1
|
Zhang X, Xiao Z, Zhang T, Wei X. A quantitative analysis of biosafety and biosecurity using attack trees in low-to-moderate risk scenarios: Evidence from iGEM. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 39552172 DOI: 10.1111/risa.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
As synthetic biology is extensively applied in numerous frontier disciplines, the biosafety and biosecurity concerns with designing and constructing novel biological parts, devices, and systems have inevitably come to the forefront due to potential misuse, abuse, and environmental risks from unintended exposure or potential ecological impacts. The International Genetically Engineered Machine (iGEM) competition often serves as the inception of many synthetic biologists' research careers and plays a pivotal role in the secure progression of the entire synthetic biology field. Even with iGEM's emphasis on biosafety and biosecurity, continuous risk assessment is crucial due to the potential for unforeseen consequences and the relative inexperience of many participants. In this study, possible risk points for the iGEM projects in 2022 were extracted. An attack tree that captures potential risks and threats from experimental procedures, ethical issues, and hardware safety for each iGEM-based attack scenario is constructed. It is found that most of the attack scenarios are related to experimental procedures. The relative likelihood of each scenario is then determined by using an established assessment framework. This research expands the traditionally qualitative analysis of risk society theory, reveals the risk formation in the synthetic biology team, and provides practical implications.
Collapse
Affiliation(s)
- Xi Zhang
- College of Management and Economics, Tianjin University, Tianjin, P. R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Zhanpeng Xiao
- College of Management and Economics, Tianjin University, Tianjin, P. R. China
| | - Te Zhang
- College of Management and Economics, Tianjin University, Tianjin, P. R. China
| | - Xin Wei
- School of Economics and Management, Communication University of China, Beijing, China
| |
Collapse
|
2
|
Mullins E, Bresson J, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Cocconcelli PS, Glandorf D, Herman L, Jimenez Saiz R, Ruiz Garcia L, Aguilera Entrena J, Gennaro A, Schoonjans R, Kagkli DM, Dalmay T. New developments in biotechnology applied to microorganisms. EFSA J 2024; 22:e8895. [PMID: 39040572 PMCID: PMC11261303 DOI: 10.2903/j.efsa.2024.8895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
EFSA was requested by the European Commission (in accordance with Article 29 of Regulation (EC) No 178/2002) to provide a scientific opinion on the application of new developments in biotechnology (new genomic techniques, NGTs) to viable microorganisms and products of category 4 to be released into the environment or placed on the market as or in food and feed, and to non-viable products of category 3 to be placed on the market as or in food and feed. A horizon scanning exercise identified a variety of products containing microorganisms obtained with NGTs (NGT-Ms), falling within the remit of EFSA, that are expected to be placed on the (EU) market in the next 10 years. No novel potential hazards/risks from NGT-Ms were identified as compared to those obtained by established genomic techniques (EGTs), or by conventional mutagenesis. Due to the higher efficiency, specificity and predictability of NGTs, the hazards related to the changes in the genome are likely to be less frequent in NGT-Ms than those modified by EGTs and conventional mutagenesis. It is concluded that EFSA guidances are 'partially applicable', therefore on a case-by-case basis for specific NGT-Ms, fewer requirements may be needed. Some of the EFSA guidances are 'not sufficient' and updates are recommended. Because possible hazards relate to genotypic and phenotypic changes introduced and not to the method used for the modification, it is recommended that any new guidance should take a consistent risk assessment approach for strains/products derived from or produced with microorganisms obtained with conventional mutagenesis, EGTs or NGTs.
Collapse
|
3
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
4
|
Lean CH. Navigating the 'moral hazard' argument in synthetic biology's application. Synth Biol (Oxf) 2024; 9:ysae008. [PMID: 38828013 PMCID: PMC11141592 DOI: 10.1093/synbio/ysae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Synthetic biology has immense potential to ameliorate widespread environmental damage. The promise of such technology could, however, be argued to potentially risk the public, industry or governments not curtailing their environmentally damaging behavior or even worse exploit the possibility of this technology to do further damage. In such cases, there is the risk of a worse outcome than if the technology was not deployed. This risk is often couched as an objection to new technologies, that the technology produces a moral hazard. This paper describes how to navigate a moral hazard argument and mitigate the possibility of a moral hazard. Navigating moral hazard arguments and mitigating the possibility of a moral hazard will improve the public and environmental impact of synthetic biology.
