1
|
Kundu S, Kues WA, Rehbock C, Barcikowski S. Inorganic Metal Nanoparticles in Reproductive Biology: Applications, Toxicities and Future Prospects. Chempluschem 2025:e202400554. [PMID: 39913862 DOI: 10.1002/cplu.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/31/2025] [Indexed: 04/26/2025]
Abstract
The development of inorganic metal and metal oxide nanoparticles (MNPs) has attracted significant attention in diverse biomedical and biotechnological fields including bio-detection, drug delivery, imaging, and theranostics. An emerging field in this context is the use of MNPs for applications in reproductive biology. In this article, we offer a rational review of the development of MNPs employed in the field of reproductive biology by focusing on their interactions with highly delicate and specialized germ cells like spermatozoa, oocytes, and developing embryos. By their unique physicochemical properties, MNPs are versatile and strong candidates for targeted imaging and delivery of various therapeutic molecules to the specific sites of the gametes and reproductive cells. Functionalized MNPs can serve as transfection vectors for the generation of transgenic animals by spermatozoon-supported gene transfer. In addition, MNPs have shown great promise in application fields such as semen collection, nano-purification, cryopreservation, and sex sorting of sperm in the livestock industry. Recently, the potential toxicity of MNPs on maturing oocytes has been investigated, as well as the use of MNPs to preserve fertility by improving cryopreservation and reducing oxidative stress in oocytes. The article further elaborates on the uptake, translocation mechanism, and biocompatibility issues of the MNPs to reproduction-relevant sites on cellular and molecular levels. Based on these promising achievements, the current challenges and prospects for the development of these functionalized MNPs for clinical research in conjunction with the reproductive system will be discussed.
Collapse
Affiliation(s)
- Sangita Kundu
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Biotechnology/Stem Cell Unit, 31535, Neustadt Rbge, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| |
Collapse
|
2
|
Pavuluri H, Bakhtiary Z, Panner Selvam MK, Hellstrom WJG. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1008. [PMID: 38929625 PMCID: PMC11205999 DOI: 10.3390/medicina60061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.
Collapse
Affiliation(s)
| | | | | | - Wayne J. G. Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.P.); (Z.B.); (M.K.P.S.)
| |
Collapse
|
3
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
4
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Bhattacharya S, Majumdar Nee Paul S. Application of conventional metallic nanoparticles on male reproductive system - challenges and countermeasures. Syst Biol Reprod Med 2023; 69:32-49. [PMID: 36427189 DOI: 10.1080/19396368.2022.2140087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The application of nanotechnology in the present era has substantial impact on different industrial and medical fields. However, the advancement in nanotechnology for potential therapeutic and consumer benefits has been an anxious cause regarding the probable hazardous consequences of these molecules in biological systems and the environment. The toxic effects can perturb the physiologic system broadly and reproductive function and fertility specifically. Despite engineered nanomaterials (ENMs) having a wide range of applications, toxicological investigations of the probable ramifications of ENMs on the reproductive systems of mammals and fertility remains in its nascence. Complication in the male reproductive system is quite a pertinent issue in today's world which comprises of benign prostatic enlargement, prostate cancer, and unhealthy sperm production. The therapeutic drugs should not only be active in minimum dose but also site-specific in action, criteria being met by nanomedicines. Nanomedicine therapy is promising but encompasses the chances of adverse effects of being cytotoxic and generating oxidative stress. These hurdles can be overcome by creating coated nanoparticles with organic substances, modification of shape and size, and synthesizing biocompatible green nanoparticles. This review attempts to look into the applications of most widely used metals like zinc, titanium, silver, and gold nanoparticles in the therapy of the male reproductive system, their prospective harmful effects, and the way out to create a safe therapeutic system by specific modifications of these metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology (Post Graduate Studies), Rishi Bankim Chandra College, West Bengal State University, Naihati, West Bengal, India
| | - Sudipta Majumdar Nee Paul
- Department of Zoology (Post Graduate Studies), Rishi Bankim Chandra College, West Bengal State University, Naihati, West Bengal, India
| |
Collapse
|
6
|
