1
|
Zahir A, Ge Z, Khan IA. Public Health Risks Associated with Food Process Contaminants - A Review. J Food Prot 2025; 88:100426. [PMID: 39643160 DOI: 10.1016/j.jfp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The increasing complexity of food production and processing has raised concerns regarding food process contaminants, which pose significant public health risks. Food process contaminants can be introduced during diverse phases of food processing such as drying, heating, grilling, and fermentation, resulting in the synthesis of harmful chemicals including acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan and its naturally occurring derivatives, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), 2-chloropropane-1,2-diol esters (2-MCPDE), and 3-chloropropane-1,2-diol esters (3-MCPDE), ethyl carbamate (EC), glycidyl esters (GE), and 4-methylimidazole (4-MEI), all of these are harmful to human health. Although these compounds can be somewhat prevented during processing, eliminating them can often be challenging due to their unknown formation mechanism. Moreover, prolonged exposure to these dangerous compounds might harm human health. There is limited understanding of the sources, formation processes, and hazards of food processing contaminants, and a lack of knowledge of the mechanisms involved in how to control their generation. In this review, we provide a comprehensive overview of the harmful effects associated with food process contaminants generated during thermal processing and fermentation, alongside elemental process contaminants and their potential threats to human health. Furthermore, this study identifies existing knowledge gaps proposes avenues for future inquiry and emphasizes the necessity of employing a multi-disciplinary approach to alleviate the public health risks posed by food process contaminants, advocating for cooperative initiatives among food scientists, public health officials, and regulatory entities to enhance food safety and protect consumer health.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar 3801, Afghanistan.
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Batool Z, Singla RK, Kamal MA, Shen B. Demystifying furan formation in foods: Implications for human health, detection, and control measures: A review. Compr Rev Food Sci Food Saf 2025; 24:e70087. [PMID: 39731718 DOI: 10.1111/1541-4337.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Furan (C₄H₄O), an unintended hazardous compound, is formed in various thermally processed foods through multiple pathways, raising concerns due to its potential carcinogenicity in humans. The aim of this comprehensive review was to synthesize and evaluate the latest research on furan, from its formation by different precursors to its presence in diverse food matrices, as well as the emerging methods for its detection and mitigation. Emphasizing the toxicity of furan, it explored evidence from in vitro and in vivo studies, including reproductive toxicity, carcinogenic effects, and related biomarkers. Additionally, this review focused on human risk assessments of furan exposure and discussed innovative research approaches to better understand its health risks. By consolidating current knowledge, this review provided a comprehensive perspective on furan's impact on human health and suggested future research directions to further research on furan.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
| | - Bairong Shen
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Schäfer V, Stegmüller S, Becker H, Richling E. Metabolic Activation of 2-Methylfuran to Acetylacrolein and Its Reactivity toward Cellular Proteins. Chem Res Toxicol 2024; 37:1807-1820. [PMID: 39240537 DOI: 10.1021/acs.chemrestox.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
2-Methylfuran (2-MF) is a process-related contaminant found primarily in heat-treated foods, such as coffee or canned food. The oxidative metabolic activation of 2-MF is supposed to follow the pathway established for furan, which is known to generate the highly reactive metabolite butenedial (BDA). In the case of 2-MF, generation of the BDA homologue 3-acetylacrolein (AcA) is to be expected. 2-MF metabolism to AcA was investigated in two model systems: commercial microsomal preparations and primary rat hepatocytes (pRH). To scavenge the generated 2-MF, two model nucleophils, N-acetyl-l-cysteine (AcCys) and N-α-acetyl-l-lysine (AcLys), were used, and the formation of the corresponding adducts was measured in the supernatants. The metabolic activation of 2-MF to AcA was studied using human liver microsomes as well as rat liver microsomes. Incubation of 2-MF in Supersomes allowed to identify the cytochrome P450 isoenzyme primarily responsible for 2-MF. In addition, primary rat hepatocytes were incubated with 2-MF or AcA and AcLys adduct of AcA (N-α-acetyl-l-lysine-acetylacrolein, AcLys-AcA) determined in the cell supernatants by UHPLC-MS/MS. In model experiments, AcA formed adducts with AcCys and AcLys. The structures of both adducts were characterized. For incubations in biological activating systems, CYP 2E1 was found to be a key enzyme for the conversion of 2-MF to AcA in Supersomes. When pRH were incubated with 2-MF and AcA, AcLys-AcA was detected in the cell supernatants in a time- and dose-dependent manner. The results showed that AcA was indeed formed at the cellular level. In contrast to the AcLys-AcA adduct, no N-acetyl-l-cysteine-acetylacrolein (AcCys-AcA) adduct could be detected in pRH. AcA was determined as a reactive metabolite of 2-MF in vitro, and its adduct formation with nucleophilic cellular components was evaluated. The metabolites were characterized, and AcLys-AcA was identified as potential biomarker.
Collapse
Affiliation(s)
- Verena Schäfer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Simone Stegmüller
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Hanna Becker
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| |
Collapse
|
4
|
Schäfer V, Stegmüller S, Becker H, Richling E. Reactivity of the 2-Methylfuran Phase I Metabolite 3-Acetylacrolein Toward DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25319-25329. [PMID: 39494867 PMCID: PMC11565790 DOI: 10.1021/acs.jafc.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
2-Methylfuran (2-MF) is a well-known industrial chemical and also formed via thermal treatment of food. One main source of 2-MF in the human diet is coffee. 2-MF is known to form 3-acetylacrolein (AcA, 4-oxopent-2-enal) via cytochrome P 450 metabolism and further reacts with amino acids in vivo. Still the reactivity toward other biomolecules is rather scarce. Therefore, AcA was synthesized, and its reaction with 2'-deoxyadenosine (dA), 2'deoxyguanosine (dG), 2'deoxycytosine (dC), and 2'-deoxythymidine (dT) was tested. For this purpose, adduct formation was performed by acid hydrolysis of 2,5-dihydro-2,5-dimethoxy-2-methylfuran (DHDMMF) as well as pure AcA. The structures of these adducts were confirmed by UPLC-ESI+-MS/MS fragmentation patterns and 1H-/13CNMR spectra. Except for dT, which showed no reactivity, all adducts of AcA were characterized, which enabled the development of sensitive quantification methods via (U)HPLC-ESI±-MS/MS. Pure AcA was synthesized by oxidation of 2-MF using dimethyldioxirane (DMDO), and its behavior in aqueous medium was studied. Incubations of AcA and isolated DNA of primary rat hepatocytes (pRH) showed time- and dose-dependent formation of the identified DNA adducts dA-AcA, dG-AcA, or dC-AcA. In contrast, the DNA adducts dA-AcA, dG-AcA, or dC-AcA were not detected on a cellular level when pRH were incubated with 2-MF or AcA. This indicates an efficient detoxification or reaction with biomolecules in the cell, although the induction of other DNA damage, possibly also by other metabolites, cannot be ruled out in principle.
Collapse
Affiliation(s)
- Verena Schäfer
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Simone Stegmüller
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Hanna Becker
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Elke Richling
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
5
|
Sandjong Sayon DR, Fakih A, Mercier F, Kondjoyan N, Beyer C, Fuchsbauer N, Meurillon M, Thomopoulos R, Ratel J, Engel E. Home practices can mitigate furan and derivatives in vegetable-based infant meals. Food Res Int 2024; 195:114916. [PMID: 39277218 DOI: 10.1016/j.foodres.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
This study assessed the impact of current home practices including reheating, standing, and stirring on mitigation of furan and its derivatives in vegetable-based infant meals. Three vegetable-based infant meals (vegetables alone, with fish, with meat) underwent different home practices including reheating, post-reheating standing (60, 120 and 240 s) and post-reheating stirring (30, 60, 120 and 240 s). Targeted quantification of furan, 2-methylfuran (2-MF) and 3-methylfuran (3-MF) and exploration of additional furan derivatives were undertaken in treated and untreated vegetable-based infant meals using SHS-GC-Q Exactive-Orbitrap-MS. For the three compounds, the quality of the measurements was first validated with suitable linearity, limits of quantification, precision and recoveries. A second step highlighted high concentrations of furan (78.5-103.9 µg/kg), 2-MF (4.8-10.1 µg/kg) and 3-MF (3.4-5.8 µg/kg) in the three vegetable-based infant meals before preparation and the assessment of the cumulative risk related to these three furan compounds confirmed the relevance of studying home mitigation strategies. The third step showed that post-reheating stirring was the most effective home practice for mitigation, with maximum observed reductions of 66.3, 59.9 and 57.7 % for furan, 2-MF and 3-MF, respectively. In a fourth step, a suspect screening approach carried out on SHS-GC-Q Exactive-Orbitrap MS data revealed the presence of 2-ethyl-, 2-ethyl-5-methyl-, 2-butyl- and 2-vinyl-furan in vegetable-based meals and showed a similar mitigation trend of home practices on the relative concentrations of these four additional furan derivatives. Finally, despite a significant mitigation reaching 69 % of the furan concentration, the combined effect of home practices on furan compounds was not sufficient to rule out the risk associated with the consumption of vegetable-based infant foods and additional options are discussed.
