1
|
Li Y, Wang R, Chen J, Zhu Z, Wang Y, Ma W. 68Ga-NOTA-RM26 PET/CT in the evaluation of glioma: a pilot prospective study. EJNMMI Res 2025; 15:6. [PMID: 39821814 PMCID: PMC11748694 DOI: 10.1186/s13550-025-01198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Gliomas are the most common malignant primary tumors of the central nervous system. There is an urgent need for new convenient, targeted and specific imaging agents for gliomas. This study aimed to firstly evaluate the feasibility of 68Ga-NOTA-RM26 PET/CT imaging in glioma and analyze the relationship between the imaging characteristics and glioma grade, classification and molecular alterations. RESULTS Twenty-two patients were confirmed as glioma by surgery or biopsy. All patients exhibited 68Ga-NOTA-RM26 uptake. SUVmax was chosen as the imaging marker for analysis. For all glioma patients, there were significant differences between grades (P = 0.047). For primary gliomas, SUVmax had good discrimination for both tumor classifications (P = 0.045) and grades (P = 0.03). There was a positive correlation (P < 0.01) between GRPR expression level and SUVmax. P53 mutations caused significant differences in SUVmax (P = 0.03). CONCLUSIONS This study is the first application of 68Ga-NOTA-RM26 in glioma patients and confirmed the safety and efficacy in glioma patients. 68Ga-NOTA-RM26 PET/CT has potential value in tumor grade, classification, and molecular alterations. TRIAL REGISTRATION ClinicalTrials.gov: NCT06412952. Registered 26 April 2024, https://clinicaltrials.gov/study/NCT06412952.
Collapse
Affiliation(s)
- Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhaohui Zhu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Kanellopoulos P, Yu Q, Abouzayed A, Bezverkhniaia E, Tolmachev V, Orlova A. Evaluation of maSSS/maSES-PEG2-RM26 for their potential therapeutic use after labeling with Re-188. Could their [ 99mTc]Tc-labeled counterparts be used to estimate dosimetry? EJNMMI Radiopharm Chem 2025; 10:3. [PMID: 39825204 PMCID: PMC11748620 DOI: 10.1186/s41181-024-00326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [99mTc]Tc labeled counterparts for the dosimetry estimation for the [188Re]Re-labeled conjugates. RESULTS Both peptides were successfully labeled with Re-188 and evaluated both in vitro and in vivo. In GRPR expressing PC-3 cells, both [188Re]Re-labeled peptides displayed high cellular uptake (8.5 ± 0.1% and 5 ± 0.3% of added activity, respectively), heavily GRPR-driven, while retaining the radioantagonistic profile with slow internalization rates. Both agents demonstrated high receptor affinity when loaded with natRe (7.5 nM and 8 nM, respectively). When tested in vivo in GRPR expressing PC-3 xenografts, both radioantagonists demonstrated high tumor accumulation (6.3 ± 0.5%IA/g and 5 ± 1%IA/g at 1 h pi, respectively), with good retention over time (4 ± 2%IA/g and 3.1 ± 0.1%IA/g at 4 h pi, respectively). In addition, their biodistribution profiles were closely mimicking their [99mTc]Tc-labeled counterparts. Statistically significant lower tumor uptake was found for both conjugates labeled with Tc-99m, which may result in underestimation of the dose delivered to the tumor. CONCLUSIONS All the results indicate that Tc-99 m could be used for dosimetry evaluation for the two [188Re]Re-labeled radioligands, with minimal alterations in their biodistribution pattern and tumor targeting capabilities.
Collapse
Affiliation(s)
| | - Quanyi Yu
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | - Abouzayed Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
| | | | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 83, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, 752 37, Sweden
| |
Collapse
|
3
|
Zhang H, Qi L, Cai Y, Gao X. Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer. Ann Med 2024; 56:2320301. [PMID: 38442298 PMCID: PMC10916925 DOI: 10.1080/07853890.2024.2320301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Aim: This comprehensive review aims to explore the potential applications of Gastrin-releasing peptide receptor (GRPR) in the diagnosis and treatment of prostate cancer. Additionally, the study investigates the role of GRPR in prognostic assessment for individuals afflicted with prostate cancer.Methods: The review encompasses a thorough examination of existing literature and research studies related to the upregulation of GRPR in various tumor types, with a specific focus on prostate. The review also evaluates the utility of GRPR as a molecular target in prostate cancer research, comparing its significance to the well-established Prostate-specific membrane antigen (PSMA). The integration of radionuclide-targeted therapy with GRPR antagonists is explored as an innovative therapeutic approach for individuals with prostate cancer.Results: Research findings suggest that GRPR serves as a promising molecular target for visualizing low-grade prostate cancer. Furthermore, it is demonstrated to complement the detection of lesions that may be negative for PSMA. The integration of radionuclide-targeted therapy with GRPR antagonists presents a novel therapeutic paradigm, offering potential benefits for individuals undergoing treatment for prostate cancer.Conclusions: In conclusion, this review highlights the emerging role of GRPR in prostate cancer diagnosis and treatment. Moreover, the integration of radionuclide-targeted therapy with GRPR antagonists introduces an innovative therapeutic approach that holds promise for improving outcomes in individuals dealing with prostate cancer. The potential prognostic value of GRPR in assessing the disease's progression adds another dimension to its clinical significance in the realm of urology.
Collapse
Affiliation(s)
- Honghu Zhang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Xiaomei Gao
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| |
Collapse
|
4
|
Gomena J, Modena D, Cordella P, Vári B, Ranđelović I, Borbély A, Bottani M, Vári-Mező D, Halmos G, Juhász É, Steinkühler C, Tóvári J, Mező G. In vitro and in vivo evaluation of Bombesin-MMAE conjugates for targeted tumour therapy. Eur J Med Chem 2024; 277:116767. [PMID: 39146832 DOI: 10.1016/j.ejmech.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. The upregulation of the bombesin receptor 2 (BB2) in several malignancies and the advantages offered by peptide drug conjugates over antibody drug conjugates in terms of production and tumour targeting motivated us to synthesise and test bombesin conjugates armed with the tubulin binder monomethyl auristatin E. The widely used Val-Cit-PABC was initially included as cathepsin cleavable self-immolative linker for the release of the free drug. However, the poor stability of the Val-Cit-conjugates in mouse plasma encouraged us to consider the optimised alternatives Glu-Val-Cit-PABC and Glu-Gly-Cit-PABC. Conjugate BN-EVcM1, featuring Glu-Val-Cit-PABC, combined suitable stability (t(½) in mouse and human plasma: 8.4 h and 4.6 h, respectively), antiproliferative activity in vitro (IC50 = 29.6 nM on the human prostate cancer cell line PC-3) and the full release of the free payload within 24 h. Three conjugates, namely BN-EGcM1, BN-EVcM1 and BN-EVcM2, improved the accumulation of MMAE in PC-3 human prostate cancer xenograft mice models, compared to the administration of the free drug. Among them, BN-EVcM1 also stood out for the significantly extended survival of mice in in vivo acute efficacy studies and for the significant inhibition of the growth of a PC-3 tumour in mice in both acute and chronic efficacy studies.
Collapse
Affiliation(s)
- Jacopo Gomena
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary
| | - Daniela Modena
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Paola Cordella
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; KINETO Lab Ltd., 1037, Budapest, Hungary
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117, Budapest, Hungary
| | - Michela Bottani
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Diána Vári-Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary; Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032, Debrecen, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Christian Steinkühler
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Saidi A, Stallons TA, Wong AG, Torgue JJ. Preclinical Investigation of [ 212Pb]Pb-DOTAM-GRPR1 for Peptide Receptor Radionuclide Therapy in a Prostate Tumor Model. J Nucl Med 2024; 65:1769-1775. [PMID: 39327021 PMCID: PMC11533912 DOI: 10.2967/jnumed.124.268101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The role of gastrin-releasing peptide receptor (GRPR) in various diseases, including cancer, has been extensively studied and has emerged as a promising therapeutic target. In this study, we successfully achieved the use of [212Pb]Pb-DOTAM-GRPR1, comprising the α-particle generator, 212Pb, combined with a GRPR-targeting peptide, GRPR1, in a prostate cancer model. Methods: Pharmacokinetics, toxicity, radiation dosimetry, and efficacy were assessed in GRPR-positive prostate tumor-bearing mice after intravenous administration of [212Pb]Pb-DOTAM-GRPR1 (where DOTAM is 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane). Results: Preclinical studies have shown tumor targeting of up to 5 percent injected dose per gram over 24 h, and optimization of the drug formulation and quantity has led to minimized oxidation and off-target binding, respectively. Particularly, an increase in peptide amount from 28 to 280 ng was shown to reduce off-target uptake, especially at the level of the pancreas, by about 30%. Furthermore, dosimetry studies confirmed the kidney as the dose-limiting organ, and toxicity studies revealed that a nontoxic dose of up to 1,665 kBq could be injected into mice. Efficacy studies indicated a median survival time of 9 wk in the control group, which received only a buffer solution, compared with 19 wk in the group that received 4 injections of 370 kBq at 3-wk intervals. Conclusion: Taken together, these combined data demonstrate the safety, tolerability, and efficacy of [212Pb]Pb-DOTAM-GRPR1, thus warranting further exploration in clinical trials.