Collapse
Affiliation(s)
- Christopher Hunter Lean
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Philosophy, Faculty of Arts, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Ulanova A, Mansfeldt C. EcoGenoRisk: Developing a computational ecological risk assessment tool for synthetic biology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123647. [PMID: 38402941 DOI: 10.1016/j.envpol.2024.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The expanding field of synthetic biology (synbio) supports new opportunities in the design of targeted bioproducts or modified microorganisms. However, this rapid development of synbio products raises concerns surrounding the potential risks of modified microorganisms contaminating unintended environments. These potential invasion risks require new bioinformatic tools to inform the design phase. EcoGenoRisk is a newly constructed computational risk assessment tool for invasiveness that aims to predict where synbio microorganisms may establish a population by screening for habitats of genetically similar microorganisms. The first module of the tool identifies genetically similar microorganisms and potential ecological relationships such as competition, mutualism, and inhibition. In total, 520 archaeal and 32,828 bacterial complete assembly genomes were analyzed to test the specificity and accuracy of the tool as well as to characterize the enzymatic profiles of different taxonomic lineages. Additionally, ecological relationships were analyzed to determine which would result in the greatest potential overlap between shared functional profiles. Notably, competition displayed the significantly highest overlap of shared functions between compared genomes. Overall, EcoGenoRisk is a flexible software pipeline that assists environmental risk assessors to query large databases of known microorganisms and prioritize follow-up bench scale studies.
Collapse
Affiliation(s)
- Anna Ulanova
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA.
| |
Collapse
|
6
|
Asin-Garcia E, Robaey Z, Kampers LFC, Martins Dos Santos VAP. Exploring the Impact of Tensions in Stakeholder Norms on Designing for Value Change: The Case of Biosafety in Industrial Biotechnology. SCIENCE AND ENGINEERING ETHICS 2023; 29:9. [PMID: 36882674 PMCID: PMC9992083 DOI: 10.1007/s11948-023-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Synthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms. Yet, as regulatory interest and academic research in genetic safeguard technologies advance, the implementation in industrial biotechnology, a sector that is already employing engineered microorganisms, lags behind. The main goal of this work is to explore the utilization of genetic safeguard technologies for designing biosafety in industrial biotechnology. Based on our results, we posit that biosafety is a case of a changing value, by means of further specification of how to realize biosafety. Our investigation is inspired by the Value Sensitive Design framework, to investigate scientific and technological choices in their appropriate social context. Our findings discuss stakeholder norms for biosafety, reasonings about genetic safeguards, and how these impact the practice of designing for biosafety. We show that tensions between stakeholders occur at the level of norms, and that prior stakeholder alignment is crucial for value specification to happen in practice. Finally, we elaborate in different reasonings about genetic safeguards for biosafety and conclude that, in absence of a common multi-stakeholder effort, the differences in informal biosafety norms and the disparity in biosafety thinking could end up leading to design requirements for compliance instead of for safety.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands.
| | - Zoë Robaey
- Department of Social Sciences, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
7
|
McMullen JG, Lennon JT. Mark-recapture of microorganisms. Environ Microbiol 2023; 25:150-157. [PMID: 36310117 DOI: 10.1111/1462-2920.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Herman L, Pelaez C, van Loveren H, Vlak J, Revez J, Aguilera J, Schoonjans R, Cocconcelli PS. Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of microorganisms obtained through synthetic biology. EFSA J 2022; 20:e07479. [PMID: 35991959 PMCID: PMC9380697 DOI: 10.2903/j.efsa.2022.7479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EFSA was asked by the European Commission to evaluate synthetic biology (SynBio) developments for agri-food use in the near future and to determine whether or not they are expected to constitute potential new hazards/risks. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment of SynBio and if updated guidance is needed. The scope of this Opinion covers food and feed risk assessment, the variety of microorganisms that can be used in the food/feed chain and the whole spectrum of techniques used in SynBio. This Opinion complements a previously adopted Opinion with the evaluation of existing guidelines for the microbial characterisation and environmental risk assessment of microorganisms obtained through SynBio. The present Opinion confirms that microbial SynBio applications for food and feed use, with the exception of xenobionts, could be ready in the European Union in the next decade. New hazards were identified related to the use or production of unusual and/or new-to-nature components. Fifteen cases were selected for evaluating the adequacy of existing guidelines. These were generally adequate for assessing the product, the production process, nutritional and toxicological safety, allergenicity, exposure and post-market monitoring. The comparative approach and a safety assessment per se could be applied depending on the degree of familiarity of the SynBio organism/product with the non-genetically modified counterparts. Updated guidance is recommended for: (i) bacteriophages, protists/microalgae, (ii) exposure to plant protection products and biostimulants, (iii) xenobionts and (iv) feed additives for insects as target species. Development of risk assessment tools is recommended for assessing nutritional value of biomasses, influence of microorganisms on the gut microbiome and the gut function, allergenic potential of new-to-nature proteins, impact of horizontal gene transfer and potential risks of living cell intake. A further development towards a strain-driven risk assessment approach is recommended.
Collapse
|
9
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Nogue F, Rostoks N, Sanchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Casacuberta J, Zurbriggen MD, Fernandez A, Gomez Ruiz JA, Gennaro A, Papadopoulou N, Lanzoni A, Naegeli H. Evaluation of existing guidelines for their adequacy for the food and feed risk assessment of genetically modified plants obtained through synthetic biology. EFSA J 2022; 20:e07410. [PMID: 35873722 PMCID: PMC9297787 DOI: 10.2903/j.efsa.2022.7410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synthetic biology (SynBio) is an interdisciplinary field at the interface of molecular engineering and biology aiming to develop new biological systems and impart new functions to living cells, tissues and organisms. EFSA has been asked by the European Commission to evaluate SynBio developments in agri-food with the aim of identifying the adequacy and sufficiency of existing guidelines for risk assessment and determine if updated guidance is needed. In this context, the GMO Panel has previously adopted an Opinion evaluating the SynBio developments in agri-food/feed and the adequacy and sufficiency of existing guidelines for the molecular characterisation and environmental risk assessment of genetically modified plants (GMPs) obtained through SynBio and reaching the market in the next decade. Complementing the above, in this Opinion, the GMO Panel evaluated the adequacy and sufficiency of existing guidelines for the food and feed risk assessment of GMPs obtained through SynBio. Using selected hypothetical case studies, the GMO Panel did not identify novel potential hazards and risks that could be posed by food and feed from GMPs obtained through current and near future SynBio approaches; considers that the existing guidelines are adequate and sufficient in some Synbio applications; in other cases, existing guidelines may be just adequate and hence need updating; areas needing updating include those related to the safety assessment of new proteins and the comparative analysis. The GMO Panel recommends that future guidance documents provide indications on how to integrate the knowledge available from the SynBio design and modelling in the food and feed risk assessment and encourages due consideration to be given to food and feed safety aspects throughout the SynBio design process as a way to facilitate the risk assessment of SynBio GMPs and reduce the amount of data required.
Collapse
|
10
|
Tellechea-Luzardo J, Hobbs L, Velázquez E, Pelechova L, Woods S, de Lorenzo V, Krasnogor N. Versioning biological cells for trustworthy cell engineering. Nat Commun 2022; 13:765. [PMID: 35140226 PMCID: PMC8828774 DOI: 10.1038/s41467-022-28350-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
“Full-stack” biotechnology platforms for cell line (re)programming are on the horizon, thanks mostly to (a) advances in gene synthesis and editing techniques as well as (b) the growing integration of life science research with informatics, the internet of things and automation. These emerging platforms will accelerate the production and consumption of biological products. Hence, traceability, transparency, and—ultimately—trustworthiness is required from cradle to grave for engineered cell lines and their engineering processes. Here we report a cloud-based version control system for biotechnology that (a) keeps track and organizes the digital data produced during cell engineering and (b) molecularly links that data to the associated living samples. Barcoding protocols, based on standard genetic engineering methods, to molecularly link to the cloud-based version control system six species, including gram-negative and gram-positive bacteria as well as eukaryote cells, are shown. We argue that version control for cell engineering marks a significant step toward more open, reproducible, easier to trace and share, and more trustworthy engineering biology. Full traceability and transparency are important to establish trust in engineered cell lines. Here the authors argue that version control for cell engineering marks a significant step toward more open, reproducible, traceable and ultimately more trustworthy engineering biology.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Leanne Hobbs
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Elena Velázquez
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Lenka Pelechova
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Simon Woods
- Policy Ethics and Life Sciences (PEALS), Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
| |
Collapse
|
11
|
Velázquez E, Al-Ramahi Y, Tellechea-Luzardo J, Krasnogor N, de Lorenzo V. Targetron-Assisted Delivery of Exogenous DNA Sequences into Pseudomonas putida through CRISPR-Aided Counterselection. ACS Synth Biol 2021; 10:2552-2565. [PMID: 34601868 PMCID: PMC8524655 DOI: 10.1021/acssynbio.1c00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Genome editing methods based on group II introns (known as targetron technology) have long been used as a gene knockout strategy in a wide range of organisms, in a fashion independent of homologous recombination. Yet, their utility as delivery systems has typically been suboptimal due to the reduced efficiency of insertion when carrying exogenous sequences. We show that this limitation can be tackled and targetrons can be adapted as a general tool in Gram-negative bacteria. To this end, a set of broad-host-range standardized vectors were designed for the conditional expression of the Ll.LtrB intron. After establishing the correct functionality of these plasmids in Escherichia coli and Pseudomonas putida, we created a library of Ll.LtrB variants carrying cargo DNA sequences of different lengths, to benchmark the capacity of intron-mediated delivery in these bacteria. Next, we combined CRISPR/Cas9-facilitated counterselection to increase the chances of finding genomic sites inserted with the thereby engineered introns. With these novel tools, we were able to insert exogenous sequences of up to 600 bp at specific genomic locations in wild-type P. putida KT2440 and its ΔrecA derivative. Finally, we applied this technology to successfully tag P. putida with an orthogonal short sequence barcode that acts as a unique identifier for tracking this microorganism in biotechnological settings. These results show the value of the targetron approach for the unrestricted delivery of small DNA fragments to precise locations in the genomes of Gram-negative bacteria, which will be useful for a suite of genome editing endeavors.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems
and Synthetic Biology Department, Centro
Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - Yamal Al-Ramahi
- Systems
and Synthetic Biology Department, Centro
Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - Jonathan Tellechea-Luzardo
- Interdisciplinary
Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K.
| | - Natalio Krasnogor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K.
| | - Víctor de Lorenzo
- Systems
and Synthetic Biology Department, Centro
Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
12
|
Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z. Environment and food safety: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54511-54530. [PMID: 34431060 PMCID: PMC8384557 DOI: 10.1007/s11356-021-16069-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 04/12/2023]
Abstract
Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
13
|
Biotechnology and Biosafety Policy at OECD: Future Trends. Trends Biotechnol 2021; 39:965-969. [PMID: 33752894 DOI: 10.1016/j.tibtech.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
The OECD Council Recommendation on Recombinant DNA Safety Considerations is a legal instrument which has been in force since 1986. It outlines the safety assessment practices that countries should have in place for agricultural and environmental biotechnology. This article suggests possible updates to make it suitable for the modern era.
Collapse
|