Collapse
Affiliation(s)
- Donnelle Roline Sandjong Sayon
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Aya Fakih
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Frederic Mercier
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Nathalie Kondjoyan
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | | | | | - Maia Meurillon
- INRAE, UR QuaPA, IT Group, Saint-Genès-Champanelle, France
| | - Rallou Thomopoulos
- INRAE, Institut Agro, University of Montpellier, UMR IATE, Montpellier, France
| | - Jeremy Ratel
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Erwan Engel
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France.
| |
Collapse
|
6
|
Orta-Yilmaz B, Korkut A, Aydin Y. The impact of furan exposure on steroidogenesis in Leydig cells: cellular and molecular observations. Mol Biol Rep 2024; 51:1047. [PMID: 39388074 DOI: 10.1007/s11033-024-09954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Furan is an organic compound that occurs as a result of heat treatment during the processing and cooking of many food products. Furthermore, the environment contains furan in tobacco smoke and vehicle exhaust gases, and it serves as an intermediate molecule in the synthesis of various pharmaceutical and chemical agents, pesticides, and stabilizers. Studies on the male reproductive system have not been able to elucidate the pathway through which furan exerts its negative effects. METHODS AND RESULTS In this study, the TM3 Leydig cell line was exposed to various furan concentrations (0.03, 0.3, and 3 mM) for 24 h. In order to assess the cytotoxic effects of furan on Leydig cells, we examined cell viability, cell proliferation, and lactate dehydrogenase enzyme levels. To investigate the detrimental effects of furan on testosterone biosynthesis, quantitative analyses were conducted on cAMP and testosterone levels, as well as the expression levels of key genes and transcription factors implicated in the steroidogenic pathway. The results indicate that furan inhibited the viability and proliferation of Leydig cells and enhanced the activity of lactate dehydrogenase. Leydig cells administered to furan exhibited notable reductions in cAMP and testosterone levels. Additionally, while the expression levels of steroidogenic genes were downregulated, significant changes were detected in the expression levels of the transcription factors responsible for the regulation of these genes. CONCLUSIONS Consequently, our findings suggest that furan exerts inhibitory effects on steroidogenesis in Leydig cells through multiple mechanisms, ultimately leading to infertility by inducing dysfunction in Leydig cells.
Collapse
Affiliation(s)
- Banu Orta-Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| | - Ahu Korkut
- Department of Obstetrics and Gynecology, Perinatology Division, Antalya City Hospital, Antalya, Turkey
| | - Yasemin Aydin
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| |
Collapse
|
7
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
8
|
Pasdar N, Mostashari P, Greiner R, Khelfa A, Rashidinejad A, Eshpari H, Vale JM, Gharibzahedi SMT, Roohinejad S. Advancements in Non-Thermal Processing Technologies for Enhancing Safety and Quality of Infant and Baby Food Products: A Review. Foods 2024; 13:2659. [PMID: 39272425 PMCID: PMC11394636 DOI: 10.3390/foods13172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential physical, biological, and chemical hazards. Although thermal treatments are commonly used to ensure food safety in IFs and BFs, they can negatively affect sensory qualities, reduce thermosensitive nutrients, and lead to chemical contaminant formation. To address these challenges, non-thermal processing technologies such as high-pressure processing, pulsed electric fields, radio frequency, and ultrasound offer efficient pathogen destruction similar to traditional thermal methods, while reducing the production of key process-induced toxicants such as furan and 5-hydroxymethyl-2-furfural (HMF). These alternative thermal processes aim to overcome the drawbacks of traditional methods while retaining their advantages. This review paper highlights the growing global demand for healthy, sustainable foods, driving food manufacturers to adopt innovative and efficient processing techniques for both IFs and BFs. Based on various studies reviewed for this work, the application of these novel technologies appears to reduce thermal processing intensity, resulting in products with enhanced sensory properties, comparable shelf life, and improved visual appeal compared to conventionally processed products.
Collapse
Affiliation(s)
- Nasim Pasdar
- Department of Agricultural Engineering and Technology, Payame Noor University (PNU), Tehran 19395-4697, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 19419-33111, Iran
| | - Ralf Greiner
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany
| | - Anissa Khelfa
- École Supérieure de Chimie Organique et Minérale (ESCOM), Université de Technologie de Compiègne (UTC), EA 4297 TIMR, 1 Allée du Réseau Jean-Marie Buckmaster, 60200 Compiègne, France
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Hadi Eshpari
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Jim M Vale
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Shahin Roohinejad
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
Pundir A, Singh Thakur M, Prakash S, Kumari N, Sharma N, He Z, Nam S, Dhumal S, Sharma K, Saxena S, Kumar S, Deshmukh SV, Kumar M. Furfural as a low-volume, high-value asset from agricultural residues: A review on production, agricultural applications and environmental sustainability. Heliyon 2024; 10:e35077. [PMID: 39157344 PMCID: PMC11327586 DOI: 10.1016/j.heliyon.2024.e35077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
This comprehensive review explores furfural production from agricultural residues, focusing on its significance as a low-volume, high-value asset crucial for environmental sustainability. It covers diverse production technologies, recent advancements, and applications in agriculture, evaluating furfural's potential to enhance crop resilience and yield. Showing its role in a circular economy, the review discusses how furfural can replace conventional petrochemical processes, thereby reducing environmental impact. Case studies, such as successful implementations with cotton biomass byproducts, illustrate furfural's practical applications and environmental benefits. The study underscores the need for ongoing research, supportive policies, and furfural's growing role in sustainable agriculture and industry. It is focused on furfural's essential contribution to promoting environmental stewardship and sustainable practices. By examining furfural's role as a value-added product from agricultural residues, this review provides insights into its economic viability and potential challenges.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sunghyun Nam
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sujata Saxena
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sunil Kumar
- ICAR-Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
10
|
Bounegru AV, Bounegru I. Acrylamide in food products and the role of electrochemical biosensors in its detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2824-2839. [PMID: 38669134 DOI: 10.1039/d4ay00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this review, the mechanisms of acrylamide formation in food, along with aspects related to its toxicity and associated consumption risks, are investigated, highlighting the potential impact on human health. European regulations regarding acrylamide content in food products are also addressed, emphasizing the importance of monitoring and detecting this substance in nutrition, by public health protection measures. The primary objective of the research is to explore and analyze innovative methods for detecting acrylamide in food, with a particular focus on electrochemical biosensors. This research direction is motivated by the need to develop rapid, sensitive, and efficient monitoring techniques for this toxic compound in food products, considering the associated consumption risks. The research has revealed several significant results. Studies have shown that electrochemical biosensors based on hemoglobin exhibited increased sensitivity and low detection limits, capable of detecting very low concentrations of acrylamide in processed foods. Additionally, it has been found that the use of functionalized nanomaterials, such as carbon nanotubes and gold nanoparticles, has led to the improvement of electrochemical biosensor performance in acrylamide detection. The integration of these technological innovations and functionalization strategies has enhanced the sensitivity, specificity, and stability of biosensors in measuring acrylamides. Thus, the results of this research offer promising perspectives for the development of precise and efficient methods for monitoring acrylamides in food, contributing to the improvement of food quality control and the protection of consumer health.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania.
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| |
Collapse
|
11
|
Wang Z, Chen D, Peng L, Wang X, Ding Q, Li L, Xu T. Exposure to volatile organic compounds is a risk factor for diabetes retinopathy: a cross-sectional study. Front Public Health 2024; 12:1347671. [PMID: 38351959 PMCID: PMC10861660 DOI: 10.3389/fpubh.2024.1347671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction A few past experimental studies have indicated that exposure to volatile organic compounds (VOCs) might be a potential risk factor for diabetes retinopathy (DR). However, these findings lack substantial support from extensive epidemiological research. This large-scale cross-sectional study aimed to examine whether exposure to low levels of VOCs in the general population is associated with diabetes mellitus (DM) and DR. Methods The analytical data was from the National Health and Nutrition Examination Survey (NHANES) dataset (2011-2018). To minimize the potential impact of gender and age on the findings, propensity score matching was utilized to align the data selection. Relationships between blood VOCs and DM and DR were assessed in a sample of 2,932 adults using the logistic regression models. Additionally, Bayesian kernel machine regression (BKMR) models and Weighted Quantile Sum (WQS) were conducted for mixture exposure analysis. Results The result shows VOCs were positive associated with DM and DR in US adults, as assessed by WQS model, and the calculated odd ratios (ORs) [95% confidence interval (C.I)] were 53.91(34.11 ~ 85.22) and 7.38(3.65 ~ 14.92), respectively. Among the components of VOCs, 1,2-Dibromoethane, Carbon Tetrachloride and 2,5-Dimethylfuran were positive related with the DR, and ORs (95%C.I) were 2.91(2.29 ~ 3.70), 2.86(2.25 ~ 3.65) and 2.19(1.79 ~ 2.94), respectively. BKMR model shows that there was a dose-response relationship between combined VOCs and DR, although the relationship was non-linearly. Conclusion This study suggested that exposure to VOCs may increase the risk of DR, which had important public health implications.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Dongjun Chen
- Department of Cardiac Function Examine, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Lingling Peng
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Xian Wang
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Qun Ding
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Liang Li
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
12
|
Frank N, Delatour T, Dubois M, Novotny O, Dufossé T, Mollergues J, Scholz G, Moulin J. Do GC/MS methods available for furan and alkylfurans in food provide comparable results? - An interlaboratory study and safety assessment of 2-pentylfuran in food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:22-32. [PMID: 38170576 DOI: 10.1080/19440049.2023.2297433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
A call for data on the occurrence of alkylfurans in food and feed from EFSA triggered the development of new methods to cover next to furan also 2- and 3-methylfuran, 2,5-dimethyl- and 2-ethylfuran as well as 2-pentylfuran. A significant variability was noticed when comparing analysis of 2-pentylfuran and furans in the same matrix performed by different laboratories. To assess the variability an interlaboratory study including eight laboratories was organised. The highest variabilities were observed when analysing cereals, with measurements of 2-pentylfuran indicating concentrations from 8 mg/kg up to more than 1000 mg/kg in the same sample. This study illustrates that the analysis of 2-pentylfuran requires special attention, and that additional method development would be necessary to ensure reliable and reproducible determination of 2-pentylfuran at contamination level. Moreover, a recent evaluation of the EFSA Panel on Food Additives and Flavourings indicates that concerns for genotoxicity, reason why it was grouped with the shorter alkylfurans, are now ruled out. We question the need and justification to include 2-pentylfuran in the analytical method as requested by EFSA, from both the analytical and the safety perspective.