Collapse
|
6
|
Wang L, Kuo HT, Chapple DE, Chen CC, Kurkowska S, Colpo N, Uribe C, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [Pro 14]bombesin(8-14) Derivatives for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer. Mol Pharm 2024. [PMID: 39460729 DOI: 10.1021/acs.molpharmaceut.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of cancers and represents a promising target for diagnosis and therapy. However, the extremely high accumulation in the pancreas observed for most of the clinically evaluated GRPR-targeted radiopharmaceuticals could limit their applications. In this study, we synthesized one GRPR antagonist (ProBOMB5) and two GRPR agonists (LW02056 and LW02057) by replacing the 4-thiazolidinecarboxylic acid (Thz14) residue in our previously reported GRPR-targeted tracers with Pro14. The 68Ga and 177Lu labeling were conducted in HEPES (2 M, pH 5.0) buffer and acetate (0.1 M, pH 4.5) buffer, respectively, and the radiolabeled products were obtained in a 24-57% decay-corrected radiochemical yield and >92% radiochemical purity. The binding affinities (Ki) of Ga-ProBOMB5, Ga-LW02056, Ga-LW02057, and Lu-ProBOMB5 were measured via in vitro competition binding assays and were 12.2 ± 1.89, 14.7 ± 4.81, 13.8 ± 2.24, and 13.6 ± 0.25 nM, respectively. The PET imaging and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice at 1 h post injection. [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 enabled clear tumor visualization in PET images. The tumor uptake values of [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 were 12.4 ± 1.35, 8.93 ± 1.96, and 7.64 ± 0.55%ID/g, respectively, and their average pancreas uptake values were minimal (0.60-1.37%ID/g). Longitudinal SPECT imaging and ex vivo biodistribution studies were also conducted for [177Lu]Lu-ProBOMB5 and clinically validated [177Lu]Lu-RM2. Despite comparable tumor uptake at 1 h post injection ([177Lu]Lu-ProBOMB5:8.09 ± 1.70%ID/g; [177Lu]Lu-RM2:7.73 ± 0.96%ID/g), a faster clearance from PC-3 tumor xenografts was observed for [177Lu]Lu-ProBOMB5, leading to a lower radiation-absorbed dose delivered to tumors. Our data demonstrate that [68Ga]Ga-ProBOMB5 is a promising tracer for clinical translation for detecting GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-ProBOMB5 to prolong tumor retention for therapeutic applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Devon E Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Nuclear Medicine, Pomeranian Medical University, Szczecin 70-204, Poland
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
7
|
Aloj L, Mansi R, De Luca S, Accardo A, Tesauro D, Morelli G. Radiolabeled peptides and their expanding role in clinical imaging and targeted cancer therapy. J Pept Sci 2024; 30:e3607. [PMID: 38710638 DOI: 10.1002/psc.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
There is an expanding body of evidence showing that synthetic peptides in combination with radioactive isotopes can be utilized for medical purposes. This area is of particular interest in oncology where applications in diagnosis and therapy are at different stages of development. We review the contributions in this area by the group originally founded by Carlo Pedone in Naples many years ago. We highlight the work of this group in the context of other developments in this area, focusing on three biologically relevant receptor systems: somatostatin, gastrin-releasing peptide, and cholecystokinin-2/gastrin receptors. We focus on key milestones, state of the art, and challenges in this area of research as well as the current and future outlook for expanding clinical applications.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
8
|
Zou Y, Huang M, Hu M, Wang H, Chen W, Tian R. Radiopharmaceuticals Targeting Gastrin-Releasing Peptide Receptor for Diagnosis and Therapy of Prostate Cancer. Mol Pharm 2024; 21:4199-4216. [PMID: 39219355 DOI: 10.1021/acs.molpharmaceut.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC. Radiopharmaceuticals derived from the natural ligands of GRPR have been developed. These radiopharmaceuticals enable the visualization and quantification of GRPR within the body, which can be used for disease assessment and therapeutic guidance. Recently developed radiopharmaceuticals exhibit improved pharmacokinetic parameters without deterioration in affinity. Several heterodimers targeting GRPR have been constructed as alternatives because of their potential to detect tumor lesions with a low diagnostic efficiency of single target detection. Moreover, some GRPR-targeted radiopharmaceuticals have entered clinical trials for the initial staging or biochemical recurrence detection of PC to guide disease stratification and therapy, indicating considerable potential in PC disease management. Herein, we comprehensively summarize the progress of radiopharmaceuticals targeting GRPR. In particular, we discuss the impact of ligands, chelators, and linkers on the distribution of radiopharmaceuticals. Furthermore, we summarize a potential design scheme to facilitate the advancement of radiopharmaceuticals and, thus, prompt clinical translation.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Hu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Nagy Á, Abouzayed A, Kanellopoulos P, Landmark F, Bezverkhniaia E, Tolmachev V, Orlova A, Eriksson Karlström A. Evaluation of ABD-Linked RM26 Conjugates for GRPR-Targeted Drug Delivery. ACS OMEGA 2024; 9:36122-36133. [PMID: 39220525 PMCID: PMC11359615 DOI: 10.1021/acsomega.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Targeting the gastrin-releasing peptide receptor (GRPR) with the bombesin analogue RM26, a 9 aa peptide, has been a promising strategy for cancer theranostics, with recent success in radionuclide imaging of prostate cancer. However, therapeutic application of the short peptide RM26 would require a longer half-life to prevent fast clearance from the circulation. Conjugation to an albumin-binding domain (ABD) is a viable strategy to extend the in vivo half-life of peptides and proteins. We previously reported an ABD-fused RM26 peptide targeting GRPR (ABD-RM26 Gen 1) that showed prolonged and stable tumor uptake over 144 h; however, the observed high kidney uptake indicated that the conjugate's binding to albumin was reduced and that this could be an obstacle for its use as a delivery system for targeted therapy, especially for radiotherapy. Here, we have designed, produced, and preclinically evaluated a series of novel ABD-RM26 conjugates with the aim of improving the conjugate's binding to albumin and decreasing the kidney uptake. We developed three second-generation constructs with varying formats, differing in the relative positions of the targeting moieties and the radionuclide chelator. The produced conjugates were radiolabeled with indium-111 and evaluated in vitro and in vivo. All constructs displayed improved biophysical characteristics, biodistribution, and lower kidney uptake compared to previously reported first-generation molecules. The ABD-RM26 Gen 2A conjugate showed the best biodistribution profile with a nearly 6-fold reduction in kidney uptake. However, the ABD-RM26 Gen 2A conjugate's binding to GRPR was compromised. This conjugate's assembly of albumin- and GRPR-binding moieties might be used for further development of drug conjugates for targeted therapy/radiotherapy of GRPR-expressing cancers.