Pardhiya S, Gautam R, Nirala JP, Murmu NN, Rajamani P. Modulatory role of Bovine serum albumin conjugated manganese dioxide nanoparticle on microwave radiation induced alterations in reproductive parameters of rat. Reprod Toxicol 2022; 113:136-149. [PMID: 36089154 DOI: 10.1016/j.reprotox.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
In recent decades, microwave (MW) radiations are being used extensively for various applications such as Wi-Fi, telecommunication, etc. due to which there have been grave concerns regarding the adverse effects of MW exposure on human health, particularly the reproductive system. MW cause damage to the reproductive system by generating free radicals, decreasing antioxidant defence, and inducing oxidative stress. Hence, the present study was aimed to counteract the harmful effect by using antioxidant enzymes mimicking nanoparticle, Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticle (MNP*). Male Wistar rats were exposed to MW and treated with MNP*, and their individual, as well as combined effect on reproductive parameters was investigated. Results showed that MW exposed rats had significantly reduced testosterone levels along with alterations in the testicular morphology. The antioxidant status decreased, and lipid peroxidation increased significantly in testis. MW exposure also showed altered sperm parameters such as a significant decrease in sperm count, viability, membrane integrity and mitochondrial activity with a significant increase in morphological abnormality and lipid peroxidation. As a result, the changes induced by MW may affect male fertility. However, upon combined exposure of MNP* and MW, these alterations were reduced significantly. Hence, it may be concluded that MNP* could reduce oxidative stress mediated damages in the reproductive system of rats owing to its antioxidant activity, and thus have a potential to act as a radioprotectant.
Collapse
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nina Nancy Murmu
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Omar NN, Mosbah RA, Sarawi WS, Rashed MM, Badr AM. Rifaximin Protects against Malathion-Induced Rat Testicular Toxicity: A Possible Clue on Modulating Gut Microbiome and Inhibition of Oxidative Stress by Mitophagy. Molecules 2022; 27:4069. [PMID: 35807317 PMCID: PMC9267953 DOI: 10.3390/molecules27134069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Testicular dysfunction is caused by chronic exposure to environmental pollution, such as malathion, which causes oxidative stress, promoting cell damage. Autophagy is a key cellular process for eliminating malfunctioning organelles, such as the mitochondria (mitophagy), an eminent source of reactive oxygen species (ROS). Autophagy is crucial for protection against testicular damage. Rifaximin (RFX) is a non-absorbable antibiotic that can reshape the gut microbiome, making it effective in different gastrointestinal disorders. Interestingly, the gut microbiome produces short chain fatty acids (SCFAs) in the circulation, which act as signal molecules to regulate the autophagy. In this study, we investigated the regulatory effects of RFX on gut microbiota and its circulating metabolites SCFA and linked them with the autophagy in testicular tissues in response to malathion administration. Moreover, we divided the groups of rats that used malathion and RFX into a two-week group to investigate the mitophagy process and a four-week group to study mitochondriogenesis. The current study revealed that after two weeks of cotreatment with RFX, apoptosis was inhibited, oxidative stress was improved, and autophagy was induced. More specifically, PINK1 was overexpressed, identifying mitophagy activation. After four weeks of cotreatment with RFX, there was an increase in acetate and propionate-producing microflora, as well as the circulating levels of SCFAs. In accordance with this, the expression of PGC-1α, a downstream to SCFAs action on their receptors, was activated. PGC-1α is an upstream activator of mitophagy and mitochondriogenesis. In this sense, the protein expression of TFAM, which regulates the mitochondrial genome, was upregulated along with a significant decrease in apoptosis and oxidative stress. Conclusion: we found that RFX has a positive regulatory effect on mitophagy and mitochondria biogenesis, which could explain the novel role played by RFX in preventing the adverse effects of malathion on testicular tissue.
Collapse
Affiliation(s)
- Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospital, Zagazig University, El Sharkia 44519, Egypt;
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, King Saud University, Riyadh 11362, Saudi Arabia; (W.S.S.); or (A.M.B.)
| | - Marwa Medhet Rashed
- National Center for Social & Criminological Research, Expert, Crime Investigation Department, Giza 3755153, Egypt;
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, King Saud University, Riyadh 11362, Saudi Arabia; (W.S.S.); or (A.M.B.)
- Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
8
|
Ranjbar A, Satari M, Mohseni R, Tavilani A, Ghasemi H. Chlorella vulgaris ameliorates testicular toxicity induced by carbon tetrachloride in male rats via modulating oxidative stress. Andrologia 2022; 54:e14495. [PMID: 35671993 DOI: 10.1111/and.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
This study was aimed to evaluate the protective effects of Chlorella Vulgaris (CVE) (50 and 100 mg/kg doses) on sperm DNA fragmentation, testis oxidative stress in Carbon tetrachloride (CCL4)-exposed rats. Thirty healthy male Wistar rats were divided into five groups (n = 6): Control; CCl4; CVE; CCl4 + CVE50; CCl4 + CVE100. At the end of the experiment, the testicular oxidative stress parameters were estimated. The Chromomycin A3 (CMA3) and Acridine orange (AO) staining were performed to examine the sperm DNA fragmentation status. CCl4 treatment showed a significant decrease in antioxidant markers and sperm count, viability, normal morphology and motility as well as significantly increased the testicular oxidative stress markers, and the percentage of CMA3 and AO positive sperms in normal rats (p < 0.05). While CVE supplementation has revealed a significant decrease in the percentage of CMA3 and AO positive sperms as well as testicular oxidative stress markers and considerably improved the testis antioxidant status (p < 0.05). CVE has also increased the number of sperms with forwarding movement, normal morphology and viability (p < 0.05). Taken together, our analyses suggest that CVE may play a critical role in attenuating the CCl4-induced oxidative stress in the testis, thereby protecting the sperm membrane and DNA against oxidative damage.
Collapse
Affiliation(s)
- Akram Ranjbar
- Department of Toxicology and Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtab Satari
- Department Department of Midwifery, Hamadan university of Medical Sciences, Hamadan, Iran
| | - Roohollah Mohseni
- Department of Biochemistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadi Ghasemi
- Department of Clinical Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Ozdemirkan A, Kurtipek AC, Kucuk A, Ozdemir C, Yesil S, Sezen SC, Kavutcu M, Arslan M. Effect of Cerium Oxide on Kidney and Lung Tissue in Rats with Testicular Torsion/Detorsion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3176455. [PMID: 35360513 PMCID: PMC8964164 DOI: 10.1155/2022/3176455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Testicular torsion is a surgical emergency that results in testicular ischemia as a result of rotation of the spermatic cord around itself. Oxidative damage occurs in the testis and distant organs with the overproduction of free radicals and overexpression of proinflammatory cytokines by reperfusion after surgery. In this study, we aimed to investigate the effects of cerium oxide (CeO2), an antioxidant nanoparticle, on lung and kidney tissues in testicular torsion/detorsion (T/D) in rats. MATERIALS AND METHODS After ethics committee approval, 24 rats were equally (randomly) divided into 4 groups. Left inguinoscrotal incision was performed in the control (C) group. In group CeO2, 0.5 mg/kg CeO2 was given intraperitoneally 30 minutes before inguinoscrotal incision. In group T/D, unilateral testicular T/D was achieved by performing an inguinoscrotal incision and rotating the left testis 720° clockwise, remaining ischemic for 120 minutes, followed by 120 minutes of reperfusion. In group CeO2-T/D, 0.5 mg/kg CeO2 was given intraperitoneally 30 minutes before testicular T/D. At the end of the experiment, lung and kidney tissues were removed for histopathological and biochemical examinations. RESULTS Glomerular vacuolization (GV), tubular dilatation (TD), tubular cell degeneration and necrosis (TCDN), leukocyte infiltration (LI), and tubular cell spillage (TCS) in renal tissue were significantly different between groups (p = 0.012, p = 0.049, p < 0.003, p = 0.046, and p = 0.049, respectively). GV and TCDN were significantly decreased in group CeO2-T/D compared to group T/D (p = 0.042 and p = 0.029, respectively). Lung tissue neutrophil infiltration, alveolar thickening, and total lung injury score (TLIS) were significantly different between groups (p = 0.006, p = 0.001, and p = 0.002, respectively). Neutrophil infiltration and TLIS were significantly decreased in group CeO2-T/D compared to group T/D (p = 0.013 and p = 0.033, respectively). Lung and kidney tissue oxidative stress parameters were significantly different between groups (p < 0.05). Renal tissue glutathione-s-transferase (GST), catalase (CAT), and paraoxonase (PON) activities were significantly higher, and malondialdehyde (MDA) levels were significantly lower in group CeO2-T/D than in group T/D (p = 0.049, p = 0.012, p < 0.001, and p = 0.004, respectively). GST and PON activities were higher, and MDA levels were lower in group CeO2-T/D than in group T/D in the lung tissue (p = 0.002, p < 0.001, and p = 0.008, respectively). Discussion. In our study, cerium oxide was shown to reduce histopathological and oxidative damage in the lung and kidney tissue in a rat testis torsion/detorsion model.
Collapse
Affiliation(s)
- Aycan Ozdemirkan
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Ali Can Kurtipek
- Department of Internal Medicine, Ankara City Hospital Health Sciences University, Ankara, Turkey
| | - Aysegül Kucuk
- Faculty of Medicine, Department of Physiology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Cagri Ozdemir
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Suleyman Yesil
- Faculty of Medicine, Department of Urology, Gazi University, Ankara, Turkey
| | - Saban Cem Sezen
- Faculty of Medicine, Department of Histology and Embryology, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Kavutcu
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Ankara, Turkey
| | - Mustafa Arslan
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Abu Zeid IM, Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Alomar MY. Predominance of Antioxidants in Some Edible Plant Oils in Ameliorating Oxidative Stress and Testicular Toxicity Induced by Malathion. Life (Basel) 2022; 12:life12030350. [PMID: 35330101 PMCID: PMC8948629 DOI: 10.3390/life12030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion (MAL) is an insecticide that has been linked to reproductive system damage in both humans and animals. In the present investigation, the antitoxic effects of coffee and olive oils on MAL-induced testicular dysfunctions were evaluated. MAL-intoxicated rats were supplemented with coffee and olive oils (400 mg/kg) for 7 weeks. Exposure to MAL resulted in statistically altered antioxidant enzymes and histopathological findings of necrotic seminiferous tubules and spermatogenetic arrest in rats after seven weeks of treatment. The effects of MAL intoxication on physiological and histopathological changes were improved by the use of these oils. Murine double minute 2 (MDM2) was found to interact well with chlorogenic acid and oleuropein, two compounds from coffee and olive oils, respectively. Coffee oil and olive oil were found to be promising therapeutic agents for MAL-induced testicular toxicity and oxidative damage.
Collapse
Affiliation(s)
- Isam M. Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (I.M.A.Z.); (A.M.A.-A.); (M.Y.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Khalid M. Al-Asmari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (I.M.A.Z.); (A.M.A.-A.); (M.Y.A.)
- Correspondence:
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Building A 90, Jeddah 21589, Saudi Arabia;
| | - Atef M. Al-Attar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (I.M.A.Z.); (A.M.A.-A.); (M.Y.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohammed Y. Alomar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (I.M.A.Z.); (A.M.A.-A.); (M.Y.A.)
