1
|
Lo Scalzo R, Morelli CF, Speranza G, Tatulli G, Scortichini M. Characterization and Purification of Phenols From Olea europaea L. and Assay Against Xylella fastidiosa Subsp. pauca. Chem Biodivers 2025:e202500527. [PMID: 40295186 DOI: 10.1002/cbdv.202500527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
The present study reports the characterization of main glucoside secoiridoid phenols from olive and of the respective aglycones as well as the bioassay of these compounds against Xylella fastidiosa, a pathogen microorganism responsible for a serious olive phytosanitary event occurred in Apulia (Italy) since 2013. The assayed secoiridoids were two native secondary metabolites, namely oleuropein and demethyloleuropein isolated and purified from leaves and from ripe drupes, respectively. Moreover, the corresponding aglycones were prepared in an easy, sustainable, and bio-based way, by adding olive juice drops on buffered solutions of oleuropein and demethyloleuropein. The secoiridoids oleuropein and demethyloleuropein were obtained with 80% chromatographic purity. The aglycones obtained from native compounds were respectively a mixture of isomers derived from oleuropein and oleacein derived from demethyloleuropein. These purified compounds were assayed against X. fastidiosa subsp. pauca at a starting concentration of 1 and 2 mM after 10-, 100-, and 1000-fold dilutions. Relevant activities were observed also towards the biofilm form of X. fastidiosa, especially for aglycones, after 100 (0.01 and 0.02 mM) and 1000 dilutions (0.001 and 0.002 mM). The data of the present study can pave the way for a sustainable method to face the relevant problem of X. fastidiosa infection.
Collapse
Affiliation(s)
- Roberto Lo Scalzo
- CREA-IT Consiglio per la Ricerca in Agricoltura, Centro di Ricerca per l'Ingegneria e le Trasformazioni Agro-Alimentari, Milano, Italy
| | - Carlo F Morelli
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Giovanna Speranza
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Tatulli
- CREA-DC Consiglio per la Ricerca in Agricoltura, Centro di Ricerca per la Difesa e la Certificazione, Roma, Italy
| | - Marco Scortichini
- CREA-OFA Consiglio per la Ricerca in Agricoltura, Centro di Ricerca per la Frutticoltura, Olivicoltura e Agrumicoltura, Roma, Italy
| |
Collapse
|
2
|
Moll L, Badosa E, De La Fuente L, Montesinos E, Planas M, Bonaterra A, Feliu L. Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa. PLANT DISEASE 2025; 109:327-340. [PMID: 39254847 DOI: 10.1094/pdis-07-24-1414-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates and mobile independent cells that move by twitching motility. The latter is essential for the systemic colonization of the host and is mediated through type IV pili. In previous reports, it has been demonstrated that peptides can affect different key processes of X. fastidiosa, but their effect on motility has never been assessed. In the present work, peptides previously identified and newly designed analogs were studied for their effect in vitro on the motility of X. fastidiosa, and their protective effect against almond leaf scorch was determined. By assessing the twitching fringe width in colonies and using microfluidic chambers, the inhibitory effect of BP100 on twitching motility was demonstrated. Interestingly, type IV pili of BP100-treated cells were similar in frequency and length and presented no morphological differences when compared with the nontreated control. The application of BP100 by endotherapy in almond plants inoculated with X. fastidiosa under greenhouse conditions significantly reduced population levels and showed less affected xylem vessels, which correlated with decreased disease symptoms. Therefore, BP100 is a promising candidate to manage almond leaf scorch caused by X. fastidiosa.[Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| |
Collapse
|
3
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
4
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
5
|