Collapse
Affiliation(s)
- Ábel Nagy
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
| | | | - Fredrika Landmark
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ekaterina Bezverkhniaia
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 634009 Tomsk, Russia
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, 752 37 Uppsala, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Science for
Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wen X, Wang R, Xu P, Shi M, Shang Q, Zeng X, Zeng X, Liu J, Wang X, Zhu Z, Guo Z, Chen X, Zhang J. Synthesis, preclinical, and initial clinical evaluation of integrin α Vβ 3 and gastrin-releasing peptide receptor (GRPR) dual-targeting radiotracer [ 68Ga]Ga-RGD-RM26-03. Eur J Nucl Med Mol Imaging 2024; 51:2023-2035. [PMID: 38376806 DOI: 10.1007/s00259-024-06634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
UNLABELLED Integrin receptor αvβ3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Pengfei Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Mengqi Shi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xueyuan Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
12
|
Baun C, Naghavi-Behzad M, Hildebrandt MG, Gerke O, Thisgaard H. Gastrin-releasing peptide receptor as a theranostic target in breast cancer: a systematic scoping review. Semin Nucl Med 2024; 54:256-269. [PMID: 38342656 DOI: 10.1053/j.semnuclmed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Kanellopoulos P, Mattsson A, Abouzayed A, Obeid K, Nock BA, Tolmachev V, Maina T, Orlova A. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharm Chem 2024; 9:13. [PMID: 38366299 PMCID: PMC10873254 DOI: 10.1186/s41181-024-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). RESULTS These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. CONCLUSIONS These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75183, Uppsala, Sweden
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
14
|
Mező G, Gomena J, Ranđelović I, Dókus EL, Kiss K, Pethő L, Schuster S, Vári B, Vári-Mező D, Lajkó E, Polgár L, Kőhidai L, Tóvári J, Szabó I. Oxime-Linked Peptide-Daunomycin Conjugates as Good Tools for Selection of Suitable Homing Devices in Targeted Tumor Therapy: An Overview. Int J Mol Sci 2024; 25:1864. [PMID: 38339141 PMCID: PMC10855781 DOI: 10.3390/ijms25031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Collapse
Affiliation(s)
- Gábor Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Jacopo Gomena
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
| | - Endre Levente Dókus
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Krisztina Kiss
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Lilla Pethő
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Sabine Schuster
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Diána Vári-Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| |
Collapse
|
15
|
Ma Y, Gao F. Advances of radiolabeled GRPR ligands for PET/CT imaging of cancers. Cancer Imaging 2024; 24:19. [PMID: 38279185 PMCID: PMC10811881 DOI: 10.1186/s40644-024-00658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Yuze Ma
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Feng Gao
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Schreck MV, Burgard C, Schmidtke A, Hierlmeier I, Stemler T, Maus S, Rosar F, Jung M, Speicher A, Ezziddin S, Holland JP, Bartholomä MD. Radiometal Complexes as Pharmacokinetic Modifiers: A Potent 68Ga-Labeled Gastrin-Releasing Peptide Receptor Antagonist Based on the Macrocyclic Metal Chelator NODIA-Me. Mol Pharm 2023; 20:6463-6473. [PMID: 37978936 DOI: 10.1021/acs.molpharmaceut.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The gastrin-releasing peptide receptor (GRPr) is overexpressed in various cancer types including prostate and breast carcinomas, making it an attractive target for molecular imaging and therapy. In this work, we designed a novel GRPr antagonistic probe comprising metal chelator NODIA-Me. This 1,4,7-triazacyclononane-based chelator forms positively charged metal complexes due to its neutral methylimidazole arms. Because a positive charge at the N-terminus of GRPr conjugates is responsible for high receptor affinity as exemplified by the current gold standard DOTA-RM2, we investigated if a positively charged radiometal complex can be used as a pharmacokinetic modifier to also produce high-affinity GRPr conjugates. In this respect, the bioconjugate NODIA-Me-Ahx-JMV594 was prepared by a combination of solid-phase peptide synthesis and solution-based reactions in a 94% yield. Radiolabeling provided the 68Ga-labeled conjugate in radiochemical yields of >95% and radiochemical purities of >98% with mean molar activities of Am ∼17 MBq nmol-1. The competitive GRPr affinity of the metal-free and 69/71Ga-labeled conjugate was determined to be IC50 = 0.41 ± 0.06 and 1.45 ± 0.06 nM, respectively. The metal-free GRPr antagonist DOTA-RM2 and its corresponding 69/71Ga complex had IC50 values of 1.42 ± 0.07 and 0.98 ± 0.19 nM, respectively. Small-animal PET imaging of mice bearing GRPr(+) PC-3 tumors revealed high radioactivity accumulation in the tumors and in the pancreas as an organ with high levels of GRPr expression. These findings were corroborated by the corresponding ex vivo biodistribution data, in which the tumors and the pancreas exhibited the highest radioactivity accumulation. By coinjection of an excess of NODIA-Me-Ahx-JMV594, uptake in the tumors and GRPr(+) organs was significantly reduced, confirming specific receptor-mediated uptake. The estrogen receptor-positive tumor of a female breast cancer patient was clearly visualized by PET imaging using 68Ga-labeled NODIA-Me-Ahx-JMV594. To summarize, the positive charge at the N-terminus of the conjugate induced by the Ga(NODIA-Me) complex resulted in high GRPr affinity comparable to that of the potent antagonist DOTA-RM2. The conjugate NODIA-Me-Ahx-JMV594 is a promising probe for imaging of GRPr tumors that warrants further evaluation in larger patient cohorts as well as in combination with other radiometals.
Collapse
Affiliation(s)
- Moritz-Valentin Schreck
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Caroline Burgard
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Alexander Schmidtke
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Andreas Speicher
- Department of Organic Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| |
Collapse
|
17
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
18
|
Bajwa DE, Salvanou EA, Theodosiou M, Koutsikou TS, Efthimiadou EK, Bouziotis P, Liolios C. Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1184309. [PMID: 39380961 PMCID: PMC11460297 DOI: 10.3389/fnume.2023.1184309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2024]
Abstract
Introduction Prostate cancer (PCa) is the second most frequent cancer diagnosis in men and the fifth leading cause of death worldwide. Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) receptors are overexpressed in PCa. In this study, we have developed iron oxide nanoparticles (IONs) functionalized with the Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) ligands for dual targeting of Prostate cancer. Methods IONs were developed with a thin silica layer on their surface with MPTES (carrying -SH groups, IONs-SH), and they were coupled either with a pharmacophore targeting PSMA (IONs-PSMA) or with bombesin peptide (IONs-BN), targeting GRP receptors, or with both (IONs-PSMA/BN). The functionalized IONs were characterized for their size, zeta potential, and efficiency of functionalization using dynamic light scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FT-IR). All the aforementioned types of IONs were radiolabeled directly with Technetium-99m (99mTc) and evaluated for their radiolabeling efficiency, stability, and binding ability on two different PCa cell lines (PC3 and LNCaP). Results and Discussion The MTT assay demonstrated low toxicity of the IONs against PC3 and LNCaP cells, while the performed wound-healing assay further proved that these nanostructures did not affect cellular growth mechanisms. The observed hemolysis ratio after co-incubation with red blood cells was extremely low. Furthermore, the 99mTc-radiolabeled IONs showed good stability in human serum, DTPA, and histidine, and high specific binding rates in cancer cells, supporting their future utilization as potential diagnostic tools for PCa with Single Photon Emission Computed Tomography (SPECT) imaging.
Collapse
Affiliation(s)
- Danae Efremia Bajwa
- Radiochemical Studies Laboratory, Energy & Safety, Institute of Nuclear & Radiological Sciences & Technology (INRASTES), National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
| | - Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, Energy & Safety, Institute of Nuclear & Radiological Sciences & Technology (INRASTES), National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
| | - Maria Theodosiou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora S. Koutsikou
- Radiochemical Studies Laboratory, Energy & Safety, Institute of Nuclear & Radiological Sciences & Technology (INRASTES), National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni K. Efthimiadou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Energy & Safety, Institute of Nuclear & Radiological Sciences & Technology (INRASTES), National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
| | - Christos Liolios
- Radiochemical Studies Laboratory, Energy & Safety, Institute of Nuclear & Radiological Sciences & Technology (INRASTES), National Centre for Scientific Research (NCSR) “Demokritos”, Athens, Greece
- Research Laboratory, Institute of Pharmaceutical Research & Technology (IFET) (Pallini), Athens, Greece
| |
Collapse
|
19
|
Abouzayed A, Kanellopoulos P, Gorislav A, Tolmachev V, Maina T, Nock BA, Orlova A. Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics. Biomolecules 2023; 13:1134. [PMID: 37509170 PMCID: PMC10377574 DOI: 10.3390/biom13071134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly11 with Sar11 in the peptidic [D-Phe6,Leu13-NHEt,des-Met14]BBN(6-14) chain stabilized the [99mTc]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG2-(Sar11)RM26 (AU-RM26-M1), after Gly11 to Sar11-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [111In]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [111In]In-DOTAGA-PEG2-RM26. In vitro, the cell uptake of [111In]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [111In]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [111In]In-AU-RM26-M1). [111In]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 ± 8% intact) than unmodified [111In]In-DOTAGA-PEG2-RM26 (69 ± 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar11-compound (91 ± 2% intact; p > 0.05). In vivo, [111In]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 ± 0.7%IA/g vs. 0.9 ± 0.6%IA/g in blocked mice) and pancreas (2.2 ± 0.6%IA/g vs. 0.3 ± 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [111In]In-AU-RM26-M1 was higher than for [111In]In-DOTAGA-PEG2-RM26 (at 4 h pi, 5.7 ± 1.8%IA/g vs. 3 ± 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [111In]In-AU-RM26-M1 SPECT/CT. The Gly11 to Sar11-substitution stabilized [111In]In-DOTAGA-PEG2-(Sar11)RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Alisa Gorislav
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
20
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
21
|
Wang Y, Yuan H, Tang S, Liu Y, Cai P, Liu N, Chen Y, Zhou Z. The effects of novel macrocyclic chelates on the targeting properties of the 68Ga-labeled Gastrin releasing peptide receptor antagonist RM2. EJNMMI Res 2023; 13:56. [PMID: 37285007 PMCID: PMC10247930 DOI: 10.1186/s13550-023-01005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is a molecular target for the visualization of prostate cancer. Bombesin (BN) analogs are short peptides with a high affinity for GRPr. RM2 is a bombesin-based antagonist. It has been demonstrated that RM2 have superior in vivo biodistribution and targeting properties than high-affinity receptor agonists. This study developed new RM2-like antagonists by introducing the novel bifunctional chelators AAZTA5 and DATA5m to RM2. RESULTS The effects of different macrocyclic chelating groups on drug targeting properties and the possibility of preparing 68Ga-radiopharmaceuticals in a kit-based protocol were investigated using 68Ga-labeled entities. Both new RM2 variants were labelled with 68Ga3+ resulting in high yields, stability, and low molarity of the ligand. DATA5m-RM2 and AAZTA5-RM2 incorporated 68Ga3+ nearly quantitatively at room temperature within 3-5 min, and the labelling yield for 68Ga-DOTA-RM2 was approximately 10% under the same conditions. 68Ga-AAZTA5-RM2 showed stronger hydrophilicity according to partition coefficient. Although the maximal cellular uptake values of the three compounds were similar, 68Ga-AAZTA5-RM2 and 68Ga-DATA5m-RM2 peaked more rapidly. Biodistribution studies showed high and specific tumor uptake, with a maximum of 9.12 ± 0.81 percentage injected activity per gram of tissue (%ID/g) for 68Ga-DATA5m-RM2 and 7.82 ± 0.61%ID/g for 68Ga-AAZTA5-RM2 at 30 min after injection. CONCLUSIONS The conditions for complexation of DATA5m-RM2 and AAZTA5-RM2 with gallium-68 are milder, faster and require less amount of precursors than DOTA-RM2. Chelators had an evident influence on the pharmacokinetics and targeting properties of 68Ga-X-RM2 derivatives. Positively charged 68Ga-DATA5m-RM2 provided a high tumor uptake, high image contrast and good capability of targeting GRPr.