Collapse
Affiliation(s)
- Nancy Frank
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Thierry Delatour
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Mathieu Dubois
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | | | | - Julie Mollergues
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Gabriele Scholz
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Julie Moulin
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
13
|
Minorczyk M, Czaja K, Starski A, Korcz W, Liszewska M, Lewiński R, Robson MG, Postupolski J, Struciński P. Assessment of Furan and Its Derivatives Intake with Home Prepared Meals and Characterization of Associated Risk for Polish Infants and Toddlers. Foods 2023; 12:3618. [PMID: 37835270 PMCID: PMC10572828 DOI: 10.3390/foods12193618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Furan and its derivatives are found in various heat-treated foods. Furan is classified as a possible human carcinogen. The European Union authorities recommend collecting data on the occurrence of these compounds, estimating consumer exposure, and taking measures to protect human health based on a scientific risk assessment. The aim of this study was to estimate the exposure of infants and toddlers to furan and its methyl derivatives-2-methylfuran, 3-methylfuran, and ∑2,5-dimethylfuran/2-ethylfuran-present in home-prepared foods and to characterize the associated health risks. The compounds of interest were determined using the HS-GC/MS. The risk was characterized by the calculation of the margin of exposure (MoE). Levels of furan and its derivatives in analyzed samples were in the range of
Collapse
Affiliation(s)
- Maria Minorczyk
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| | - Katarzyna Czaja
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| | - Andrzej Starski
- Department of Food Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (A.S.); (J.P.)
| | - Wojciech Korcz
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| | - Monika Liszewska
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| | - Radosław Lewiński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| | - Mark Gregory Robson
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (A.S.); (J.P.)
| | - Paweł Struciński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (M.M.); (K.C.); (W.K.); (M.L.); (R.L.)
| |
Collapse
|
14
|
Celano G, Calabrese FM, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Vacca M, Apa CA, Angelis MD, Giannelli G, De Pergola G, Russo F. Effects of a Very-Low-Calorie Ketogenic Diet on the Fecal and Urinary Volatilome in an Obese Patient Cohort: A Preliminary Investigation. Nutrients 2023; 15:3752. [PMID: 37686784 PMCID: PMC10490432 DOI: 10.3390/nu15173752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Several recent studies deepened the strong connection between gut microbiota and obesity. The effectiveness of the very-low-calorie ketogenic diet (VLCKD) has been measured in terms of positive impact on the host homeostasis, but little is known of the modification exerted on the intestinal metabolome. To inspect this complex relationship, we analyzed both fecal and urinary metabolome in terms of volatile organic compounds (VOCs) by the GC-MS method in 25 obese patients that were under VLCKD for eight weeks. Partial least square discriminant analysis evidenced specific urinary and fecal metabolites whose profile can be considered a signature of a partial restore toward the host eubiosis. Specifically, among various keystone VOCs, the decreased concentration of four statistically significant fecal esters (i.e., propanoic acid pentyl ester, butanoic acid hexyl ester, butanoic acid pentyl ester, and pentanoic acid butyl ester) supports the positive effect of VLCKD treatment. Our pilot study results suggest a potential positive effect of VLCKD intervention affecting fecal and urinary volatilome profiles from obese patients. Meta-omics techniques including the study of genes and transcripts will help in developing new interventions useful in preventing or treating obesity and its associated health problems.
Collapse
Affiliation(s)
- Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (M.V.); (C.A.A.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
15
|
Batool Z, Chen JH, Liu B, Chen F, Wang M. Review on Furan as a Food Processing Contaminant: Identifying Research Progress and Technical Challenges for Future Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5093-5106. [PMID: 36951248 DOI: 10.1021/acs.jafc.3c01352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A wide range of food processing contaminants (FPCs) are usually formed while thermal processing of food products. Furan is a highly volatile compound among FPCs and could be formed in a variety of thermally processed foods. Therefore, identification of possible reasons of furan occurrence in different thermally processed foods, identification of the most consequential sources of furan exposure, factors impacting its formation, and its detection by specific analytical approaches are necessary to indicate gaps and challenges for future research findings. Furthermore, controlling furan formation in processed foods on a factory scale is also challenging, and research advancements are still ongoing in this context. Meanwhile, understanding adverse effects of furan on human health on a molecular level is necessary to gain insights into human risk assessment.
Collapse
Affiliation(s)
- Zahra Batool
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Bin Liu
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
16
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Gelbmann W, Gerazova‐Efremova K, Roldán‐Torres R, Knutsen HK. Safety of the extension of use of partially defatted chia seed ( Salvia hispanica L.) powder with a high fibre content as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e07904. [PMID: 37089183 PMCID: PMC10117169 DOI: 10.2903/j.efsa.2023.7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of the extension of use of partially defatted chia seed (Salvia hispanica L.) powder with a high fibre content as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is already authorised and included in the Union list of NFs and is produced according to the same production process. This application is limited to an assessment of the extension of use of the NF as a food ingredient in several food categories with a high moisture content that are subject to thermal processing. The target population for the extension of use is the general population. The information provided on the formation of process contaminants (acrylamide, furan and methylfurans) in a selected food category with added NF (bread) subjected to heat treatment is sufficient for this assessment and does not raise safety concerns. Noting that no safety concerns were identified from the information available on the production process, composition, specifications and proposed uses of the NF, the Panel considers that intake estimates for the NF are not needed for this assessment. The Panel concludes that the NF, partially defatted chia seeds powder with a high fibre content, is safe under the proposed conditions of use.
Collapse
|
17
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization. Catalysts 2023. [DOI: 10.3390/catal13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures.
Collapse
|
19
|
Effect of sterilization conditions on the formation of furan and its derivatives in canned foods with different substrates. J Food Drug Anal 2022; 30:614-629. [PMID: 36753362 PMCID: PMC9910292 DOI: 10.38212/2224-6614.3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
This study explored the effects of sterilization conditions on the formation of furan and its 10 derivatives in canned foods with a sterilizing value (F0) at 4. The contents of furans were determined by SPME arrow-GC-MS/MS, along with the furan precursors analyzed for elucidating the possible mechanism of furan formation. Results revealed that the total furan contents rose substantially in canned meat paste, tomato mackerel, chicken puree, tomato paste, pineapple slice, pineapple juice and carrot juice following sterilization. However, the total furan content did not change significantly ( p > 0.05) in canned oily mackerel, but decreased significantly ( p < 0.05) in canned apple puree after sterilization. With the exception of apple puree and pineapple slice, all the other canned foods showed a higher total furan content under low-temperature-long-time condition than that under high-temperature-short-time condition. Following heating, only the furan level showed a large increase in chicken puree, meat paste and tomato mackerel, whereas in canned fruit- and vegetable-based foods, the contents of furan and furfural showed a pronounced increase. The levels of alkylated furans were higher in sterilized samples containing high level of amino acid, while that of oxygenated furans were higher in sterilized samples containing high level of reducing sugar.