Burbank L, Gomez L, Shantharaj D, Abdelsamad N, Vasquez K, Burhans A, Ortega B, Rodriguez SH, Strickland J, Krugner R, De La Fuente L, Naegele R. Virulence Comparison of a Comprehensive Panel of Xylella fastidiosa Pierce's Disease Isolates from California. PLANT DISEASE 2024; 108:1555-1564. [PMID: 38105458 DOI: 10.1094/pdis-09-23-1923-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, has been found in all major grape-growing regions in California, U.S.A. Large collections of X. fastidiosa isolates are available from these areas, which enable comparative studies of pathogen genetic traits and virulence. Owing to the significant resource requirements for experiments with X. fastidiosa in grapevine, however, most studies use only a single isolate to evaluate disease, and it is not clear how much variability between isolates impacts disease development in experimental or natural settings. In this study, a comprehensive panel of X. fastidiosa isolates from all California grape-growing regions was tested for virulence in susceptible grapevine and in the model host plant, tobacco. Seventy-one isolates were tested, 29 in both grapevine and tobacco. The results of this study highlight the inherent variability of inoculation experiments with X. fastidiosa, including variation in disease severity in plants inoculated with a single isolate, and variability between experimental replicates. There were limited differences in virulence between isolates that were consistent across experimental replicates, or across different host plants. This suggests that choice of isolate within the X. fastidiosa subsp. fastidiosa Pierce's disease group may not make any practical difference when testing in susceptible grape varieties, and that pathogen evolution has not significantly changed virulence of Pierce's disease isolates within California. The location of isolation also did not dictate relative disease severity. This information will inform experimental design for future studies of X. fastidiosa in grapevine and provide important context for genomic research.
Collapse
Affiliation(s)
- Lindsey Burbank
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Laura Gomez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Noor Abdelsamad
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Kern Vasquez
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Alanna Burhans
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Brandon Ortega
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Sydney Helm Rodriguez
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Jaime Strickland
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | - Rodrigo Krugner
- USDA Agricultural Research Service; Crop Diseases, Pests, and Genetics Research Unit, Parlier, CA
| | | | - Rachel Naegele
- USDA Agricultural Research Service, Sugar Beet and Bean Research Unit, East Lansing, MI
| |
Collapse
|
6
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
7
|
Evaluation of Control Strategies for Xylella fastidiosa in the Balearic Islands. Microorganisms 2022; 10:microorganisms10122393. [PMID: 36557646 PMCID: PMC9780951 DOI: 10.3390/microorganisms10122393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
The emergence of Xylella fastidiosa (Xf) in the Balearic Islands in October 2016 was a major phytosanitary challenge with international implications. Immediately after its detection, eradication and containment measures included in Decision 2015/789 were implemented. Surveys intensified during 2017, which soon revealed that the pathogen was widely distributed on the islands and eradication measures were no longer feasible. In this review, we analyzed the control measures carried out by the Balearic Government in compliance with European legislation, as well as the implementation of its control action plan. At the same time, we contrasted them with the results of scientific research accumulated since 2017 on the epidemiological situation. The case of Xf in the Balearic Islands is paradigmatic since it concentrates on a small territory with one of the widest genetic diversities of Xf affecting crops and forest ecosystems. We also outline the difficulties of anticipating unexpected epidemiological situations in the legislation on harmful exotic organisms on which little biological information is available. Because Xf has become naturalized in the islands, coexistence alternatives based on scientific knowledge are proposed to reorient control strategies towards the main goal of minimizing damage to crops and the landscape.