Collapse
Affiliation(s)
- Yinwen Wang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Hongmei Yuan
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Sufan Tang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Yang Liu
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Ping Cai
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yue Chen
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| | - Zhijun Zhou
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
22
|
Abouzayed A, Borin J, Lundmark F, Rybina A, Hober S, Zelchan R, Tolmachev V, Chernov V, Orlova A. The GRPR Antagonist [ 99mTc]Tc-maSSS-PEG 2-RM26 towards Phase I Clinical Trial: Kit Preparation, Characterization and Toxicity. Diagnostics (Basel) 2023; 13:diagnostics13091611. [PMID: 37175001 PMCID: PMC10178091 DOI: 10.3390/diagnostics13091611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrin-releasing peptide receptors (GRPRs) are overexpressed in the majority of primary prostate tumors and in prostatic lymph node and bone metastases. Several GRPR antagonists were developed for SPECT and PET imaging of prostate cancer. We previously reported a preclinical evaluation of the GRPR antagonist [99mTc]Tc-maSSS-PEG2-RM26 (based on [D-Phe6, Sta13, Leu14-NH2]BBN(6-14)) which bound to GRPR with high affinity and had a favorable biodistribution profile in tumor-bearing animal models. In this study, we aimed to prepare and test kits for prospective use in an early-phase clinical study. The kits were prepared to allow for a one-pot single-step radiolabeling with technetium-99m pertechnetate. The kit vials were tested for sterility and labeling efficacy. The radiolabeled by using the kit GRPR antagonist was evaluated in vitro for binding specificity to GRPR on PC-3 cells (GRPR-positive). In vivo, the toxicity of the kit constituents was evaluated in rats. The labeling efficacy of the kits stored at 4 °C was monitored for 18 months. The biological properties of [99mTc]Tc-maSSS-PEG2-RM26, which were obtained after this period, were examined both in vitro and in vivo. The one-pot (gluconic acid, ethylenediaminetetraacetic acid, stannous chloride, and maSSS-PEG2-RM26) single-step radiolabeling with technetium-99m was successful with high radiochemical yields (>97%) and high molar activities (16-24 MBq/nmol). The radiolabeled peptide maintained its binding properties to GRPR. The kit constituents were sterile and non-toxic when tested in living subjects. In conclusion, the prepared kit is considered safe in animal models and can be further evaluated for use in clinics.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Jesper Borin
- Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Anastasiya Rybina
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Roman Zelchan
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Vladimir Chernov
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
23
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
24
|
[ 99mTc]Tc-HYNIC-RM2: A potential SPECT probe targeting GRPR expression in prostate cancers. Nucl Med Biol 2023; 118-119:108331. [PMID: 36933456 DOI: 10.1016/j.nucmedbio.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Elevated density of gastrin releasing peptide receptors (GRPR) in prostate cancer has led to exploration of several radiolabeled peptides for imaging and staging of the disease. The GRPR antagonist peptide RM2 has been successfully conjugated with several chelators and radiolabeled with gallium-68. The goal of this study was to synthesize a 99mTc-labeled probe and investigate its potential for SPECT imaging of prostate cancer. Towards this HYNIC-RM2 peptide conjugate was synthesized, radiolabeled with 99mTc and evaluated in GRPR-positive PC3 tumor xenografts. METHODS HYNIC-RM2 was manually synthesized by standard Fmoc solid phase strategy and radiolabeled with 99mTc. In vitro cell studies were performed in GRPR-positive human prostate carcinoma (PC3) cells. Metabolic stability studies of [99mTc]Tc-HYNIC-RM2 were performed in normal mice in the presence as well as absence of neutral endopeptidase (NEP) inhibitor, phosphoramidon (PA). Biodistribution and imaging studies of [99mTc]Tc-HYNIC-RM2 were performed in SCID mice bearing PC3-xenograft. RESULTS [99mTc]Tc-HYNIC-RM2 exhibited high binding affinity in low nanomolar range (Kd = 1.83 ± 0.31 nM). Metabolic stability studies in mice indicated that in the absence of PA, radiolabeled peptide was about 65 % intact in the blood at 15 min p.i., whereas proportion of intact radiolabeled peptide was enhanced to 90 % on co-administration of PA. Biodistribution studies in PC3 tumor bearing mice demonstrated high tumor uptake (8.02 ± 0.9%ID/g and 6.13 ± 0.44%ID/g at 1 h and 3 h p.i.). Co-administration of PA with the radiolabeled peptide resulted in further enhancement of tumor uptake (14.24 ± 0.76 % ID/g and 11.71 ± 0.59%ID/g at 1 h and 3 h p.i.). SPECT/CT images of [99mTc]Tc-HYNIC-RM2 could clearly visualize the tumor. Significant (p < 0.001) reduction in the tumor uptake with a co-injected blocking dose of unlabeled peptide ascertained the GRPR specificity of [99mTc]Tc-HYNIC-RM2. CONCLUSION Encouraging results obtained in biodistribution and imaging studies indicate the potential of [99mTc]Tc-HYNIC-RM2 for further exploration as GRPR targeting agent.
Collapse
|
25
|
Nanostrategies for Therapeutic and Diagnostic Targeting of Gastrin-Releasing Peptide Receptor. Int J Mol Sci 2023; 24:ijms24043455. [PMID: 36834867 PMCID: PMC9958678 DOI: 10.3390/ijms24043455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands has been described in the literature, which allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities. Hereby, the recent advances in the field of applications of various nanoplatforms that are able to reach the GRPR-expressing cells are reviewed.
Collapse
|
26
|
Gomena J, Vári B, Oláh-Szabó R, Biri-Kovács B, Bősze S, Borbély A, Soós Á, Ranđelović I, Tóvári J, Mező G. Targeting the Gastrin-Releasing Peptide Receptor (GRP-R) in Cancer Therapy: Development of Bombesin-Based Peptide-Drug Conjugates. Int J Mol Sci 2023; 24:3400. [PMID: 36834815 PMCID: PMC9967152 DOI: 10.3390/ijms24043400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.
