotoxicity assessment of monopotassium glutamate and magnesium diglutamate. Toxicol In Vitro 2020; 65:104780. [PMID: 31978514 DOI: 10.1016/j.tiv.2020.104780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/20/2022]
Abstract
Food additives are approved chemicals used for various purposes in foods; to provide nutritional safety, increase flavor, extend shelf life, reduce nutrient losses etc. In this study, the in vitro genotoxic effects of flavor enhancers, Monopotassium glutamate (MPG) and Magnesium diglutamate (MDG) were investigated in human peripheral blood lymphocytes by using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), cytokinesis-block micronucleus cytome (CBMN-Cyt), and comet assays. Four concentrations of MPG (125, 250, 500, and 1000 μg/mL) and MDG (93.75, 187.5, 375, and 750 μg/mL) were used. Both food additives significantly reduced mitotic index and increased the frequency of CAs at high concentrations. MPG and MDG (except 93.75 μg/mL) significantly increased SCEs/Cell in concentration-dependent manner. In the CBMN-Cyt test, both MPG and MDG increased the formation of micronucleus, nuclear buds, and nucleoplasmic bridges compared to control in a concentration-dependent manner. However, these increases were statistically significant at higher concentrations. MPG (at 500 and 1000 μg/mL) and MDG (except 93.75 μg/mL) significantly increased DNA damages observed by comet assay. It is concluded from these results that MPG and MDG have clastogenic, mutagenic, aneugenic, and cytotoxic effects, particularly at high concentrations in human lymphocytes in vitro.
Collapse
|
26
|
O’Dwyer J, Murphy R, Dolan EB, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv Transl Res 2019; 10:440-454. [DOI: 10.1007/s13346-019-00684-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18:1111-1134. [PMID: 31920467 PMCID: PMC6952072 DOI: 10.1111/1541-4337.12448] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
| | - George M. Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Aris Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
- Metabolomic Medicine Clinic, Athens 10674, Greece
| | - Ayse B. Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara 06330, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10463, USA
| | - Denisa Margină
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|