Collapse
|
8
|
Trkulja V, Tomić A, Iličić R, Nožinić M, Milovanović TP. Xylella fastidiosa in Europe: From the Introduction to the Current Status. THE PLANT PATHOLOGY JOURNAL 2022; 38:551-571. [PMID: 36503185 PMCID: PMC9742796 DOI: 10.5423/ppj.rw.09.2022.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | - Andrija Tomić
- University of East Sarajevo, Faculty of Agriculture, Vuka Karadžića 30, 71123 East Sarajevo,
Bosnia and Herzegovina
| | - Renata Iličić
- University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad,
Serbia
| | - Miloš Nožinić
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | | |
Collapse
|
9
|
Lago C, Cornara D, Minutillo SA, Moreno A, Fereres A. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. PEST MANAGEMENT SCIENCE 2022; 78:4841-4849. [PMID: 35908181 PMCID: PMC9804339 DOI: 10.1002/ps.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticides are essential, though controversial tools in modern pest management. Insecticides can slow the spread of key vector-borne plant pathogens, but often lead to inconsistent results given that insecticide use is generally focused on acute toxicity under no-choice conditions. Here, we analysed the lethal (survival) and sublethal (feeding behaviour) effects of six commercial products (acetamiprid, deltamethrin, spinosad, sulfoxaflor, pyrethrin and kaolin) on Philaenus spumarius, vector of the bacterium Xylella fastidiosa. Furthermore, we assessed the impact of insecticides displaying different degrees of acute toxicity against spittlebugs (highest to lowest: acetamiprid, pyrethrin and kaolin) on the transmission of X. fastidiosa by P. spumarius under both free-choice and no-choice conditions. RESULTS Deltamethrin, acetamiprid and to a limited extent pyrethrin significantly altered the feeding behaviour of P. spumarius. Deltamethrin and acetamiprid were highly toxic against P. spumarius, but the mortality induced by exposure to pyrethrin was limited overall. By contrast, spinosad, sulfoxaflor and kaolin did not significantly impact P. spumarius feeding behaviour or survival. Under no-choice conditions, both pyrethrin and acetamiprid reduced the X. fastidiosa inoculation rate compared with kaolin and the control. On the other hand, pyrethrin reduced transmission, but acetamiprid failed to significantly affect bacterial inoculation under free-choice conditions. CONCLUSION Pyrethrin was the only compound able to reduce X. fastidiosa transmission under both free-choice and no-choice conditions. Xylella fastidiosa management strategy based exclusively on the evaluation of insecticide acute toxicity under no-choice conditions would most likely fail to prevent, or slow, bacterial spread. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Clara Lago
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Departamento de Producción AgrariaEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Daniele Cornara
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Department of Soil, Plant and Food SciencesEntomological and Zoological Section, University of Bari Aldo MoroBariItaly
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Serena Anna Minutillo
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| |
Collapse
|
10
|
Anguita-Maeso M, Ares-Yebra A, Haro C, Román-Écija M, Olivares-García C, Costa J, Marco-Noales E, Ferrer A, Navas-Cortés JA, Landa BB. Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Front Microbiol 2022; 13:866085. [PMID: 35910659 PMCID: PMC9330911 DOI: 10.3389/fmicb.2022.866085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Xylella fastidiosa represents a major threat to important crops worldwide including almond, citrus, grapevine, and olives. Nowadays, there are no efficient control measures for X. fastidiosa, and the use of preventive measures and host resistance represent the most practical disease management strategies. Research on vessel-associated microorganisms is gaining special interest as an innate natural defense of plants to cope against infection by xylem-inhabiting pathogens. The objective of this research has been to characterize, by next-generation sequencing (NGS) analysis, the microbial communities residing in the xylem sap of almond trees affected by almond leaf scorch disease (ALSD) in a recent X. fastidiosa outbreak occurring in Alicante province, Spain. We also determined community composition changes and network associations occurring between xylem-inhabiting microbial communities and X. fastidiosa. For that, a total of 91 trees with or without ALSD symptoms were