Collapse
Affiliation(s)
- Jacopo Gomena
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Rita Oláh-Szabó
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Beáta Biri-Kovács
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Adina Borbély
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117 Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- KINETO Lab Ltd., 1037 Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
27
|
Jetty S, Loftus JR, Patel A, Gupta A, Puri S, Dogra V. Prostate Cancer-PET Imaging Update. Cancers (Basel) 2023; 15:cancers15030796. [PMID: 36765754 PMCID: PMC9913636 DOI: 10.3390/cancers15030796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer is the most common non-dermatologic cancer in men, and one of the leading causes of cancer-related mortality. The incidence of prostate cancer increases precipitously after the age of 65 and demonstrates variable aggressiveness, depending on its grade and stage at diagnosis. Despite recent advancements in prostate cancer treatment, recurrence is seen in 25% of patients. Advancements in prostate cancer Positron Emission Tomography (PET) molecular imaging and recent United States Food and Drug Administration (FDA) approvals have led to several new options for evaluating prostate cancer. This manuscript will review the commonly used molecular imaging agents, with an emphasis on Fluorine-18 fluciclovine (Axumin) and PSMA-ligand agents, including their protocols, imaging interpretation, and pitfalls.
Collapse
Affiliation(s)
- Sankarsh Jetty
- Department of Imaging Sciences, University of Rochester Medical Center, New York, NY 14642, USA
| | - James Ryan Loftus
- Department of Imaging Sciences, University of Rochester Medical Center, New York, NY 14642, USA
| | - Abhinav Patel
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Akshya Gupta
- Department of Imaging Sciences, University of Rochester Medical Center, New York, NY 14642, USA
| | - Savita Puri
- Department of Imaging Sciences, University of Rochester Medical Center, New York, NY 14642, USA
| | - Vikram Dogra
- Department of Imaging Sciences, University of Rochester Medical Center, New York, NY 14642, USA
- Correspondence:
| |
Collapse
|
28
|
Radiolabeled methotrexate loaded chitosan nanoparticles as imaging probe for breast cancer: Biodistribution in tumor-bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Zhang L, Chen C, Zou W, Chen X, Zhou M, Ma C, Xi X, Chen T, Shaw C, Liu M, Wang L. Two novel bombesin-like neuropeptides from the skin secretion of Pelophylax kl. esculentus: Ex vivo pharmacological characterization on rat smooth muscle types. Front Mol Biosci 2022; 9:953974. [PMID: 36250016 PMCID: PMC9560764 DOI: 10.3389/fmolb.2022.953974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian bombesin-like neuropeptides (BLPs) play an important role in regulation of physiological and pathophysiological processes. Frog skin-derived BLPs, of smaller size and diverse lengths and sequences at their N-terminus, have attracted the attention of many researchers. However, these N-terminal variants and the receptors modulating their pharmacological actions are poorly studied and less understood. In this study, two BLPs, namely, [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin with primary structures NLGKQWATGHFM and NLGKQWAVGHFM were isolated from the skin secretion of hybrid Pelophylax kl. esculentus. Both BLPs share a similar primary structure with only a single amino acid substitution at the eighth position (threonine to valine), while they have quite different myotropic potencies with EC50 values in the range of 22.64 ± 9.7 nM (N = 8) to 83.93 ± 46.9 nM (N = 8). The potency of [Asn3, Lys6, Thr10, Phe13]3–14-bombesin was approximately 3-fold higher than that of [Asn3, Lys6, Phe13]3–14-bombesin. Through the investigation of receptor selectivity using a canonical bombesin receptor antagonist, it was found that [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin had an affinity to both BB1 and BB2 receptors. Their contractile functions are mainly modulated by both BB1 and BB2 receptors on rat urinary bladder and BB2 alone on rat uterus smooth muscle preparations. These data may provide new insights into the design of potent and selective ligands for bombesin receptors. Moreover, [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin did not induce significant hemolysis and toxicity in normal human cells, suggesting that these two natural novel BLPs have great potential for development into new drug candidates.
Collapse
Affiliation(s)
- Luyao Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chen Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Mingchun Liu, ; Lei Wang,
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Mingchun Liu, ; Lei Wang,
| |
Collapse
|
30
|
Günther T, Konrad M, Stopper L, Kunert JP, Fischer S, Beck R, Casini A, Wester HJ. Optimization of the Pharmacokinetic Profile of [ 99mTc]Tc-N 4-Bombesin Derivatives by Modification of the Pharmacophoric Gln-Trp Sequence. Pharmaceuticals (Basel) 2022; 15:ph15091133. [PMID: 36145354 PMCID: PMC9500665 DOI: 10.3390/ph15091133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Current radiolabeled gastrin-releasing peptide receptor (GRPR) ligands usually suffer from high accumulation in GRPR-positive organs (pancreas, stomach), limiting tumor-to-background contrast in the abdomen. In novel N4-bombesin derivatives this was addressed by substitutions at the Gln7-Trp8 site within the MJ9 peptide (H-Pip5-phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) either by homoserine (Hse7), β-(3-benzothienyl) alanine (Bta8) or α-methyl tryptophan (α-Me-Trp8), with the aim of optimizing pharmacokinetics. We prepared and characterized the peptide conjugates 6-carboxy-1,4,8,11-tetraazaundecane (N4)-asp-MJ9, N4-asp-[Bta8]MJ9, N4-[Hse7]MJ9 and N4-[α-Me-Trp8]MJ9, and evaluated these compounds in vitro (GRPR affinity via IC50,inverse; internalization; lipophilicity via logD7.4) and in vivo (biodistribution and μSPECT/CT studies at 1 h post injection (p.i.) in PC-3 tumor-bearing CB17-SCID mice). 99mTc-labeling resulted in radiochemical yields (RCYs) > 95%. All 99mTc-labeled MJ9 analogues showed comparable or higher GRPR affinity than the external reference [99mTc]Tc-Demobesin 4. Receptor-bound fractions were noticeably higher than that of the reference. Despite a slightly enhanced lipophilicity, all novel MJ9 derivatives revealed improved in vivo pharmacokinetics compared to the reference. The Bta8-modified ligand revealed the most favorable tumor-to-abdomen contrast at 1 h p.i. Substitutions at the Gln7-Trp8 site within GRPR ligands hold great potential to modify pharmacokinetics for improved imaging.
Collapse
|
31
|
Synthesis and in vitro proof-of-concept studies on bispecific iron oxide magnetic nanoparticles targeting PSMA and GRP receptors for PET/MR imaging of prostate cancer. Int J Pharm 2022; 624:122008. [PMID: 35820513 DOI: 10.1016/j.ijpharm.2022.122008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy worldwide in men. This is a proof-of-concept study describing the development of 68Ga-magnetic iron oxide nanoparticles (mNP) targeting prostate specific membrane antigen (PSMA) and gastrin releasing peptide (GRPR) receptors as potential tools for diagnosis of PCa with PET/MRI. Two pharmacophores targeting PSMA, 1, and GRPR, 2, were coupled to mNPs carrying -SH (mNP-S1/2) or -NH2 (mNP-N1/2) groups. The mNP-S1/2 and mNP-N1/2 were characterized for their size, zeta potential, structure, and efficiency of functionalization using dynamic light scattering (DLS), FT-IR and RP-HPLC. A direct 68Ga-labelling procedure was followed, where 68Ga-mNP-N1/2 proved superior to 68Ga-mNP-S1/2 regarding radiolabelling efficiency, and thus were further evaluated in vitro. Toxicity studies in PCa cells (LNCaP, PC-3) showed low toxicity, and minimal hemolysis of red blood cells. In vitro assays in cells expressing PSMA (LNCaP), and GRPR (PC-3), showed specific time-dependent binding (40 min to plateau), high avidity (PC-3: Kd = 28.27 nM, LNCaP: Kd = 11.49 nM) and high internalization rates for 68Ga-mNP-N1/2 in both cell lines.
Collapse
|
32
|
Copper-67-Labeled Bombesin Peptide for Targeted Radionuclide Therapy of Prostate Cancer. Pharmaceuticals (Basel) 2022; 15:ph15060728. [PMID: 35745647 PMCID: PMC9229378 DOI: 10.3390/ph15060728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/03/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is a promising molecular target for imaging and therapy of prostate cancer using bombesin peptides that bind to the receptor with high affinity. Targeted copper theranostics (TCTs) using copper radionuclides, 64Cu for imaging and 67Cu for therapy, offer significant advantages in the development of next-generation theranostics. [64Cu]Cu-SAR-BBN is in clinical development for PET imaging of GRPR-expressing cancers. This study explores the therapeutic efficacy of [67Cu]Cu-SAR-BBN in a pre-clinical mouse model. The peptide was radiolabeled with 67Cu, and specific binding of the radiolabeled peptide towards GRPR-positive PC-3 prostate cancer cells was confirmed with 52.2 ± 1.4% total bound compared to 5.8 ± 0.1% with blocking. A therapy study with [67Cu]Cu-SAR-BBN was conducted in mice bearing PC-3 tumors by injecting 24 MBq doses a total of six times. Tumor growth was inhibited by 93.3% compared to the control group on day 19, and median survival increased from 34.5 days for the control group to greater than 54 days for the treatment group. The ease and stability of the radiochemistry, favorable biodistribution, and the positive tumor inhibition demonstrate the suitability of this copper-based theranostic agent for clinical assessment in the treatment of cancers expressing GRPR.