Collapse
|
20
|
Owumi SE, Arunsi UO, Oyewumi OM, Altayyar A. Accidental lead in contaminated pipe-borne water and dietary furan intake perturbs rats' hepatorenal function altering oxidative, inflammatory, and apoptotic balance. BMC Pharmacol Toxicol 2022; 23:76. [PMID: 36180958 PMCID: PMC9526313 DOI: 10.1186/s40360-022-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Inadvertent exposure to furan and Pb is associated with hepatorenal abnormalities in humans and animals. It is perceived that these two chemical species may work in synergy to orchestrate liver and kidney damage. Against this background, we investigated the combined effect of furan and incremental lead (Pb) exposure on hepatorenal dysfunction. Wistar rats (n = 30; 150 g) were treated for 28 days accordingly: Control; FUR (8 mg/kg), PbAc (100 µg/L), FUR + PbAc1 (8 mg/kg FUR + 1 µg/L PbAc); FUR + PbAc1 (8 mg/kg FUR + 10 µg/L PbAc), and FUR + PbAc1 (8 mg/kg FUR + 100 µg/L PbAc). Biomarkers of hepatorenal function, oxidative stress, inflammation, DNA damage, and apoptosis were examined. Furan and incrementally Pb exposure increased the levels of hepatorenal biomarkers and oxidative and pro-inflammatory mediators, including lipid peroxidation, reactive oxygen and nitrogen species, and interleukin-1 beta. Increased DNA damage, caspases- 9 and -3, and atypical histoarchitecture of the hepatorenal tissues exemplified furan and Pb treatment-related perturbations. Furthermore, the levels of antioxidants and IL-10 were also suppressed. Furan and Pb dose-dependently exacerbated hepatorenal derangements by altering the redox and inflammatory rheostats, worsened DNA damage, and related apoptotic onset that may potentiate hepatorenal disorders in humans and animals. The findings validate the synergistic effect of furan and Pb in the pathophysiology of kidney and liver disorders.
Collapse
Affiliation(s)
- Solomon E Owumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria.
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolola M Oyewumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria
| | - Ahmad Altayyar
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
21
|
Owumi SE, Arunsi UO, Otunla MT, Oluwasuji IO. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats. J Biomed Res 2022; 37:100-114. [PMID: 36529973 PMCID: PMC10018412 DOI: 10.7555/jbr.36.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lead (Pb) and furan are toxic agents, and persistent exposure may impair human and animal reproductive function. We therefore explored the effects of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes, endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in a dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Conclusively, co-exposure to Pb and furan induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| | - Imisioluwa O Oluwasuji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria
| |
Collapse
|
22
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
23
|
Cao P, Zhang L, Yang Y, Wang XD, Liu ZP, Li JW, Wang LY, Chung S, Zhou M, Deng K, Zhou PP, Wu PG. Analysis of furan and its major furan derivatives in coffee products on the Chinese market using HS-GC–MS and the estimated exposure of the Chinese population. Food Chem 2022; 387:132823. [DOI: 10.1016/j.foodchem.2022.132823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
24
|
Wang Z, Liu H, Li L, Li Y, Yan H, Yuan Y. Modulation of Disordered Bile Acid Homeostasis and Hepatic Tight Junctions Using Salidroside against Hepatocyte Apoptosis in Furan-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10031-10043. [PMID: 35939816 DOI: 10.1021/acs.jafc.2c04654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Furan, a processing-induced food contaminant, has attracted great attention due to its hepatotoxicity. To further investigate the underlying mechanism of salidroside (SAL) alleviating furan-induced liver damage, we divided Balb/c mice into the control group, the furan (8 mg/kg/day) group, and three groups of three different doses of SAL (10/20/40 mg/kg/day) in the current research. The shifted serum profile was observed through untargeted metabonomics, to which the bile acid metabolism was related, and the alleviating effect of SAL against furan-induced apoptosis was caused by the metabolism. Target bile acid quantification for the liver and serum showed that SAL positively regulated the homeostasis of bile acids disturbed by furan. Meanwhile, SAL significantly upregulated the synthesis genes of bile acids (Cyp7a1, Cyp7b1, Cyp8b1, and Cyp27a1) and the uptake transport genes (Ntcp and Oatps) and downregulated the efflux transport genes (Bsep, Ost-α, Ost-β, Mrp2, and Mrp4). Transmission electron microscopy of the bile canaliculi and tight junctions and the levels of tight junction marker proteins (ZO-1, occludin, and claudin-1) confirmed that the disruption of the hepatic tight junction was inhibited by SAL. The connection between the apoptosis- and tight junction-related proteins was observed through the construction of a protein-protein interaction network. SAL suppressed the furan-induced hepatocyte apoptosis evidenced by the detection of TUNEL and Bax, Bcl-2, and caspase-3 levels. Taken together, SAL alleviated furan-induced hepatocyte apoptosis via altering the disordered homeostasis of bile acids and hepatic tight junctions.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yucai Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
25
|
Alsafra Z, Scholl G, De Meulenaer B, Eppe G, Saegerman C. Hazard Ratio and Hazard Index as Preliminary Estimators Associated to the Presence of Furans and Alkylfurans in Belgian Foodstuffs. Foods 2022; 11:foods11162453. [PMID: 36010452 PMCID: PMC9407134 DOI: 10.3390/foods11162453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
This paper provides an estimation of the hazard related to the presence of furan and five alkyl furans (2- and 3-methylfuran, 2-ethylfuran, 2,5- and 2,3-dimethylfuran) in foodstuffs available in the Belgian market. To achieve this objective, a specific sampling plan was designed to ensure that the samples collected (n = 1003) represent the diversity of the Belgian food chain. Herein, the concepts of the Hazard Ratio of a sample (HRs) and the Hazard Index of a sample (HIs) were introduced to primarily characterize the hazard related to the co-occurrence of these compounds. The HRs was measured as the ratio of the potential daily exposure to a substance (expressed in mg/Kg of food) to both the 10% reference dose level for chronic effects (expressed in mg/(kg b.w*day)) and the human standard weight (expressed in kg). Whereas the HIs is the sum of the HRs of compounds that affect the same target organ/system, a hazard index greater than one indicates a highly contaminated matrix that could induce a hazard. It is an alarm indicating that additional attention should be given to this matrix. This may involve additional analyses to confirm the high level, to identify sources, etc. It is also an alarm for the risk assessor to be very careful with flagged matrices and to avoid combination with other matrices. The HIs highlight a relatively low concern for all foods analyzed (HI median < 1.0) with a relatively higher suspected hazard for coffee drinks (HI median = 0.068, HI max = 0.57). This preliminary estimation of the potential hazard suggests that coffee beverages should be examined in more detail in a full risk assessment and that coffee consumption should be taken with caution given the levels of furan and alkylfurans reported in this study.
Collapse
Affiliation(s)
- Zouheir Alsafra
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
| | - Bruno De Meulenaer
- Department of Food Safety and Food Quality, Nutrifoodchem Unit, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
- Correspondence: (G.E.); (C.S.)
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR), Fundamental and Applied Research for Animal Health (FARAH) Centre, Faculty of Veterinary Medicine, University of Liege, Quartier Vallée 2, Avenue de Cureghem 7A, B-42, Sart-Tilman, B-4000 Liege, Belgium
- Correspondence: (G.E.); (C.S.)
| |
Collapse
|
26
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
27
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Bignami M, Fürst P, Tard A, Van Haver E. Safety assessment of 2-methyloxolane as a food extraction solvent. EFSA J 2022; 20:e07138. [PMID: 35317123 PMCID: PMC8923129 DOI: 10.2903/j.efsa.2022.7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of 2-methyloxolane as an extraction solvent under the intended conditions of use and the maximum residue limits (MRLs) proposed by the applicant. 2-Methyloxolane is intended to be used in processes currently applying hexane for oil and protein extraction from plant sources or for extraction of food additives. The proposed MRLs for the following uses are: (i) 1 mg/kg in fat, oil or butter; (ii) 10 mg/kg in defatted protein products, defatted flour and other defatted solid ingredients; (iii) 1 mg/kg in food category 13 (foods intended for particular nutritional uses as defined by Directive 2009/39/EC); and (iv) 1 mg/kg for the extraction of food additives. The Panel calculated the dietary exposure with the highest potential maximum (95th percentile) for toddlers as 0.32 mg/kg body weight (bw) per day. Based on the available toxicological data, the Panel concluded that 2-methyloxolane was rapidly metabolised with a low bioaccumulation potential and does not raise a concern for genotoxicity. The Panel identified different no observed adverse effect levels (NOAELs) in a subchronic oral toxicity study in rats, an oral developmental toxicity study and an extended one-generation reproductive toxicity study, and a TDI of 1 mg/kg bw per day for 2-methyloxolane was derived based on the lowest identified NOAEL (100 mg/kg bw per day) for reproductive and developmental toxicity. This TDI was not exceeded in any of the population groups at the mean and 95th percentile exposure. The Panel concluded that the extraction solvent 2-methyloxolane does not raise a safety concern when used according to the intended conditions and at the proposed MRLs in the extracted foods or food ingredients.
Collapse
|
28
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
29
|
Ortiz-Zamora L, Ferreira JV, de Oliveira NKS, de Molfetta FA, Hage-Melim LIS, Fernandes CP, Oliveira AEMFM. Potential implications of vouacapan compounds for insecticidal activity: an in silico study. Recent Pat Biotechnol 2022; 16:155-173. [PMID: 34994338 DOI: 10.2174/1872208316666220106110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND From the fruits and seeds of the species of Pterodon, it is possible to obtain two main products: the essential oil and oleoresin. In oleoresin, numerous vouacapan compounds have been demonstrated to have biological potential, including insecticidal activity. OBJECTIVE In silico studies were performed to identify potential candidates for natural insecticides among the vouacapans present in the genus Pterodon. MATERIALS AND METHODS Molecular docking and molecular dynamics studies were performed to analyze the interaction of vouacapan compounds with acetylcholinesterase of Drosophila melanogaster. Pharmacokinetic parameters regarding physicochemical properties, plasma protein binding, and activity in the central nervous system were evaluated. The toxicological properties of the selected molecules were predicted using Malathion as the reference compound. RESULTS 6α,7β-dimethoxivouacapan-17-ene (15) showed a high number of interactions and scores in molecular docking studies. This result suggests that this compound exhibits an inhibitory activity of the enzyme acetylcholinesterase. Regarding physicochemical properties, this compound showed the best results, besides presenting low cutaneous permeability values, suggesting null absorption. Molecular dynamics studies demonstrated few conformational changes in the structure of the complex formed by compound 4 and acetylcholinesterase enzyme throughout the simulation time. CONCLUSION It was determined that compound 4 (vouacapan 6α,7β,17β,19-tetraol) is an excellent candidate for usage as a natural insecticide.