selected from a total of eight representative orchards located in five municipalities within the X. fastidiosa-demarcated area. X. fastidiosa infection in each tree was verified by quantitative polymerase chain reaction (qPCR) analysis, with 54% of the trees being tested X. fastidiosa-positive. Globally, Xylella (27.4%), Sphingomonas (13.9%), and Hymenobacter (12.7%) were the most abundant bacterial genera, whereas Diplodia (30.18%), a member of the family Didymellaceae (10.7%), and Aureobasidium (9.9%) were the most predominant fungal taxa. Furthermore, principal coordinate analysis (PCoA) of Bray–Curtis and weighted UniFrac distances differentiated almond xylem bacterial communities mainly according to X. fastidiosa infection, in contrast to fungal community structure that was not closely related to the presence of the pathogen. Similar results were obtained when X. fastidiosa reads were removed from the bacterial data set although the effect was less pronounced. Co-occurrence network analysis revealed negative associations among four amplicon sequence variants (ASVs) assigned to X. fastidiosa with different bacterial ASVs belonging to 1174-901-12, Abditibacterium, Sphingomonas, Methylobacterium–Methylorubrum, Modestobacter, Xylophilus, and a non-identified member of the family Solirubrobacteraceae. Determination of the close-fitting associations between xylem-inhabiting microorganisms and X. fastidiosa may help to reveal specific microbial players associated with the suppression of ALSD under high X. fastidiosa inoculum pressure. These identified microorganisms would be good candidates to be tested in planta, to produce almond plants more resilient to X. fastidiosa infection when inoculated by endotherapy, contributing to suppress ALSD.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- *Correspondence: Manuel Anguita-Maeso,
| | - Aitana Ares-Yebra
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Miguel Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Concepción Olivares-García
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Amparo Ferrer
- Servicio de Sanidad Vegetal, Generalitat Valenciana, Valencia, Spain
| | - Juan A. Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- Blanca B. Landa,
| |
Collapse
|
11
|
Lago C, Garzo E, Moreno A, Barrios L, Martí-Campoy A, Rodríguez-Ballester F, Fereres A. Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe. Sci Rep 2021; 11:17608. [PMID: 34475464 PMCID: PMC8413342 DOI: 10.1038/s41598-021-96904-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The recent emergence of Xylella fastidiosa in Europe is a major threat to agriculture, including olive, almond and grape. Philaenus spumarius is the predominant vector of X. fastidiosa in Europe. Understanding vector movement is critical for developing effective control measures against bacterial spread. In this study, our goal was to set up a flight-mill protocol to assess P. spumarius flight potential and to analyse how different variables may affect its flight behaviour. We found that P. spumarius was able to fly ≈ 500 m in 30 min with a maximum single flight of 5.5 km in 5.4 h. Based on the observations, the flight potential of the females was higher in spring and autumn than in summer, and that of the males was highest in autumn. Moreover, we found that P. spumarius had a higher flight potential during the morning and the night than during the afternoon. Our results revealed that P. spumarius is likely to disperse much further than the established sizes of the infected and buffer zones designated by the EU. This knowledge on the flight potential of P. spumarius will be critical for improving management actions against P. spumarius and the spread of X. fastidiosa in Europe.
Collapse
Affiliation(s)
- Clara Lago
- Instituto de Ciencias Agrarias (ICA-CSIC), Serrano 115b, 28006, Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Av. Puerta de Hierro, 2,4, 28040, Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias (ICA-CSIC), Serrano 115b, 28006, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA-CSIC), Serrano 115b, 28006, Madrid, Spain
| | - Laura Barrios
- Statistics Department, Computing Center (SGAI-CSIC), Pinar 19, 28006, Madrid, Spain
| | - Antonio Martí-Campoy
- Instituto de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022, Valencia, Spain
| | - Francisco Rodríguez-Ballester
- Instituto de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022, Valencia, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA-CSIC), Serrano 115b, 28006, Madrid, Spain.