Collapse
|
33
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
34
|
Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics-Advancement from Peptides to Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200673. [PMID: 35527333 DOI: 10.1002/smll.202200673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Endogenous targeted radiotherapy is emerging as an integral modality to treat a variety of cancer entities. Nevertheless, despite the positive clinical outcome of the treatment using radiolabeled peptides, small molecules, antibodies, and nanobodies, a high degree of hepatotoxicity and nephrotoxicity still persist. This limits the amount of dose that can be injected. In an attempt to mitigate these side effects, the use of nanocarriers such as nanoparticles (NPs), dendrimers, micelles, liposomes, and nanogels (NGs) is currently being explored. Nanocarriers can prolong circulation time and tumor retention, maximize radiation dosage, and offer multifunctionality for different targeting strategies. In this review, the authors first provide a summary of radiation therapy and imaging and discuss the new radiotracers that are used preclinically and clinically. They then highlight and identify the advantages of radio-nanomedicine and its potential in overcoming the limitations of endogenous radiotherapy. Finally, the review points to the ongoing efforts to maximize the use of radio-nanomedicine for efficient clinical translation.
Collapse
Affiliation(s)
- Prachi Desai
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, School for Cardiovascular Diseases (CARIM) and School of oncology (GROW), Maastricht University, Maastricht, 6229 HX, The Netherlands
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University hospital RWTH Aachen, Pauwelstraße 30, 52074, Aachen, Germany
| | - Smriti Singh
- DWI Leibniz Institute for Interactive Materials e.V, RWTH Aachen University, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Max-Planck-Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Marlin A, Hierlmeier I, Guillou A, Bartholomä M, Tripier R, Patinec V. Bioconjugated chelates based on (methylpyridinyl)tacn: synthesis, 64Cu labeling and in vitro evaluation for prostate cancer targeting. Metallomics 2022; 14:6596882. [PMID: 35648482 DOI: 10.1093/mtomcs/mfac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Three new bifunctional copper chelators based on the 1,4,7-triazacyclononane (tacn) platform have been synthesized and conjugated to peptide. The first one is constituted of the tacn with two methylpyridinyl and one methylthiazolyl carboxylic acid pendant arms, while, in the second and third ones, the macrocycle is functionalized by three methylpyridinyl groups, with an additional hexynoic acid chain on a carbon of one or two pyridine rings. These three bifunctional chelators have been conjugated to the antagonist JMV594 peptide for targeting the gastrin releasing peptide receptor (GRP-r), which is overexpressed in prostate cancer. The resulting monomeric bioconjugates have shown their efficiency to be radiolabeled with β+ emitter 64Cu, and the hydrophilicity and PC-3 cell internalisation properties of these radiolabeled conjugates have been studied. PC-3 cell binding affinity of mono- and dimeric metal-free and natCu metallated conjugates have been evaluated by IC50 measurements. The results demonstrate the potential of these methylpyridinyl tacn derivatives for radiopharmaceutical applications.
Collapse
Affiliation(s)
- Axia Marlin
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, 66421 Homburg, Germany
| | - Amaury Guillou
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, 66421 Homburg, Germany
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
36
|
Liolios C, Patsis C, Lambrinidis G, Tzortzini E, Roscher M, Bauder-Wüst U, Kolocouris A, Kopka K. Investigation of Tumor Cells and Receptor-Ligand Simulation Models for the Development of PET Imaging Probes Targeting PSMA and GRPR and a Possible Crosstalk between the Two Receptors. Mol Pharm 2022; 19:2231-2247. [PMID: 35467350 DOI: 10.1021/acs.molpharmaceut.2c00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) have both been used in nuclear medicine as targets for molecular imaging and therapy of prostate (PCa) and breast cancer (BCa). Three bioconjugate probes, the PSMA specific: [68Ga]Ga-1, ((HBED-CC)-Ahx-Lys-NH-CO-NH Glu or PSMA-11), the GRPR specific: [68Ga]Ga-2, ((HBED-CC)-4-amino-1-carboxymethyl piperidine-[D-Phe6, Sta13]BN(6-14), a bombesin (BN) analogue), and 3 (the BN analogue: 4-amino-1-carboxymethyl piperidine-[(R)-Phe6, Sta13]BN(6-14) connected with the fluorescent dye, BDP-FL), were synthesized and tested in vitro with PCa and BCa cell lines, more specifically, with PCa cells, PC-3 and LNCaP, with BCa cells, T47D, MDA-MB-231, and with the in-house created PSMA-overexpressing PC-3(PSMA), T47D(PSMA), and MDA-MB-231(PSMA). In addition, biomolecular simulations were conducted on the association of 1 and 2 with PSMA and GRPR. The PSMA overexpression resulted in an increase of cell-bound radioligand [68Ga]Ga-1 (PSMA) for PCa and BCa cells and also of [68Ga]Ga-2 (GRPR), especially in those cell lines already expressing GRPR. The results were confirmed by fluorescence-activated cell sorting with a PE-labeled PSMA-specific antibody and the fluorescence tracer 3. The docking calculations and molecular dynamics simulations showed how 1 enters the PSMA funnel region and how pharmacophore Glu-urea-Lys interacts with the arginine patch, the S1', and S1 subpockets by forming hydrogen and van der Waals bonds. The chelating moiety of 1, that is, HBED-CC, forms additional stabilizing hydrogen bonding and van der Waals interactions in the arene-binding site. Ligand 2 is diving into the GRPR transmembrane (TM) helical cavity, thereby forming hydrogen bonds through its amidated end, water-mediated hydrogen bonds, and π-π interactions. Our results provide valuable information regarding the molecular mechanisms involved in the interactions of 1 and 2 with PSMA and GRPR, which might be useful for the diagnostic imaging and therapy of PCa and BCa.
Collapse
Affiliation(s)
- Christos Liolios
- Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Radiochemical Studies Laboratory, INRASTES, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece.,Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Christos Patsis
- Division of Cell Plasticity and Epigenetic Remodelling, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Translational Oncology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Mareike Roscher
- Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division of Radiopharmaceutical Chemistry, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Lebensmittelchemie Chemiegebäude, Raum 413 Bergstr. 66, 01069 Dresden, Germany
| |
Collapse
|
37
|
Vahidfar N, Farzanefar S, Ahmadzadehfar H, Molloy EN, Eppard E. A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies. Cancers (Basel) 2022; 14:1779. [PMID: 35406552 PMCID: PMC8997132 DOI: 10.3390/cancers14071779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear medicine is defined as the diagnosis and the treatment of disease using radiolabeled compounds known as radiopharmaceuticals. Single-photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computer tomography (PET/CT) based radiopharmaceuticals have proven reliable in diagnostic imaging in nuclear medicine and cancer treatment. One of the most critical cancers that also relies on an early diagnosis is gynecological cancer. Given that approximately 25% of all cancers in developing countries are a subset of gynecological cancer, investigating this cancer subtype is of significant clinical worth, particularly in light of its high rate of mortality. With accurate identification of high grade distant abdominal endometrial cancer as well as extra abdominal metastases, 18F-Fluorodeoxyglucose ([18F]FDG) PET/CT imaging is considered a valuable step forward in the investigation of gynecological cancer. Considering these factors, [18F]FDG PET/CT imaging can assist in making management of patient therapy more feasible. In this literature review, we will provide a short overview of the role of nuclear medicine in the diagnosis of obstetric and gynecological cancers.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.)
| | - Saeed Farzanefar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.)