| |
Collapse
|
11
|
Guo Z, Wang X, Zhang P, Sun F, Chen Z, Ma W, Meng F, Hao H, Shang X. Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113210. [PMID: 35051769 DOI: 10.1016/j.ecoenv.2022.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
12
|
Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J Reprod Immunol 2021; 148:103384. [PMID: 34583090 DOI: 10.1016/j.jri.2021.103384] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, nanotechnology has been involved in an array of applications in various fields, including diagnostic kits, disease treatment, drug manufacturing, drug delivery, and gene therapy. But concerns about the toxicity of nanoparticles have greatly hindered their use; also, due to their increasing use in various industries, all members of society are exposed to the toxicity of these nanoparticles. Nanoparticles have a negative impact on various organs, including the reproductive system. They also can induce abortion in women, reduce fetal growth and development, and can damage the reproductive system and sperm morphology in men. In some cases, it has been observed that despite the modification of nanoparticles in composition, concentration, and method of administration, there is still damage to the reproductive organs. Therefore, understanding how nanoparticles affect the reproductive system is of very importance. In several studies, the nanoparticle toxicity effect on the genital organs has been investigated at the clinical and molecular levels using the in vivo and in vitro models. This study reviews these investigations and provides important data on the toxicity, hazards, and safety of nanoparticles in the reproductive system to facilitate the optimal use of nanoparticles in the industry.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| | - Ronak Shabani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Mousavi A, Gharzi A, Gholami M, Beyranvand F, Takesh M. The therapeutic effect of cerium oxide nanoparticle on ischaemia/reperfusion injury in rat testis. Andrologia 2021; 53:e14231. [PMID: 34455607 DOI: 10.1111/and.14231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Testicular torsion is a dangerous urogenital disorder which is caused by twisting of spermatic cord, and unless immediate treatments happen at a proper time, oxidative stress, occurred during ischaemia reperfusion, finally leads to irreversible disintegration of testicular tissue. One of the first preventive lines is to administrate antioxidant factors. In the present study, we investigate the therapeutic effect of cerium oxide nanoparticle on the injury. We divided 45 rats into nine groups, subjected eight groups to testicular torsion-detorsion, injected different doses of cerium oxide nanoparticle into the peritoneum of six groups and analysed all the groups regarding spermatogenetic indices including sperm count, sperm viability and Johnson mean. Our results showed that cerium oxide nanoparticle can alleviate oxidative stress in testis, and this alleviation promotes the reproductive indices as the concentration of cerium oxide nanoparticles increases. The catalase-mimetic and superoxide dismutase-mimetic activities of cerium oxide nanoparticle are the most probable theories to explain the antioxidant effect of the nanoparticle.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Beyranvand
- Department of Surgery, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Takesh
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
15
|
Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020; 47:245-262. [PMID: 33227186 PMCID: PMC7711096 DOI: 10.5653/cerm.2020.03650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neelam Pathak
- School of Life Sciences, University of Rajasthan, Jaipur, India
| | | | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
16
|
Riviere E, Rossi SP, Tavalieri YE, Muñoz de Toro MM, Ponzio R, Puigdomenech E, Levalle O, Martinez G, Terradas C, Calandra RS, Matzkin ME, Frungieri MB. Melatonin daily oral supplementation attenuates inflammation and oxidative stress in testes of men with altered spermatogenesis of unknown aetiology. Mol Cell Endocrinol 2020; 515:110889. [PMID: 32622722 DOI: 10.1016/j.mce.2020.110889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown an inverse correlation between testicular melatonin concentration and inflammation/oxidative stress-related markers levels in infertile men showing unexplained azoospermia. Here, we evaluated the impact of melatonin oral supplementation (daily 3 mg dose used to treat sleep disorders) in the incidence of local inflammation, oxidative stress, and tubular wall fibrosis development in young and middle-aged infertile adult men. Compared with testes without histological alterations, gonads with morphological abnormalities showed lower melatonin concentration along with increased macrophage numbers, TBARS generation, and expression levels of inflammation-related markers and antioxidant enzymes, as well as tubular wall collagen fibers disorganization and thickening. Melatonin oral supplementation not only increased its own testicular levels but also decreased inflammation- and oxidative stress-related markers levels, and improved the tubular wall aspect. Overall, our work provides insights into the potential benefits of melatonin on the inflammatory and oxidative status in testes of patients suffering from unexplained infertility.
Collapse
Affiliation(s)
- Eugenia Riviere
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina
| | - Soledad P Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Mónica M Muñoz de Toro
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Roberto Ponzio
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| | | | - Oscar Levalle
- División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1405DCS, Argentina
| | | | - Claudio Terradas
- Instituto Médico PREFER, San Martín, Buenos Aires, B1650, Argentina; División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1405DCS, Argentina; Fertilidad San Isidro, Buenos Aires, B1642, Argentina
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina.
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina
| |
Collapse
|
17
|
Sepanjnia A, Ghasemi H, Mohseni R, Ranjbar A, Shabani F, Salimi F, Kheiripour N. Effect of Cerium Oxide Nanoparticles on Oxidative Stress Biomarkers in Rats' Kidney, Lung, and Serum. IRANIAN BIOMEDICAL JOURNAL 2020; 24:251-6. [PMID: 32306723 PMCID: PMC7275813 DOI: 10.29252/ibj.24.4.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022]
Abstract
Background The present study aimed to evaluate the effects of different concentrations of cerium oxide nanoparticles (CONPs) on the oxidative stress (OS) status in kidney, lung, and serum of rats. Methods Male Wistar Rats were treated intraperitoneally with 15, 30, and 60 mg/kg/day of CONPs. The biochemical parameters, including total antioxidant capacity (TAC), total thiol group (TTG), malondialdehyde (MDA), SOD (superoxide dismutase), and catalase (CAT) were assayed in serum, kidney, and lung tissues. Results MDA decreased, but TTG and CAT increased in serum by the administration of CONPs at 15 mg/kg. In kidney homogenate obtained from the group treated with CONPs at 15 mg/kg, TAC, TTG, and CAT significantly increased compared to the control group. However, CONPs at 15, 30, and 60 mg/kg significantly decreased MDA level compared to the control group. In lung tissue, CONPs in doses of 15, 30 and 60 mg/kg significantly decreased CAT activity, TTG and TAC compared to the control group, while in kidney tissue, CONPs at the concentrations of 30 and 60 mg/kg significantly increased MDA compared to the control group. Conclusion Our findings suggest that CONPs attenuate OS in the kidney and affect the serum levels of OS-related markers but induce OS in the lung tissue in a dose-dependent manner.
Collapse
Affiliation(s)
- Adel Sepanjnia
- Department of Biomedical Science, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Roohollah Mohseni
- Department of Biochemistry, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shabani
- Department of Biomedical Science, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fouzieh Salimi
- Department of Biomedical Science, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
19
|
Hosseini SA, Vali M, Haghighi-Zade MH, Siahpoosh A, Malihi R. The Effect of Chilgoza Pine Nut ( Pinus gerardiana Wall.) on Blood Glucose and Oxidative Stress in Diabetic Rats. Diabetes Metab Syndr Obes 2020; 13:2399-2408. [PMID: 32753924 PMCID: PMC7353998 DOI: 10.2147/dmso.s250464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Diabetes can increase oxidative stress in various tissues of the body, and the progress of this process is associated with intensification of the complications of diabetes. The current study purposed to evaluate the protective effect of Pinus gerardiana (PG) seed on oxidative stress induced by diabetes in the liver and serum of streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS This interventional study was performed on 36 male Wistar rats. The rats were randomly divided into 6 groups (healthy controls, healthy treated with 3% and 6% (PG), diabetic control, diabetic treated with 3% and 6% (PG) doses). After 6 weeks of intervention, weight, glucose, and oxidative stress parameters in serum and liver including total antioxidant capacity, malondialdehyde, total thiol and superoxide dismutase activity were measured. Data analysis was done by statistical software version 16 and Tukey's one-way ANOVA tests. RESULTS Diabetic rats showed significantly higher malondialdehyde and fasting glucose levels (12±1.2 mmol/L) and significant reductions in fasting insulin serum, weight (-37%), and activity of superoxide dismutase enzymes, total thiol groups, and total antioxidant capacity of serum and liver (about +49% in liver and +16% in serum) (p < 0.001) compared with the healthy groups. Oral administration of PG nuts to diabetic rats caused a significant reduction in malondialdehyde and fasting glucose levels (-43%) and weight loss (+15%), and a significant increase in activity of superoxide dismutase enzymes, total thiol groups, and total antioxidant capacity of serum and liver (p < 0.001). CONCLUSION The present study concluded that PG can decrease fasting blood glucose, improve insulin resistance, reduce weight loss, and improve oxidative stress indices in the serum and liver of STZ-induced diabetic rats. It is a potential therapeutic food supplement for the treatment and prevention of hyperglycemia and high oxidative stress of diabetes.