| |
Collapse
|
12
|
Lombardo L, Rizzo P, Novellis C, Vizzarri V. Preliminary Molecular Survey of the Possible Presence of Xylella fastidiosa in the Upper Ionian Coasts of Calabria, Italy, through the Capture and Analysis of Its Main Vector Insects. INSECTS 2021; 12:446. [PMID: 34068247 PMCID: PMC8153157 DOI: 10.3390/insects12050446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Xylella fastidiosa subsp. pauca, strain CoDiRO is the bacterium responsible for the onset of the disease known as the olive quick decline syndrome, which has been causing a phytosanitary and economic emergency in the Apulia region since 2013. To date, three insect species have been identified as pathogenic carriers of X. fastidiosa. With the advancement of the infection front, and the possibility of pathogenic insects being "hitchhiked" over long distances, the monitoring of the vectors of X. fastidiosa in the Italian regions bordering Apulia is an increasingly contingent issue for the rapid containment of the bacterium and the protection of the olive-growing heritage. Accordingly, the present research concerned the capture and recognition of the vector insects of X. fastidiosa in the upper Ionian coasts of Calabria (Italy) to evaluate the possible presence of the bacterium through molecular diagnostic techniques. The sampling allowed us to ascertain the presence of Philaenus spumarius and Neophilaenus campestris and their preferential distribution in olive groves and meadows, whereas all the 563 individuals tested negative for the pathogen.
Collapse
Affiliation(s)
- Luca Lombardo
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Pierluigi Rizzo
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| | - Carmine Novellis
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| | - Veronica Vizzarri
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| |
Collapse
|
13
|
Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella fastidiosa and Xanthomonas albilineans. Viruses 2021; 13:v13050725. [PMID: 33919362 PMCID: PMC8143317 DOI: 10.3390/v13050725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022] Open
Abstract
Xylella fastidiosa (Xf) is a plant pathogen causing significant losses in agriculture worldwide. Originating from America, this bacterium caused recent epidemics in southern Europe and is thus considered an emerging pathogen. As the European regulations do not authorize antibiotic treatment in plants, alternative treatments are urgently needed to control the spread of the pathogen and eventually to cure infected crops. One such alternative is the use of phage therapy, developed more than 100 years ago to cure human dysentery and nowadays adapted to agriculture. The first step towards phage therapy is the isolation of the appropriate bacteriophages. With this goal, we searched for phages able to infect Xf strains that are endemic in the Mediterranean area. However, as Xf is truly a fastidious organism, we chose the phylogenetically closest and relatively fast-growing organism X. albineans as a surrogate host for the isolation step. Our results showed the isolation from various sources and preliminary characterization of several phages active on different Xf strains, namely, from the fastidiosa (Xff), multiplex (Xfm), and pauca (Xfp) subspecies, as well as on X. albilineans. We sequenced their genomes, described their genomic features, and provided a phylogeny analysis that allowed us to propose new taxonomic elements. Among the 14 genomes sequenced, we could identify two new phage species, belonging to two new genera of the Caudoviricetes order, namely, Usmevirus (Podoviridae family) and Subavirus (Siphoviridae family). Interestingly, no specific phages could be isolated from infected plant samples, whereas one was isolated from vector insects captured in a contaminated area, and several from surface and sewage waters from the Marseille area.
Collapse
|
14
|
Olive Cultivars Susceptible or Tolerant to Xylella fastidiosa Subsp. pauca Exhibit Mid-Term Different Metabolomes upon Natural Infection or a Curative Treatment. PLANTS 2021; 10:plants10040772. [PMID: 33920775 PMCID: PMC8103516 DOI: 10.3390/plants10040772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Xylella fastidiosa subsp. pauca, is a bacterial phytopathogen associated with the "olive quick decline syndrome" (OQDS) causing severe economic losses to olive groves in Salento area (Apulia, Italy). In a previous work, we analyzed by 1H-NMR the metabolic pattern of naturally infected Ogliarola salentina and Cellina di Nardò susceptible cultivars untreated and treated with a zinc-copper citric acid biocomplex and we observed the treatment related variation of the disease biomarker quinic acid. In this study, we focused also on the Leccino cultivar, known to exhibit tolerance to the disease progression. The 1H-NMR-based metabolomic approach was applied with the aim to characterize the overall metabolism of tolerant Leccino in comparison with the susceptible cultivars Ogliarola salentina and Cellina di Nardò under periodic mid-term treatment. In particular, we studied the leaf extract molecular patterns of naturally infected trees untreated and treated with the biocomplex. The metabolic Leccino profiles were analyzed for the first time and compared with those exhibited by the susceptible Cellina di Nardò and Ogliarola salentina cultivars. The study highlighted a specificity in the metabolic response of the tolerant Leccino compared to susceptible cultivars. These differences provide useful information to describe the defensive mechanisms underlying the change of metabolites as a response to the infection, and the occurrence of different levels of disease, season and treatment effects for olive cultivars.