| | | | - Eóin N. Molloy
- University Clinic for Radiology and Nuclear Medicine, Faculty of Medicine, Otto von Guericke University (OvGU), 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Elisabeth Eppard
- University Clinic for Radiology and Nuclear Medicine, Faculty of Medicine, Otto von Guericke University (OvGU), 39120 Magdeburg, Germany;
| |
Collapse
|
38
|
Ye S, Li H, Hu K, Li L, Zhong J, Yan Q, Wang Q. Radiosynthesis and biological evaluation of 18F-labeled bispecific heterodimer targeted dual gastrin-releasing peptide receptor and prostate-specific membrane antigen for prostate cancer imaging. Nucl Med Commun 2022; 43:323-331. [PMID: 34919064 DOI: 10.1097/mnm.0000000000001520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Approximately 5% of prostatic primary tumors and 15% of metastatic tumors were found to be prostate-specific membrane antigen (PSMA)-negative. Targeting gastrin-releasing peptide receptor (GRPR) has been shown to complement patients with PSMA-negative prostate cancer (PCa). Based on previous findings, simultaneously targeting PSMA and GRPR imaging may improve the diagnosis of PCa. In this study, we report the radiosynthesis and biological evaluation of a bispecific heterodimer of NOTA-GRPR-PSMA that targeted both PSMA and GRPR for extended PCa imaging. METHODS NOTA-GRPR-PSMA was labeled using the Al18F-chelating one-step method. The competitive combination experiment and specific binding assay were performed in vitro using 22Rv1 (PSMA+) and PC-3 (GRPR+) cells. To determine the distribution and specificity in vivo, biodistribution and micro-PET/computed tomography of [18F]AlF-GRPR-PSMA were performed on mice bearing 22Rv1 or PC-3 tumors. RESULTS [18F]AlF-GRPR-PSMA had a radiochemical purity of over 98% and demonstrated high stability in vivo and in vitro, with a LogD of -1.2 ± 0.05. Cell uptake and inhibition studies of [18F]AlF-GRPR-PSMA in 22Rv1 and PC-3 cells revealed bispecific GRPR and PSMA bindings. According to the biodistribution study and PET imaging, [18F]AlF-GRPR-PSMA was mainly excreted through the kidney. Tumor uptake was high in 22Rv1 tumor (10.1 ± 0.4 %ID/g) and moderate in PC-3 tumor (2.1 ± 0.6 %ID/g) 2 h p.i., whereas blocking studies significantly decreased the tumor uptake of 22Rv1 and PC-3. CONCLUSION [18F]AlF-GRPR-PSMA has the potential to simultaneously target PSMA and GRPR for PCa imaging.
Collapse
Affiliation(s)
- Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Hongsheng Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Li Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Jiawei Zhong
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Qingsong Yan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Quanshi Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
39
|
Safety of [ 177Lu]Lu-NeoB treatment: a preclinical study characterizing absorbed dose and acute, early, and late organ toxicity. Eur J Nucl Med Mol Imaging 2022; 49:4440-4451. [PMID: 35951084 PMCID: PMC9605926 DOI: 10.1007/s00259-022-05926-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Purpose The radiolabeled gastrin-releasing peptide receptor (GRPR)-targeting antagonist NeoB is a promising radioligand for imaging and therapy of GRPR-expressing malignancies. In the current study, we aimed to discover the target organs of toxicity and the radiotoxic effects to these organs, when repeated dosages of [177Lu]Lu-NeoB are administered to healthy female and male mice. Methods Animals received either 3 injections, with a 7-day interval, of vehicle (control group 1), 1200 pmol [175Lu]Lu-NeoB (control group 2) or 40 MBq/400 pmol, 80 MBq/800 pmol, and 120 MBq/1200 pmol [177Lu]Lu-NeoB (treatment groups 1, 2, and 3, respectively). At week 5, 19, and 43 after the first injection acute, early, and late organ toxicity, respectively, was determined. For this, histopathological and blood analyses were performed. To correlate the observed toxicity to absorbed dose, we also performed extensive biodistribution and dosimetry studies. Results The biodistribution study showed the highest absorbed doses in GRPR-expressing pancreas, the liver, and the kidneys (the main organs of excretion). Both control groups and almost all animals of treatment group 1 did not show any treatment-related toxicological effects. Despite the high absorbed doses, no clear microscopic signs of toxicity were found in the pancreas and the liver. Histological analysis indicated kidney damage in the form of hydronephrosis and nephropathy in treatment groups 2 and 3 that were sacrificed at the early and late time point. In the same groups, increased blood urea nitrogen levels were found. Conclusion In general, repeated administration of [177Lu]Lu-NeoB was tolerated. The most significant radiotoxic effects were found in the kidneys, similar to other clinically applied radioligands. The results of this study underline the potential of [177Lu]Lu-NeoB as a promising option for clinical therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05926-2.
Collapse
|
40
|
Maina T, Nock BA. Peptide radiopharmaceuticals for targeted diagnosis & therapy of human tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
41
|
von Guggenberg E, Kolenc P, Rottenburger C, Mikołajczak R, Hubalewska-Dydejczyk A. Update on Preclinical Development and Clinical Translation of Cholecystokinin-2 Receptor Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:5776. [PMID: 34830930 PMCID: PMC8616406 DOI: 10.3390/cancers13225776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK2R) has been a target of interest for molecular imaging and targeted radionuclide therapy for two decades. However, so far CCK2R targeted imaging and therapy has not been introduced in clinical practice. Within this review the recent radiopharmaceutical development of CCK2R targeting compounds and the ongoing clinical trials are presented. Currently, new gastrin derivatives as well as nonpeptidic substances are being developed to improve the properties for clinical use. A team of specialists from the field of radiopharmacy and nuclear medicine reviewed the available literature and summarized their own experiences in the development and clinical testing of CCK2R targeting radiopharmaceuticals. The recent clinical trials with novel radiolabeled minigastrin analogs demonstrate the potential for both applications, imaging as well as targeted radiotherapy, and reinforce the clinical applicability within a theranostic concept. The intense efforts in optimizing CCK2R targeting radiopharmaceuticals has led to new substances for clinical use, as shown in first imaging studies in patients with advanced medullary thyroid cancer. The first clinical results suggest that the wider clinical implication of CCK2R-targeted radiopharmaceuticals is reasonable.
Collapse
Affiliation(s)
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock-Świerk, Poland;
| | | |
Collapse
|
42
|
Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. Radiolabeled Bombesin Analogs. Cancers (Basel) 2021; 13:cancers13225766. [PMID: 34830920 PMCID: PMC8616220 DOI: 10.3390/cancers13225766] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recent medical advancements have strived for a personalized medicine approach to patients, aimed at optimizing therapy outcomes with minimum toxicity. In this respect, nuclear medicine methodologies have been playing increasingly important roles. For example, the overexpression of peptide receptors, such as the gastrin-releasing peptide receptor (GRPR), on tumor cells as opposed to their lack of expression in healthy surrounding tissues can be elegantly exploited with the aid of “smart” peptide carriers, such as the analogs of the amphibian 14-peptide bombesin (BBN). These molecules can bring clinically attractive radionuclides to malignant lesions in prostate, breast, and other human cancers, sparing healthy tissues. Depending upon the radionuclide in question, diagnostic imaging with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) has been pursued, identifying patients who are eligible for peptide radionuclide receptor therapy (PRRT) in an integrated “theranostic” approach. In the present review, we (i) discuss the major steps taken in the development of anti-GRPR theranostic radioligands, with a focus on those selected for clinical testing; (ii) comment on the present status in this field of research; and (iii) reflect on the current limitations as well as on new opportunities for their broader and more successful clinical applications. Abstract The gastrin-releasing peptide receptor (GRPR) is expressed in high numbers in a variety of human tumors, including the frequently occurring prostate and breast cancers, and therefore provides the rationale for directing diagnostic or therapeutic radionuclides on cancer lesions after administration of anti-GRPR peptide analogs. This concept has been initially explored with analogs of the frog 14-peptide bombesin, suitably modified at the N-terminus with a number of radiometal chelates. Radiotracers that were selected for clinical testing revealed inherent problems associated with these GRPR agonists, related to low metabolic stability, unfavorable abdominal accumulation, and adverse effects. A shift toward GRPR antagonists soon followed, with safer analogs becoming available, whereby, metabolic stability and background clearance issues were gradually improved. Clinical testing of three main major antagonist types led to promising outcomes, but at the same time brought to light several limitations of this concept, partly related to the variation of GRPR expression levels across cancer types, stages, previous treatments, and other factors. Currently, these parameters are being rigorously addressed by cell biologists, chemists, nuclear medicine physicians, and other discipline practitioners in a common effort to make available more effective and safe state-of-the-art molecular tools to combat GRPR-positive tumors. In the present review, we present the background, current status, and future perspectives of this endeavor.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine University Hospital Basel, 4031 Basel, Switzerland;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
| | - Simone U. Dalm
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Martijn B. Busstra
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Wytske M. van Weerden
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
- Correspondence: ; Tel.: +30-650-3908/3891
| |
Collapse
|
43
|
Potential Targets Other Than PSMA for Prostate Cancer Theranostics: A Systematic Review. J Clin Med 2021; 10:jcm10214909. [PMID: 34768432 PMCID: PMC8584491 DOI: 10.3390/jcm10214909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Prostate-specific membrane antigen (PSMA) is not sufficiently overexpressed in a small proportion of prostate cancer (PCa) patients, who require other strategies for imaging and/or treatment. We reviewed potential targets other than PSMA for PCa theranostics in nuclear medicine that have already been tested in humans. Methods: We performed a systematic web search in the PubMed and Cochrane databases, with no time restrictions by pooling terms (“prostate cancer”, “prostatic neoplasms”) and (“radioligand”, “radiotracer”). Included articles were clinical studies. The results were synthetized by the target type. Results: We included 38 studies on six different targets: gastrin-releasing peptide receptors (GRPRs) (n = 23), androgen receptor (n = 11), somatostatin receptors (n = 6), urokinase plasminogen activator surface receptor (n = 4), fibroblast activation protein (n = 2 studies) and integrin receptors (n = 1). GRPRs, the most studied target, has a lower expression in high-grade PCa, CRPC and bone metastases. Its use might be of higher interest in treating earlier stages of PCa or low-grade PCa. Radiolabeled fibroblast activation protein inhibitors were the most recent and promising molecules, but specific studies reporting their interest in PCa are needed. Conclusion: Theranostics in nuclear medicine will continue to develop in the future, especially for PCa patients. Targets other than PSMA exist and deserve to be promoted.