Collapse
Affiliation(s)
- Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Vali
- Department of Nutrition, School of Paramedical Sciences, Arvand International Division, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Siahpoosh
- Department of Pharmacognosy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Malihi
- Department of Nutrition, Abadan Faculty of Medical Sciences, Abadan, Iran
- Correspondence: Reza Malihi Tel +989 166051161 Email
| |
Collapse
|
20
|
Sabahi MM, Ahmadi SA, Mahjub R, Ranjbar A. Oxidative Toxicity in Diabetes Mellitus: The Role of Nanoparticles and Future Therapeutic Strategies. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4)190809.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the most common chronic medical conditions in the world. Increasing evidence suggests that chronic hyperglycemia can cause excessive production of free radicals, particularly reactive oxygen species (ROS). Free radicals play important roles in tissue damage in diabetes. The relationship between exposure to nanoparticles (NPs) and diabetes has been reported in many previous studies. Evaluation of the potential benefits and toxic effects of NPs on diabetic disorders is of importance. This review highlights studies on the relationship between NPs and oxidative stress (OS) as well as the possible mechanisms in diabetic animal models and humans.
Collapse
Affiliation(s)
| | | | - Reza Mahjub
- 3Department of Pharmaceutics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- 4Department of Toxicology and Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Tempol improves oxidant/antioxidant parameters in testicular tissues of diabetic rats. Life Sci 2019; 221:65-71. [PMID: 30738867 DOI: 10.1016/j.lfs.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023]
Abstract
AIMS Oxidative stress induced by diabetes mellitus (DM) is considered as one of the main causes of infertility in diabetic patients. The aim of the present study was to assess the effect of Tempol - as a synthetic antioxidant- on the testis oxidative stress and sperm parameters in type 2 diabetic (T2D) rats. MAIN METHODS Twenty male Wistar rats were divided into 4 groups. Control groups (C) and diabetic groups (D); the control and diabetic groups received Tempol (100 mg/kg) for one month. Sperm parameters and oxidative stress biomarkers were evaluated in testicular tissue. KEY FINDINGS The results demonstrated that administration of Tempol in diabetic rats improved sperm motility and viability and decreased the count of abnormal sperms. Also Tempol decreased the fasting blood sugar (FBS) and lipid peroxidation (LPO). In addition, Tempol significantly increased total antioxidant capacity (TAC) levels in testis tissue of T2D rats. Histopathological changes were also improved in the diabetic treated group. SIGNIFICANCE Taken together, the results indicated that Tempol improved fertility parameters in a diabetic rat through reducing oxidative stress.
Collapse
|
22
|
Heidary Dartoti H, Firozian F, Soleimani Asl S, Ranjbar A. Protective Role of Ce Nanoparticles Against the Hepatotoxicity Induced by Exposure to Paraquat. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2018. [DOI: 10.15171/ajmb.2018.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives: The present study aimed to investigate the antioxidant activity of cerium oxide nanoparticles (CeNPs) against paraquat (PQ)-induced liver injury in rats. Methods: Thirty-two male rats were divided into four 8-member groups and treated intraperitoneally with PQ and/or CeNPs for 14 days. Group 1 received PQ (5 mg/kg/d), group 2 received CeNPs (15, 30, and 60 mg/kg/d), group 3 received a combination of PQ (5 mg/kg/d) and CeNPs (15, 30, and 60 mg/kg/d), and group 4 (control group) received saline solution. Serum samples along with liver tissue samples were collected from all the rats. Oxidative stress (OS) biomarkers including total antioxidant capacity, lipid peroxidation, total thiol groups, DNA damage, and nitric oxide levels were determined. Histological samples were also analyzed using hematoxylin and eosin staining slides. Results: Levels of oxidative stress and hepatic tissue damage were significantly higher in the PQ group compared to the control group. CeNPs at a dose of 15 mg/kg showed the antioxidant activity and compromised the PQ-induced damage. Conclusion: In the scenario tested in this study, CeNPs could reduce the levels of OS, as well as hepatic damage induced by PQ.
Collapse
Affiliation(s)
- Hamid Heidary Dartoti
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzin Firozian
- Department of Pharmaceutical, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|