Collapse
|
15
|
Allopatric Plant Pathogen Population Divergence following Disease Emergence. Appl Environ Microbiol 2021; 87:AEM.02095-20. [PMID: 33483307 DOI: 10.1128/aem.02095-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.
Collapse
|
16
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
17
|
Baró A, Badosa E, Montesinos L, Feliu L, Planas M, Montesinos E, Bonaterra A. Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiol 2020; 20:229. [PMID: 32727358 PMCID: PMC7392676 DOI: 10.1186/s12866-020-01915-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Xylella fastidiosa is one of the most harmful bacterial plant pathogens worldwide, causing a variety of diseases, with huge economic impact to agriculture and environment. Although it has been extensively studied, there are no therapeutic solutions to suppress disease development in infected plants. In this context, antimicrobial peptides represent promising alternatives to traditional compounds due to their activity against a wide range of plant pathogens, their low cytotoxicity, their mode of action that make resistance more difficult and their availability for being expressed in plants. Results Peptide conjugates derived from the lead peptide BP100 and fragments of cecropin, magainin or melittin were selected and tested against the plant pathogenic bacteria X. fastidiosa. In order to screen the activity of these antimicrobials, and due to the fastidious nature of the pathogen, a methodology consisting of a contact test coupled with the viability-quantitative PCR (v-qPCR) method was developed. The nucleic acid-binding dye PEMAX was used to selectively quantify viable cells by v-qPCR. In addition, the primer set XF16S-3 amplifying a 279 bp fragment was selected as the most suitable for v-qPCR. The performance of the method was assessed by comparing v-qPCR viable cells estimation with conventional qPCR and plate counting. When cells were treated with peptide conjugates derived from BP100, the observed differences between methods suggested that, in addition to cell death due to the lytic effect of the peptides, there was an induction of the viable but non-culturable state in cells. Notably, a contact test coupled to v-qPCR allowed fast and accurate screening of antimicrobial peptides, and led to the identification of new peptide conjugates active against X. fastidiosa. Conclusions Antimicrobial peptides active against X. fastidiosa have been identified using an optimized methodology that quantifies viable cells without a cultivation stage, avoiding underestimation or false negative detection of the pathogen due to the viable but non-culturable state, and overestimation of the viable population observed using qPCR. These findings provide new alternative compounds for being tested in planta for the control of X. fastidiosa, and a methodology that enables the fast screening of a large amount of antimicrobials against this plant pathogenic bacterium.
Collapse
Affiliation(s)
- Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Laura Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain.
| |
Collapse
|
18
|
Baldassarre F, Tatulli G, Vergaro V, Mariano S, Scala V, Nobile C, Pucci N, Dini L, Loreti S, Ciccarella G. Sonication-Assisted Production of Fosetyl-Al Nanocrystals: Investigation of Human Toxicity and In Vitro Antibacterial Efficacy against Xylella Fastidiosa. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1174. [PMID: 32560195 PMCID: PMC7353234 DOI: 10.3390/nano10061174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
Abstract
Recently, there is a growing demand in sustainable phytopathogens control research. Nanotechnology provides several tools such as new pesticides formulations, antibacterial nanomaterials and smart delivery systems. Metal nano-oxides and different biopolymers have been exploited in order to develop nanopesticides which can offer a targeted solution minimizing side effects on environment and human health. This work proposed a nanotechnological approach to obtain a new formulation of systemic fungicide fosetyl-Al employing ultrasonication assisted production of water dispersible nanocrystals. Moreover, chitosan was applicated as a coating agent aiming a synergistic antimicrobial effect between biopolymer and fungicide. Fosetyl-Al nanocrystals have been characterized by morphological and physical-chemical analysis. Nanotoxicological investigation was carried out on human keratinocytes cells through cells viability test and ultrastructural analysis. In vitro planktonic growth, biofilm production and agar dilution assays have been conducted on two Xylella fastidiosa subspecies. Fosetyl-Al nanocrystals resulted very stable over time and less toxic respect to conventional formulation. Finally, chitosan-based fosetyl-Al nanocrystals showed an interesting antibacterial activity against Xylella fastidiosa subsp. pauca and Xylella fastidiosa subsp. fastidiosa.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Stefania Mariano
- Biological and Environmental Sciences Department, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Concetta Nobile
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Luciana Dini
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| |
Collapse
|
19
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|
20
|
Baró A, Mora I, Montesinos L, Montesinos E. Differential Susceptibility of Xylella fastidiosa Strains to Synthetic Bactericidal Peptides. PHYTOPATHOLOGY 2020; 110:1018-1026. [PMID: 31985337 DOI: 10.1094/phyto-12-19-0477-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The kinetics of cell inactivation and the susceptibility of Xylella fastidiosa subspecies fastidiosa, multiplex, and pauca to synthetic antimicrobial peptides from two libraries (CECMEL11 and CYCLO10) were studied. The bactericidal effect was dependent on the relative concentrations of peptide and bacterial cells, and was influenced by the diluent, either buffer or sap. The most bactericidal and lytic peptide was BP178, an enlarged derivative of the amphipathic cationic linear undecapeptide BP100. The maximum reduction in survivors after BP178 treatment occurred within the first 10 to 20 min of contact and at micromolar concentrations (<10 μM), resulting in pore formation in cell membranes, abundant production of outer membrane vesicles, and lysis. A threshold ratio of 109 molecules of peptide per bacterial cell was estimated to be necessary to initiate cell inactivation. There was a differential susceptibility to BP178 among strains, with DD1 being the most resistant and CFBP 8173 the most susceptible. Moreover, strains showed a proportion of cells under the viable but nonculturable state, which was highly variable among strains. These findings may have implications for managing the diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Isabel Mora
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| |
Collapse
|
21
|
The Xylella fastidiosa-Resistant Olive Cultivar "Leccino" Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens 2019; 9:pathogens9010035. [PMID: 31906093 PMCID: PMC7168594 DOI: 10.3390/pathogens9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Xylella fastidiosa is a highly virulent pathogen that causes Olive Quick Decline Syndrome (OQDS), which is currently devastating olive plantations in the Salento region (Apulia, Southern Italy). We explored the microbiome associated with X. fastidiosa-infected (Xf-infected) and -uninfected (Xf-uninfected) olive trees in Salento, to assess the level of dysbiosis and to get first insights into the potential role of microbial endophytes in protecting the host from the disease. The resistant cultivar “Leccino” was compared to the susceptible cultivar “Cellina di Nardò”, in order to identify microbial taxa and parameters potentially involved in resistance mechanisms. Metabarcoding of 16S rRNA genes and fungal ITS2 was used to characterize both total and endophytic microbiota in olive branches and leaves. “Cellina di Nardò” showed a drastic dysbiosis after X. fastidiosa infection, while “Leccino” (both infected and uninfected) maintained a similar microbiota. The genus Pseudomonas dominated all “Leccino” and Xf-uninfected “Cellina di Nardò” trees, whereas Ammoniphilus prevailed in Xf-infected “Cellina di Nardò”. Diversity of microbiota in Xf-uninfected “Leccino” was higher than in Xf-uninfected “Cellina di Nardò”. Several bacterial taxa specifically associated with “Leccino” showed potential interactions with X. fastidiosa. The maintenance of a healthy microbiota with higher diversity and the presence of cultivar-specific microbes might support the resistance of “Leccino” to X. fastidiosa. Such beneficial bacteria might be isolated in the future for biological treatment of the OQDS.
Collapse
|