Collapse
Affiliation(s)
- Lisset Ortiz-Zamora
- Post-Graduate Program in Tropical Biodiversity, Amapá Federal University, Macapá, Amapá, Brazil
- Laboratory of Phytopharmaceutical Nanobiotechnology, Amapá Federal University, Macapá, Amapá, Brazil
| | - Jaderson V Ferreira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
| | - Nayana K S de Oliveira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
| | - Fábio A de Molfetta
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Lorane I S Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| | - Anna E M F M Oliveira
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| |
Collapse
|
30
|
Taunk K, Porto-Figueira P, Pereira JAM, Taware R, da Costa NL, Barbosa R, Rapole S, Câmara JS. Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer. Metabolites 2022; 12:36. [PMID: 35050157 PMCID: PMC8780352 DOI: 10.3390/metabo12010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary volatile organic metabolites (uVOMs) to discriminate among LC patients from CTRL. Overall, 147 VOMs of several chemistries were identified in the intervention groups-including naphthalene derivatives, phenols, and organosulphurs-augmented in the LC group. In contrast, benzene and terpenic derivatives were found to be more prevalent in the CTRL group. The volatomic data obtained were processed using advanced statistical analysis, namely partial least square discriminative analysis (PLS-DA), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. This resulted in the identification of nine uVOMs with a higher potential to discriminate LC patients from CTRL subjects. These were furan, o-cymene, furfural, linalool oxide, viridiflorene, 2-bromo-phenol, tricyclazole, 4-methyl-phenol, and 1-(4-hydroxy-3,5-di-tert-butylphenyl)-2-methyl-3-morpholinopropan-1-one. The metabolic pathway analysis of the data obtained identified several altered biochemical pathways in LC mainly affecting glycolysis/gluconeogenesis, pyruvate metabolism, and fatty acid biosynthesis. Moreover, acetate and octanoic, decanoic, and dodecanoic fatty acids were identified as the key metabolites responsible for such deregulation. Furthermore, studies involving larger cohorts of LC patients would allow us to consolidate the data obtained and challenge the potential of the uVOMs as candidate biomarkers for LC.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - Priscilla Porto-Figueira
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - Nattane Luíza da Costa
- Instituto de Informática, Alameda Palmeiras, Quadra D, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (N.L.d.C.); (R.B.)
| | - Rommel Barbosa
- Instituto de Informática, Alameda Palmeiras, Quadra D, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (N.L.d.C.); (R.B.)
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science (NCCS), Ganeshkhind, SPPU Campus, Pune 411007, India; (K.T.); (R.T.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (P.P.-F.); (J.A.M.P.)
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
31
|
Owumi SE, Arunsi UO, Otunla MT, Oluwasuji IO. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats. J Biomed Res 2022. [DOI: 10.7555/jbr.36.20220108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Botta C, Coisson JD, Ferrocino I, Colasanto A, Pessione A, Cocolin L, Arlorio M, Rantsiou K. Impact of Electrolyzed Water on the Microbial Spoilage Profile of Piedmontese Steak Tartare. Microbiol Spectr 2021; 9:e0175121. [PMID: 34787437 PMCID: PMC8597643 DOI: 10.1128/spectrum.01751-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
A low initial contamination level of the meat surface is the sine qua non to extend the subsequent shelf life of ground beef for as long as possible. Therefore, the short- and long-term effects of a pregrinding treatment with electrolyzed water (EW) on the microbiological and physicochemical features of Piedmontese steak tartare were here assessed on site, by following two production runs through storage under vacuum packaging conditions at 4°C. The immersion of muscle meat in EW solution at 100 ppm of free active chlorine for 90 s produced an initial surface decontamination with no side effects or compositional modifications, except for an external color change that was subsequently masked by the grinding step. However, the initially measured decontamination was no longer detectable in ground beef, perhaps due to a quick recovery by bacteria during the grinding step from the transient oxidative stress induced by the EW. We observed different RNA-based metataxonomic profiles and metabolomic biomarkers (volatile organic compounds [VOCs], free amino acids [FAA], and biogenic amines [BA]) between production runs. Interestingly, the potentially active microbiota of the meat from each production run, investigated through operational taxonomic unit (OTU)-, oligotyping-, and amplicon sequence variant (ASV)-based bioinformatic pipelines, differed as soon as the early stages of storage, whereas microbial counts and biomarker dynamics were significantly distinguishable only after the expiration date. Higher diversity, richness, and abundance of Streptococcus organisms were identified as the main indicators of the faster spoilage observed in one of the two production runs, while Lactococcus piscium development was the main marker of shelf life end in both production runs. IMPORTANCE Treatment with EW prior to grinding did not result in an effective intervention to prolong the shelf life of Piedmontese steak tartare. Our RNA-based approach clearly highlighted a microbiota that changed markedly between production runs but little during the first shelf life stages. Under these conditions, an early metataxonomic profiling might provide the best prediction of the microbiological fate of each batch of the product.
Collapse
Affiliation(s)
- C. Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - J. D. Coisson
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - I. Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - A. Colasanto
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - A. Pessione
- Laemmegroup S.r.l. a Tentamus Company, Moncalieri, Italy
| | - L. Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - M. Arlorio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - K. Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
33
|
Zheng X, Wang X, Ding Z, Li W, Peng Y, Zheng J. Metabolic activation of deferiprone mediated by CYP2A6. Xenobiotica 2021; 51:1282-1291. [PMID: 34006188 DOI: 10.1080/00498254.2021.1931729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deferiprone (DFP) is a metal chelating agent generally used to treat patients with thalassaemia, due to iron overload in clinical settings.Studies have revealed that long-term use of DFP can induce hepatotoxicity, however, mechanisms of its toxic action remain unclear. The present studies are aimed to characterize the reactive metabolite of DFP, to define the metabolic pathway, and to determine the P450 enzymes participating in the bioactivation.A demethylation metabolite (M1) was observed in rat liver microsomal incubations. Additionally, a glutathione (GSH) conjugate (M2) and an N-acetylcysteine (NAC) conjugate (M3) were detected in microsomal incubations fortified with DFP and GSH/NAC.Biliary M2 and urinary M3 were respectively found in animals administered DFP.CYP2A6 enzyme dominated the catalysis to bioactivate DFP.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
34
|
Yap M, Gleeson D, O’Toole PW, O’Sullivan O, Cotter PD. Seasonality and Geography Have a Greater Influence than the Use of Chlorine-Based Cleaning Agents on the Microbiota of Bulk Tank Raw Milk. Appl Environ Microbiol 2021; 87:e0108121. [PMID: 34469196 PMCID: PMC8552886 DOI: 10.1128/aem.01081-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Cleaning of the production environment is vital to ensure the safety and quality of dairy products. Although cleaning with chlorine-based agents is widely adopted, it has been associated with detrimental effects on milk quality and safety, which has garnered increasing interest in chlorine-free cleaning. However, the influence of these methods on the milk microbiota is not well documented. This study investigated the factors that influence the raw milk microbiota, with a focus on the differences when chlorine-based and chlorine-free cleaning of milking equipment are used. Bulk tank raw milk was sampled during three sampling months (April, August, and November), from farms across Ireland selected to capture the use of different cleaning methods, i.e., exclusively chlorine-based (n = 51) and chlorine-free cleaning (n = 92) and farms that used chlorine-free agents for the bulk tank and chlorine-based cleaning agents for the rest of the equipment (n = 28). Shotgun metagenomic analysis revealed the significant influence of seasonal and geographic factors on the bulk tank milk microbiota, indicated by differences in diversity, taxonomic composition, and functional characteristics. Taxonomic and functional profiles of samples collected in November clustered separately from those of samples collected in other months. In contrast, cleaning methods only accounted for 1% of the variation in the bulk tank milk bacterial community, and samples collected from farms using chlorine-based versus chlorine-free cleaning did not differ significantly, suggesting that the chlorine-free approaches used did not negatively impact microbiological quality. This study shows the value of shotgun metagenomics in advancing our knowledge of the raw milk microbiota. IMPORTANCE The microbiota of raw milk is affected by many factors that can control or promote the introduction of undesirable microorganisms. Chlorine-based cleaning agents have been commonly used due to their effectiveness in controlling undesirable microorganisms, but they have been associated with the formation of chlorine residues that are detrimental to product quality and may impact consumer health. Chlorine-free alternatives have been recommended in some countries, but the influence of cleaning agents on the milk microbiota is unknown. Here, we investigated the influence of cleaning methods and other factors on bulk tank raw milk. Results showed that season and location had a greater influence on the milk microbiota than the cleaning agents used. Indeed, the similar microbiota compositions of raw milk from farms that used chlorine-based and those that used chlorine-free cleaning methods supports the further use of chlorine-free cleaning agents in dairy production.