Collapse
|
44
|
[ 99mTc]Tc-DB15 in GRPR-Targeted Tumor Imaging with SPECT: From Preclinical Evaluation to the First Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13205093. [PMID: 34680243 PMCID: PMC8533986 DOI: 10.3390/cancers13205093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Diagnostic imaging and radionuclide therapy of prostate (PC) and breast cancer (BC) using radiolabeled gastrin-releasing peptide receptor (GRPR)-antagonists represents a promising approach. We herein propose the GRPR-antagonist based radiotracer [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DGA-DPhe6,Sar11,LeuNHEt13]BBN(6-13); N4: 6-carboxy-1,4,8,11-tetraazaundecane, AMA: aminomethyl-aniline, DGA: diglycolic acid) as a new diagnostic tool for GRPR-positive tumors applying SPECT/CT. The uptake of [99mTc]Tc-DB15 was tested in vitro in mammary (T-47D) and prostate cancer (PC-3) cells and in vivo in T-47D or PC-3 xenograft-bearing mice as well as in BC patients. DB15 showed high GRPR-affinity (IC50 = 0.37 ± 0.03 nM) and [99mTc]Tc-DB15 strongly bound to the cell-membrane of T-47D and PC-3 cells, according to a radiolabeled antagonist profile. In mice, the radiotracer showed high and prolonged GRPR-specific uptake in PC-3 (e.g., 25.56 ± 2.78 %IA/g vs. 0.72 ± 0.12 %IA/g in block; 4 h pi) and T-47D (e.g., 15.82 ± 3.20 %IA/g vs. 3.82 ± 0.30 %IA/g in block; 4 h pi) tumors, while rapidly clearing from background. In patients with advanced BC, the tracer could reveal several bone and soft tissue metastases on SPECT/CT. The attractive pharmacokinetic profile of [99mTc]DB15 in mice and its capability to target GRPR-positive BC lesions in patients highlight its prospects for a broader clinical use, an option currently being explored by ongoing clinical studies.
Collapse
|
45
|
Benard F, Bratanovic IJ. A Novel Radiotracer for Molecular Imaging and Therapy of Gastrin-Releasing Peptide Receptor Positive Prostate Cancer. J Nucl Med 2021; 63:424-430. [PMID: 34301778 DOI: 10.2967/jnumed.120.257758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Indexed: 11/16/2022] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in many solid malignancies, particularly in prostate and breast cancers, among others. We synthesized ProBOMB2, a novel bombesin derivative radiolabeled with 68Ga and 177Lu, and evaluated its ability to target GRPR in a preclinical model of human prostate cancer. Methods: ProBOMB2 was synthesized on solid phase using Fmoc chemistry. The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid was coupled to the N-terminus and separated from the GRPR-targeting sequence by a cationic 4-amino-(1-carboxymethyl)-piperidine spacer. Binding affinity for both human and murine GRPR was determined using a cell-based competition assay, while a calcium efflux assay was used to measure the agonist/antagonist properties of the derivatives. ProBOMB2 was radiolabeled with 177Lu and 68Ga. SPECT and PET imaging, and biodistribution studies were conducted using a preclinical prostate cancer model of male immunocompromised mice bearing GRPR-positive PC-3 human prostate cancer xenografts. Results: Ga-ProBOMB2 and Lu-ProBOMB2 bound to PC-3 cells with a Ki of 4.58±0.67 and 7.29±1.73 nM, respectively. 68Ga-ProBOMB2 and 177Lu-ProBOMB2 were radiolabeled with a radiochemical purity greater than 95%. Both radiotracers were primarily excreted via the renal pathway. PET images of PC-3 tumor xenografts were visualized with excellent contrast at 1 h and 2 h post-injection (p.i.) with 68Ga-ProBOMB2, and very low off-target organ accumulation. 177Lu-ProBOMB2 enabled clear visualization of PC-3 tumor xenografts by SPECT imaging at 1 h, 4 h, and 24 h p.i. 177Lu-ProBOMB2 displayed higher tumor uptake than 68Ga-ProBOMB2 at 1 h p.i. 177Lu-ProBOMB2 tumor uptake at 1 h, 4 h, and 24 h p.i. was 14.9±3.1, 4.8±2.1, and 1.7±0.3 %ID/g, respectively. Conclusion: 68Ga-ProBOMB2 and 177Lu-ProBOMB2 are promising radiotracers with limited pancreas uptake, good tumor uptake, and favorable pharmacokinetics for imaging and therapy of GRPR-expressing tumors.
Collapse
|
46
|
Barrett KE, Houson HA, Lin W, Lapi SE, Engle JW. Production, Purification, and Applications of a Potential Theranostic Pair: Cobalt-55 and Cobalt-58m. Diagnostics (Basel) 2021; 11:diagnostics11071235. [PMID: 34359318 PMCID: PMC8306844 DOI: 10.3390/diagnostics11071235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The emerging success of [68Ga/177Lu]Ga/Lu-DOTATATE as a theranostic pair has spurred interest in other isotopes as potential theranostic combinations. Here, we review cobalt-55 and cobalt-58m as a potential theranostic pair. Radionuclidically pure cobalt-55 and cobalt-58m have been produced on small cyclotrons with high molar activity. In vitro, DOTATOC labeled with cobalt has shown greater affinity for SSTR2 than DOTATOC labeled with gallium and yttrium. Similarly, [58mCo]Co-DOTATATE has shown improved cell-killing capabilities as compared to DOTATATE labeled with either indium-111 or lutetium-177. Finally, PET imaging with an isotope such as cobalt-55 allows for image acquisition at much later timepoints than gallium, allowing for an increased degree of biological clearance of non-bound radiotracer. We discuss the accelerator targetry and radiochemistry used to produce cobalt-55,58m, emphasizing the implications of these techniques to downstream radiotracers being developed for imaging and therapy.
Collapse
Affiliation(s)
- Kendall E. Barrett
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53711, USA; (K.E.B.); (W.L.)
| | - Hailey A. Houson
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street, Birmingham, AL 35294, USA; (H.A.H.); (S.E.L.)
| | - Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53711, USA; (K.E.B.); (W.L.)
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street, Birmingham, AL 35294, USA; (H.A.H.); (S.E.L.)
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53711, USA; (K.E.B.); (W.L.)
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
- Correspondence:
| |
Collapse
|
47
|
Merisaari H, Laakso H, Liljenbäck H, Virtanen H, Aronen HJ, Minn H, Poutanen M, Roivainen A, Liimatainen T, Jambor I. Statistical Evaluation of Different Mathematical Models for Diffusion Weighted Imaging of Prostate Cancer Xenografts in Mice. Front Oncol 2021; 11:583921. [PMID: 34123770 PMCID: PMC8188898 DOI: 10.3389/fonc.2021.583921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose To evaluate fitting quality and repeatability of four mathematical models for diffusion weighted imaging (DWI) during tumor progression in mouse xenograft model of prostate cancer. Methods Human prostate cancer cells (PC-3) were implanted subcutaneously in right hind limbs of 11 immunodeficient mice. Tumor growth was followed by weekly DWI examinations using a 7T MR scanner. Additional DWI examination was performed after repositioning following the fourth DWI examination to evaluate short term repeatability. DWI was performed using 15 and 12 b-values in the ranges of 0-500 and 0-2000 s/mm2, respectively. Corrected Akaike information criteria and F-ratio were used to evaluate fitting quality of each model (mono-exponential, stretched exponential, kurtosis, and bi-exponential). