1
|
Liu W, Zhong X, Yi Y, Xie L, Zhou W, Cao W, Chen L. Prophylactic Effects of Betaine on Depression and Anxiety Behaviors in Mice with Dextran Sulfate Sodium-Induced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21041-21051. [PMID: 39276097 DOI: 10.1021/acs.jafc.4c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Ulcerative colitis (UC) is a typical type of inflammatory bowl disease, which is accompanied by an increased risk of depression and anxiety-related psychological symptoms. Betaine is a naturally derived compound that can function as an anti-inflammatory drug and a neuromodulator. In-depth exploration of the potential role of betaine in treating UC-related depression and anxiety is crucial. This study aimed to elucidate the effects of betaine on UC-related depression and anxiety and clarify the underlying mechanisms. A dextran sulfate sodium (DSS)-induced mice model was established by 4% DSS drinking ad libitum for 7 days. The colonic injury was measured using hematoxylin-eosin (HE) staining and Alcian blue-periodic acid Schiff (AB-PAS) staining. Depression and anxiety-like behaviors were separately evaluated using a forced swimming test (FST), a tail suspension test (TST), a light-dark box test (LDBT), and an open field test (OFT). Immunohistochemistry was used to detect DNA damage and neurogenesis in the hippocampus. Western blotting was applied to detect the protein levels of macrophage polarization in mice colons and the alteration of mitochondrial dysfunction and the cGAS-STING pathway in the hippocampus. Betaine strongly alleviated mucosal structural disorder and mucin secretion reduction and promoted M2-macrophage polarization in the colon of DSS-treated mice. In addition, betaine could mitigate depression- and anxiety-like behaviors in DSS-treated mice, reduce the DNA damage and mitochondrial dysfunction, and inhibit the cGAS-STING signaling pathway. Our study reveals the antidepression/anxiety effects of betaine and further demonstrates the potential mechanism by which betaine inhibits DNA damage and mitochondrial dysfunction to block the cGAS-STING pathway, thereby repairing neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Yi
- Institute Center of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lihua Xie
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyan Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
The Role of Betaine in Patients With Chronic Kidney Disease: a Narrative Review. Curr Nutr Rep 2022; 11:395-406. [PMID: 35792998 DOI: 10.1007/s13668-022-00426-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This narrative review aimed to explore the functions of betaine and discuss its role in patients with chronic kidney disease (CKD). RECENT FINDINGS Some studies on CKD animal models have shown the benefits of betaine supplementation, including decreased kidney damage, antioxidant recovery status, and decreased inflammation. Betaine (N-trimethylglycine) is an N-trimethylated amino acid with an essential regulatory osmotic function. Moreover, it is a methyl donor and has anti-inflammatory and antioxidant properties. Additionally, betaine has positive effects on intestinal health by regulating the osmolality and gut microbiota. Due to these crucial functions, betaine has been studied in several diseases, including CKD, in which betaine plasma levels decline with the progression of the disease. Low betaine levels are linked to increased kidney damage, inflammation, oxidative stress, and intestinal dysbiosis. Furthermore, betaine is considered an essential metabolite for identifying CKD stages.
Collapse
|
3
|
Rehman A, Mehta KJ. Betaine in ameliorating alcohol-induced hepatic steatosis. Eur J Nutr 2021; 61:1167-1176. [PMID: 34817678 PMCID: PMC8921017 DOI: 10.1007/s00394-021-02738-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023]
Abstract
Alcohol-associated liver disease (AALD) is one of most common chronic liver diseases. Hepatic steatosis is the earliest stage in AALD pathological spectrum, reversible by alcohol abstinence. Untreated steatosis can progress to steatohepatitis, fibrosis and/or cirrhosis. Considering the difficulties in achieving complete abstinence, challenges in disease reversal at advanced stages, high costs of AALD management and lack of standardised prescribed medications for treatment, it is essential to explore low-cost natural compounds that can target AALD at an early stage and halt or decelerate disease progression. Betaine is a non-hazardous naturally occurring nutrient. Here, we address the mechanisms of alcohol-induced hepatic steatosis, the role of betaine in reversing the effects i.e., its action against hepatic steatosis in animal models and humans, and the associated cellular and molecular processes. Accordingly, the review discusses how betaine restores the alcohol-induced reduction in methylation potential by elevating the levels of S-adenosylmethionine and methionine. It details how betaine reinstates alcohol-induced alterations in the expressions and/or activities of protein phosphtase-2A, FOXO1, PPAR-α, AMPK, SREBP-1c, fatty acid synthase, diacylglycerol transferase-2, adiponectin and nitric oxide. Interrelationships between these factors in preventing de novo lipogenesis, reducing hepatic uptake of adipose-tissue-derived free fatty acids, promoting VLDL synthesis and secretion, and restoring β-oxidation of fatty acids to attenuate hepatic triglyceride accumulation are elaborated. Despite its therapeutic potential, very few clinical trials have examined betaine’s effect on alcohol-induced hepatic lipid accumulation. This review will provide further confidence to conduct randomised control trials to enable maximum utilisation of betaine’s remedial properties to treat alcohol-induced hepatic steatosis.
Collapse
Affiliation(s)
- Aisha Rehman
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
4
|
Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. BIOLOGY 2021; 10:456. [PMID: 34067313 PMCID: PMC8224793 DOI: 10.3390/biology10060456] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Medicinal herbs and many food ingredients possess favorable biological properties that contribute to their therapeutic activities. One such natural product is betaine, a stable, nontoxic natural substance that is present in animals, plants, and microorganisms. Betaine is also endogenously synthesized through the metabolism of choline or exogenously consumed through dietary intake. Betaine mainly functions as (i) an osmolyte and (ii) a methyl-group donor. This review describes the major physiological effects of betaine in whole-body health and its ability to protect against both liver- as well as non-liver-related diseases and conditions. Betaine's role in preventing/attenuating both alcohol-induced and metabolic-associated liver diseases has been well studied and is extensively reviewed here. Several studies show that betaine protects against the development of alcohol-induced hepatic steatosis, apoptosis, and accumulation of damaged proteins. Additionally, it can significantly prevent/attenuate progressive liver injury by preserving gut integrity and adipose function. The protective effects are primarily associated with the regulation of methionine metabolism through removing homocysteine and maintaining cellular SAM:SAH ratios. Similarly, betaine prevents metabolic-associated fatty liver disease and its progression. In addition, betaine has a neuroprotective role, preserves myocardial function, and prevents pancreatic steatosis. Betaine also attenuates oxidant stress, endoplasmic reticulum stress, inflammation, and cancer development. To conclude, betaine exerts significant therapeutic and biological effects that are potentially beneficial for alleviating a diverse number of human diseases and conditions.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Paal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (MK.A.); (M.C.P.); (T.M.D.J.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Sanz-Serrano J, Vettorazzi A, Muruzabal D, Azqueta A, López de Cerain A. In Vitro Genotoxicity Assessment of Functional Ingredients: Betaine, Choline, and Taurine. Foods 2021; 10:339. [PMID: 33562510 PMCID: PMC7915792 DOI: 10.3390/foods10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
This article focuses on a complete in vitro genotoxicity assessment of three nutrients widely used as functional ingredients in the European market: betaine, choline, and taurine. The European Food Safety Authority (EFSA) tiered approach for food additives in concordance with the safety assessment of chemicals in food developed by Food and Agriculture Organization/World Health Organization (FAO/WHO) was followed; the miniaturized Ames test in Salmonella typhimurium TA97a, TA98, TA100, TA102, and TA1535 strains (following the principles of Organization for Economic Co-operation and Development (OECD) 471), and the micronucleus test (OECD 487) in TK6 cells were performed. In addition, the in vitro standard and enzyme-modified (human 8-oxoguanine DNA glycosylase 1 (hOGG), endonuclease III (EndoIII), human alkyladenine DNA glycosylase (hAAG)) comet assay (S9-/S9+) was conducted in order to assess the potential premutagenic lesions in TK6 cells. None of the compounds produced any signs of genotoxicity in any of the conditions tested. This article increases the limited evidence available and complements the EFSA recommendations for the in vitro genotoxicity testing of nutrients.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Zanella L, Vianello F. Functional Food from Endangered Ecosystems: Atriplex portulacoides as a Case Study. Foods 2020; 9:foods9111533. [PMID: 33114436 PMCID: PMC7692200 DOI: 10.3390/foods9111533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/22/2023] Open
Abstract
Biodiversity is a reservoir of potential sources of novel food and feed ingredients with suitable compositions for the improvement of the diet and well-being of humans and farmed animals. The halophyte Atriplex portulacoides occurs in habitats that are exposed to seawater inundations, and shows biochemical adaptations to saline and oxidative stresses. Its composition includes long chain lipids, sterols, phenolic compounds, glutathione and carotenoids. These organic compounds and micronutrients, such as Fe, Zn, Co and Cu, make this plant suitable as an optimal functional food that is potentially able to reduce oxidative stress and inflammatory processes in humans and animals. Indeed, many of these compounds have a protective activity in humans against cardiovascular pathologies, cancer, and degenerative processes related to aging. The analysis of its history as food and forage, which dates back thousands of years, attests that it can be safely consumed. Here, the limits of its chemical and microbiological contamination are suggested in order to comply with the European regulations. The productivity of A. portulacoides in natural environments, and its adaptability to non-saline soils, make it a potential crop of high economic interest.
Collapse
|