Collapse
Affiliation(s)
- Min Yap
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - David Gleeson
- Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Orla O’Sullivan
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D. Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
35
|
Variable Retort Temperature Profiles (VRTPs) and Retortable Pouches as Tools to Minimize Furan Formation in Thermally Processed Food. Foods 2021; 10:foods10092205. [PMID: 34574319 PMCID: PMC8467077 DOI: 10.3390/foods10092205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Furan and its derivates are present in a wide range of thermally processed foods and are of significant concern in jarred baby and toddler foods. Furan formation is attributed to chemical reactions between a variety of precursors and a high processing temperature. Also, some kinetic models to represent its formation in different food materials have been studied and could predict the furan formation under simulated operating conditions. Therefore, this review aims to analyze and visualize how thermally processed foods might be improved based on optimal control of processing temperature and package design (e.g., retort pouches) to diminish furan formation and maximize quality retention. Many strategies have been studied and applied to reduce furan levels. However, an interesting approach that has not been explored is the thermal process design based on optimum variable retort temperature profiles (VRTPs) and the use of retortable pouches considering the microstructural changes of food along the process. The target of process optimization would be developed by minimizing the microstructural damage of the food product. It could be possible to reduce the furan level and simultaneously preserve the nutritional value through process optimization.
Collapse
|
36
|
Russo MT, De Luca G, Palma N, Leopardi P, Degan P, Cinelli S, Pepe G, Mosesso P, Di Carlo E, Sorrentino C, Musiani P, Crebelli R, Bignami M, Dogliotti E. Oxidative Stress, Mutations and Chromosomal Aberrations Induced by In Vitro and In Vivo Exposure to Furan. Int J Mol Sci 2021; 22:9687. [PMID: 34575853 PMCID: PMC8465244 DOI: 10.3390/ijms22189687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1-/- mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.
Collapse
Affiliation(s)
- Maria Teresa Russo
- National Centre for Chemical Products, Cosmetics and Consumer Protection, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gabriele De Luca
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Nieves Palma
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paola Leopardi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paolo Degan
- IRCCS AOU San Martino, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy;
| | - Serena Cinelli
- European Research Biology Center, Via Tito Speri 12/14, Pomezia, 00071 Rome, Italy;
| | - Gaetano Pepe
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Pasquale Mosesso
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Piero Musiani
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
| | - Riccardo Crebelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| |
Collapse
|
37
|
Cincotta F, Brighina S, Condurso C, Arena E, Verzera A, Fallico B. Sugars Replacement as a Strategy to Control the Formation of α-Dicarbonyl and Furanic Compounds during Cookie Processing. Foods 2021; 10:2101. [PMID: 34574211 PMCID: PMC8466310 DOI: 10.3390/foods10092101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023] Open
Abstract
In the last decade, several preventive strategies were considered to mitigate the chemical hazard accumulation in food products. This work aimed to study the effect of different sugars on the development of the main chemical hazard in cookies. For this purpose, model biscuits prepared using sucrose, fructose, and glucose were baked at different temperatures (150, 170, and 190 °C) and for different times (from 5 to 45 min), and the levels of α-dicarbonyl compounds, such as 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO), 5-hydroxymethylfurfural (HMF), and furanic aromatic compounds were monitored. The replacement of sucrose in the cookie recipes with monosaccharides had as a consequence the highest accumulation of 3-DG (200-600 times higher), MGO, HMF, and furanic volatile compounds, while the use of sucrose allowed for maintaining the 3-DG, MGO, and HMF levels at less than 10 mg/kg dry matter in cookies for the estimated optimal baking time. Moreover, cookies with sucrose were characterised in terms of volatile compounds, mainly in terms of lipid oxidation products, while cookies with fructose or glucose baked at the highest temperature were characterised almost exclusively by Maillard reaction products, confirming a faster development of this reaction during baking at the studied temperatures.
Collapse
Affiliation(s)
- Fabrizio Cincotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Selina Brighina
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Concetta Condurso
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Elena Arena
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Antonella Verzera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Biagio Fallico
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| |
Collapse
|
38
|
Genovese A, De Vivo A, Aprea A, Cristina Tricarico M, Sacchi R, Sarghini F. Particle size and variety of coffee used as variables in mitigation of furan and 2-methylfuran content in espresso coffee. Food Chem 2021; 361:130037. [PMID: 34029909 DOI: 10.1016/j.foodchem.2021.130037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022]
Abstract
In this study, the concentration of furan and 2-methylfuran in espresso coffee (EC) obtained from Arabica and Robusta coffee varieties was determined as a function of specific particle size. The particle size and coffee variety significantly influenced the level of furan and 2-methylfuran. In Arabica variety, furan and 2-methylfuran level increased with increasing particle size. Particularly, from C<200μm to C>425μm fractions, furan increased from 68.27 to 91.48 ng mL-1 while 2-methylfuran from 404.31 to 634.64 ng mL-1. In Robusta variety, the highest concentration of furan and 2-methylfuran occurred in ECs prepared using C300-425μm fraction showing values of 116.39 ng mL-1 and 845.14 ng mL-1, respectively, for furan and 2-methylfuran. On the basis of this experiment, it is possible to establish a mitigation strategy by manipulating the particle size and coffee variety in order to reduce the level of furan and 2-methylfuran in EC up to 11.4% and 18.8%, respectively.
Collapse
Affiliation(s)
- Alessandro Genovese
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy.
| | - Angela De Vivo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Angela Aprea
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | | | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Fabrizio Sarghini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| |
Collapse
|
39
|
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4332. [PMID: 33921874 PMCID: PMC8073677 DOI: 10.3390/ijerph18084332] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Acrylamide is a contaminant as defined in Council Regulation (EEC) No 315/93 and as such, it is considered a chemical hazard in the food chain. The toxicity of acrylamide has been acknowledged since 2002, among its toxicological effects on humans being neurotoxicity, genotoxicity, carcinogenicity, and reproductive toxicity. Acrylamide has been classified as carcinogenic in the 2A group, with human exposure leading to progressive degeneration of the peripheral and central nervous systems characterized by cognitive and motor abnormalities. Bakery products (bread, crispbread, cakes, batter, breakfast cereals, biscuits, pies, etc.) are some of the major sources of dietary acrylamide. The review focuses on the levels of acrylamide in foods products, in particular bakery ones, and the risk that resulting dietary intake of acrylamide has on human health. The evolving legislative situation regarding the acrylamide content from foodstuffs, especially bakery ones, in the European Union is discussed underlining different measures that food producers must take in order to comply with the current regulations regarding the acrylamide levels in their products. Different approaches to reduce the acrylamide level in bakery products such as the use of asparginase, calcium salts, antioxidants, acids and their salts, etc., are described in detail.
Collapse
Affiliation(s)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (C.S.); (A.D.)
| | | |
Collapse
|
40
|
Matos RA, Adams M, Sabaté J. Review: The Consumption of Ultra-Processed Foods and Non-communicable Diseases in Latin America. Front Nutr 2021; 8:622714. [PMID: 33842521 PMCID: PMC8024529 DOI: 10.3389/fnut.2021.622714] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
The objective of this article is to assess current trends in Latin America with respect to the consumption of ultra-processed foods and non-communicable diseases. This review addresses the rapid growth of the ultra-processed foods market in Latin America which, along with other social and environmental factors, has been shown to be highly influential in the prevalence of non-communicable diseases such as obesity, type 2 diabetes, hypertension and cardiovascular disease, cancer, and all-cause mortality. Ultra-processed foods represent a health concern for a number of reasons. They are generally calorically dense and high in sodium, sugar, and saturated and trans fats, and low in fiber and protein. Additionally, they may contain additives and neoformed compounds that affect health in ways that have not been adequately researched. Furthermore, the packaging of ultra-processed foods may contain hormone disruptors whose effects on humans are not entirely clear. Associations between ultra-processed foods and cardio-metabolic dysfunction, as well as several plausible mechanisms, will be evaluated.
Collapse
Affiliation(s)
- Rodrigo A Matos
- EP Ingeniería de Industrias Alimentarias, Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, Lima, Peru
| | - Michelle Adams
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
41
|
Gratz M, Sevenich R, Hoppe T, Schottroff F, Vlaskovic N, Belkova B, Chytilova L, Filatova M, Stupak M, Hajslova J, Rauh C, Jaeger H. Gentle Sterilization of Carrot-Based Purees by High-Pressure Thermal Sterilization and Ohmic Heating and Influence on Food Processing Contaminants and Quality Attributes. Front Nutr 2021; 8:643837. [PMID: 33829035 PMCID: PMC8020890 DOI: 10.3389/fnut.2021.643837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pressure-enhanced sterilization (PES) and ohmic heating (OH) are two emerging sterilization techniques, currently lacking implementation in the food industry. However, both technologies offer significant benefits in terms of spore inactivation using reduced thermal intensity in food products, as well as minimized effects on sensory and nutritional profiles. In this study, PES and OH were tested based on possible food safety process windows in comparison to thermal retorting, to optimize the food quality of carrot-based purees. The following parameters related to food quality were tested: texture, carotenoid content, color, and detectable amount of food processing contaminants (FPC) formed. Application of the innovative sterilization techniques resulted in a better retention of color, texture, and carotenoids (for PES) as well as a reduced formation of food processing contaminants. Importantly, a significant reduction in the formation of furan and its derivates was observed, compared to the retorted samples. Hence, both sterilization technologies showed promising results in the mitigation of potential toxic processing contaminants and retention of quality attributes.
Collapse
Affiliation(s)
- Maximilian Gratz
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Robert Sevenich
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany.,Leibniz Institute for Agriculture Engineering and Bioeconomy (ATB) Potsdam, Berlin, Germany
| | - Thomas Hoppe
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
| | - Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Core Facility Food & Bio Processing, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nevena Vlaskovic
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Beverly Belkova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (VSCHT), Prague, Czechia
| | - Lucie Chytilova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (VSCHT), Prague, Czechia
| | - Maria Filatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (VSCHT), Prague, Czechia
| | - Michal Stupak
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (VSCHT), Prague, Czechia
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology (VSCHT), Prague, Czechia
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), Berlin, Germany
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
42
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Wright M, Benigni R, Bolognesi C, Chipman K, Cordelli E, Degen G, Marzin D, Svendsen C, Carfì M, Vianello G, Mennes W. Scientific Opinion on Flavouring Group Evaluation 67, Revision 3 (FGE.67Rev3): consideration of 23 furan-substituted compounds evaluated by JECFA at the 55th, 65th, 69th and 86th meetings. EFSA J 2021; 19:e06362. [PMID: 33552300 PMCID: PMC7856567 DOI: 10.2903/j.efsa.2021.6362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Panel on Food Additives and Flavourings (FAF) was requested to consider the JECFA evaluations of 25 flavouring substances assigned to the Flavouring Group Evaluation 67 (FGE.67Rev3), using the Procedure as outlined in the Commission Regulation (EC) No 1565/2000. Eleven substances have already been considered in FGE.67 and its revisions (FGE.67Rev1 and FGE.67Rev2). During the current assessment, two substances were no longer supported by industry, therefore 12 candidate substances are evaluated in FGE.67Rev3. New genotoxicity and toxicity data are available for 2-pentylfuran [FL-no: 13.059] and 2-acetylfuran [FL-no: 13.054], which are representative substances of subgroup IV [FL-no: 13.069, 13.106, 13.148] and VI-B [FL-no: 13.045, 13.070, 13.083, 13.101, 13.105, 13.138, 13.163], respectively. Based on these data, the Panel concluded that the concern for genotoxicity is ruled out for both [FL-no: 13.054] and [FL-no: 13.059] and consequently for the substances that they represent. Since the candidate substances cannot be anticipated to be metabolised to innocuous products only, they were evaluated along the B-side of the Procedure. The Panel derived a NOAEL of 22.6 mg/kg bw per day and a BMDL of 8.51 mg/kg bw per day, for 2-acetylfuran and 2-pentylfuran, respectively. For all 12 substances sufficient margins of safety were calculated when based on the MSDI approach. Adequate specifications for the materials of commerce are available for all 23 flavouring substances. The Panel agrees with JECFA conclusions, for all 23 substances, 'No safety concern at estimated levels of intake as flavouring substances' based on the MSDI approach. For 18 substances [FL-no: 13.021, 13.022, 13.023, 13.024, 13.031, 13.045, 13.047, 13.054, 13.059, 13.074, 13.083, 13.101, 13.105, 13.106, 13.138, 13.148, 13.163 and 13.190], the mTAMDI intake estimates are above the threshold of toxicological concern (TTC) for their structural classes and more reliable data on uses and use levels are required to finalise their evaluation.
Collapse
|
43
|
Muelbert M, Bloomfield FH, Pundir S, Harding JE, Pook C. Olfactory Cues in Infant Feeds: Volatile Profiles of Different Milks Fed to Preterm Infants. Front Nutr 2021; 7:603090. [PMID: 33521036 PMCID: PMC7843498 DOI: 10.3389/fnut.2020.603090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Smell is determined by odor-active volatile compounds that bind to specific olfactory receptors, allowing us to discriminate different smells. Olfactory stimulation may assist with digestion and metabolism of feeds in the neonate by activation of the cephalic phase response of digestion. Infants' physiological responses to the smell of different milks suggest they can distinguish between breastmilk and infant formula. We aimed to describe the profile of volatile compounds in preterm breastmilk and investigate how this differed from that of other preterm infant feeding options including pasteurized donor breastmilk, breastmilk with bovine milk-based fortifier, human milk-based products and various infant formulas. Methods: Forty-seven milk samples (13 different infant formulas and 34 human milk-based samples) were analyzed. Volatile compounds were extracted using Solid Phase Micro Extraction. Identification and relative quantification were carried out by Gas Chromatography with Mass Spectrometry. Principal Component Analysis (PCA) and one-way Analysis of Variance (ANOVA) with Tukey's HSD (parametric data) or Conover's post-hoc test (non-parametric data) were used as appropriate to explore differences in volatile profiles among milk types. Results: In total, 122 compounds were identified. Breastmilk containing bovine milk-based fortifier presented the highest number of compounds (109) and liquid formula the lowest (70). The profile of volatile compounds varied with 51 compounds significantly different (adjusted p < 0.001) among milk types. PCA explained 47% of variability. Compared to preterm breastmilk, the profile of volatile compounds in breastmilk with added bovine milk-based fortifier was marked by presence of fatty acids and their esters, ketones and aldehydes; infant formulas were characterized by alkyls, aldehydes and furans, and human milk-based products presented high concentrations of aromatic hydrocarbons, terpenoids and specific fatty acids. Conclusions: Sensory-active products of fatty acid oxidation are the major contributors to olfactory cues in infant feeds. Analysis of volatile compounds might be useful for monitoring quality of milk and detection of oxidation products and environmental contaminants. Further research is needed to determine whether these different volatile compounds have biological or physiological effects in nutrition of preterm infants.
Collapse
Affiliation(s)
- Mariana Muelbert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Shikha Pundir
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Chris Pook
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb) 2021; 10:68-78. [PMID: 33613974 PMCID: PMC7885189 DOI: 10.1093/toxres/tfaa093] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The comet assay is a versatile method for measuring DNA strand breaks in individual cells. It can also be applied to cells isolated from treated animals. In this review, we highlight advantages and limitations of this in vivo comet assay in a regulatory context. Modified versions of the standard protocol detect oxidized DNA bases and may be used to reveal sites of DNA base loss, DNA interstrand crosslinks, and the extent of DNA damage induced indirectly by reactive oxygen species elicited by chemical-induced oxidative stress. The assay is, however, at best semi-quantitative, and we discuss possible approaches to improving DNA damage quantitation and highlight the necessity of optimizing protocol standardization to enhance the comparability of results between laboratories. As a genotoxicity test in vivo, the in vivo comet assay has the advantage over the better established micronucleus erythrocyte test that it can be applied to any organ, including those that are specific targets of chemical carcinogens or those that are the first sites of contact of ingested or inhaled mutagens. We illustrate this by examples of its use in risk assessment for the food contaminants ochratoxin and furan. We suggest that improved quantitation is required to reveal the full potential of the comet assay and enhance its role in the battery of in vivo approaches to characterize the mechanisms of toxicity and carcinogenicity of chemicals and to aid the determination of safe human exposure limits.
Collapse
Affiliation(s)
- Eugenia Cordelli
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Francesca Pacchierotti
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| |
Collapse
|
45
|
Stegmüller S, Beißmann N, Kremer JI, Mehl D, Baumann C, Richling E. A New UPLC-qTOF Approach for Elucidating Furan and 2-Methylfuran Metabolites in Human Urine Samples after Coffee Consumption. Molecules 2020; 25:molecules25215104. [PMID: 33153167 PMCID: PMC7663408 DOI: 10.3390/molecules25215104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
We have investigated urine samples after coffee consumption using targeted and untargeted approaches to identify furan and 2-methylfuran metabolites in urine samples by UPLC-qToF. The aim was to establish a fast, robust, and time-saving method involving ultra-performance liquid chromatography-quantitative time-of-flight tandem mass spectrometry (UPLC-qToF-MS/MS). The developed method detected previously reported metabolites, such as Lys-BDA, and others that had not been previously identified, or only detected in animal or in vitro studies. The developed UPLC-qToF method detected previously reported metabolites, such as lysine-cis-2-butene-1,4-dial (Lys-BDA) adducts, and others that had not been previously identified, or only detected in animal and in vitro studies. In sum, the UPLC-qToF approach provides additional information that may be valuable in future human or animal intervention studies.
Collapse
Affiliation(s)
- Simone Stegmüller
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Nadine Beißmann
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Jonathan Isaak Kremer
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Denise Mehl
- AB SCIEX Germany GmbH, 64293 Darmstadt, Germany; (D.M.); (C.B.)
| | | | - Elke Richling
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
- Correspondence: ; Tel./Fax.: +0049-631-205-4061 (ext. 3085)
| |
Collapse
|
46
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
47
|
Cremonesi P, Morandi S, Ceccarani C, Battelli G, Castiglioni B, Cologna N, Goss A, Severgnini M, Mazzucchi M, Partel E, Tamburini A, Zanini L, Brasca M. Raw Milk Microbiota Modifications as Affected by Chlorine Usage for Cleaning Procedures: The Trentingrana PDO Case. Front Microbiol 2020; 11:564749. [PMID: 33123103 PMCID: PMC7573252 DOI: 10.3389/fmicb.2020.564749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Milk microbiota represents a key point in raw milk cheese production and contributes to the development of typical flavor and texture for each type of cheese. The aim of the present study was to evaluate the influence of chlorine products usage for cleaning and sanitizing the milking equipment on (i) raw milk microbiota; (ii) the deriving whey-starter microbiota; and (iii) Trentingrana Protected Designation of Origin (PDO) cheese microbiota and volatilome. Milk samples from three farms affiliated to a Trentingrana PDO cheese factory were collected three times per week during a 6-weeks period in which a sodium hypochlorite detergent (period C) was used and during a subsequent 6-weeks period of non-chlorine detergent usage (period NC). Samples were subjected to microbiological [Standard Plate Count; coliforms; coagulase-positive staphylococci; and lactic acid bacteria (LAB)] and metagenomic analysis (amplification of V3-V4 regions of 16S rRNA gene performed on Illumina MiSeq platform). In addition, cheese volatilome was determined by SPME-GC-MS. In the transition from period C to period NC, higher SPC and LAB counts in milk were recorded. Milk metagenomic analysis showed a peculiar distinctive microbiota composition for the three farms during the whole experimental period. Moreover, differences were highlighted comparing C and NC periods in each farm. A difference in microbial population related to chlorine usage in bulk milk and vat samples was evidenced. Moreover, chlorine utilization at farm level was found to affect the whey-starter population: the usually predominant Lactobacillus helveticus was significantly reduced during NC period, whereas Lactobacillus delbrueckii had the exact opposite trend. Alpha- and beta-diversity revealed a separation between the two treatment periods with a higher presence of L. helveticus, L. delbrueckii, and Streptococcus thermophilus in cheese samples after NC detergent period. Cheese volatilome analysis showed a slight decrease in lipolysis during C period in the inner part of the cheese wheel. Although preliminary, these results suggest a profound influence on milk and cheese microbiota, as well as on raw milk cheese production and quality, due to the use of chlorine. However, further studies will be needed to better understand the complex relationship between chlorine and microbiota along all the cheese production steps.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Italy
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Nicola Cologna
- Trentingrana–Consorzio dei Caseifici Sociali Trentini s.c.a., Trento, Italy
| | - Andrea Goss
- Trentingrana–Consorzio dei Caseifici Sociali Trentini s.c.a., Trento, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Italy
| | | | - Erika Partel
- Technology Transfer Center, Edmund Mach Foundation, Trento, Italy
| | - Alberto Tamburini
- Department of Agricultural and Environmental Sciences, Faculty of Agricultural and Food Sciences, University of Milan, Milan, Italy
| | | | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| |
Collapse
|
48
|
Turck D, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel K, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Gelbmann W, Matijević L, Romero P, Knutsen HK. Safety of chia seeds ( Salvia hispanica L.) subject to thermal processing in relation to the formation of process contaminants as a novel food for extended uses. EFSA J 2020; 18:e06243. [PMID: 32994830 PMCID: PMC7507041 DOI: 10.2903/j.efsa.2020.6243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of chia seeds in foods subject to thermal processing which may result in the formation of process contaminants. The safety assessment of this novel food (NF) is based on previous assessments of chia seeds by the EFSA NDA Panel, information received from a public call for data by EFSA and information retrieved from an extensive literature search performed by EFSA. In 2019, during the overall safety assessment of chia seeds, the NDA panel retrieved one reference which, among others, investigated the formation of process contaminants, i.e. acrylamide, hydroxymethylfurfural and furfural, in wheat flour-based biscuits with added chia seeds flour. Based on this study, the Panel considers that there is a potential for substantial acrylamide formation in biscuits with 10-20% added chia seeds flour with low residual moisture contents (≤ 2%). The Panel is not aware of further scientific evidence corroborating these findings. The extensive new literature searches performed by EFSA did not show any relevant articles regarding either asparagine content or formation of process contaminants in chia seeds and products thereof. Information received from the call for data were either limited or inconclusive. The available evidence does not provide a basis to conclude whether or not the addition of chia seeds to foods undergoing heat treatment (at temperatures above 120°C) results in increased formation of acrylamide as compared to these foods without chia seeds. Reported concentrations of hydroxymethylfurfural and furfural in heat-treated chia seeds do not pose a safety concern. No information on other process contaminants in chia seeds was found.
Collapse
|
49
|
Kim YJ, Choi J, Lee G, Lee KG. Analysis of furan and monosaccharides in various coffee beans. Journal of Food Science and Technology 2020; 58:862-869. [PMID: 33678869 DOI: 10.1007/s13197-020-04600-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
The furan levels in commercial coffee product samples (17 instant coffees, 12 mixed coffee, 8 canned coffee) were 49-2155, 10-201 and 15-209 ng/g, respectively. Since thermal degradation/rearrangement of carbohydrates is the main source of furan, the concentrations of furan and monosaccharides (mannose, rhamnose, glucose, galactose and arabinose) were analysed in 26 green and roasted coffee bean (Coffea arabica) varieties. In coffee beans, furan levels ranged from 4.71 (Bourbon Cerrado, Brazil) to 8.63 mg/kg (San Vicente, Honduras). Galactose was the main monosaccharide in green beans, followed by arabinose, glucose, mannose and rhamnose, on average. Roasting decreased the glucose content by about 81%, and arabinose decreased about 27% in all coffee beans. Glucose decreased the greatest after roasting and is thereby considered the major contributor to the formation of furan.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 400-820 Republic of Korea
| | - Jaehee Choi
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 400-820 Republic of Korea
| | - Gaeun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 400-820 Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 400-820 Republic of Korea
| |
Collapse
|
50
|
Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, Chazelas E, Deschasaux M, Hercberg S, Galan P, Monteiro CA, Julia C, Touvier M. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern Med 2020; 180:283-291. [PMID: 31841598 PMCID: PMC6990737 DOI: 10.1001/jamainternmed.2019.5942] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Importance Ultraprocessed foods (UPF) are widespread in Western diets. Their consumption has been associated in recent prospective studies with increased risks of all-cause mortality and chronic diseases such as cancer, cardiovascular diseases, hypertension, and dyslipidemia; however, data regarding diabetes are lacking. Objective To assess the associations between consumption of UPF and risk of type 2 diabetes (T2D). Design, Setting, and Participants In this population-based prospective cohort study, 104 707 participants aged 18 years or older from the French NutriNet-Santé cohort (2009-2019) were included. Dietary intake data were collected using repeated 24-hour dietary records (5.7 per participant on average), designed to register participants' usual consumption for more than 3500 different food items. These were categorized according to their degree of processing by the NOVA classification system. Main Outcomes and Measures Associations between UPF consumption and risk of T2D were assessed using cause-specific multivariable Cox proportional hazard models adjusted for known risk factors (sociodemographic, anthropometric, lifestyle, medical history, and nutritional factors). Results A total of 104 707 participants (21 800 [20.8%] men and 82 907 [79.2%] women) were included. Mean (SD) baseline age of participants was 42.7 (14.5) years. Absolute T2D rates in the lowest and highest UPF consumers were 113 and 166 per 100 000 person-years, respectively. Consumption of UPF was associated with a higher risk of T2D (multi-adjusted hazard ratio [HR] for an absolute increment of 10 in the percentage of UPF in the diet, 1.15; 95% CI, 1.06-1.25; median follow-up, 6.0 years; 582 252 person-years; 821 incident cases). These results remained statistically significant after adjustment for several markers of the nutritional quality of the diet, for other metabolic comorbidities (HR, 1.13; 95% CI, 1.03-1.23), and for weight change (HR, 1.13; 95% CI, 1.01-1.27). The absolute amount of UPF consumption (grams per day) was consistently associated with T2D risk, even when adjusting for unprocessed or minimally processed food intake (HR for a 100 g/d increase, 1.05; 95% CI, 1.02-1.08). Conclusions and Relevance In this large observational prospective study, a higher proportion of UPF in the diet was associated with a higher risk of T2D. Even though these results need to be confirmed in other populations and settings, they provide evidence to support efforts by public health authorities to recommend limiting UPF consumption. Trial Registration ClinicalTrials.gov Identifier: NCT03335644.
Collapse
Affiliation(s)
- Bernard Srour
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Léopold K. Fezeu
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Benjamin Allès
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Charlotte Debras
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Nathalie Druesne-Pecollo
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Eloi Chazelas
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Mélanie Deschasaux
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Serge Hercberg
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
- Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Pilar Galan
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| | - Carlos A. Monteiro
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, São Paulo 01246-904, Brazil
| | - Chantal Julia
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
- Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France
| | - Mathilde Touvier
- Paris 13 University, Inserm, Inra, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center–University of Paris (CRESS), 93017 Bobigny, France
| |
Collapse
|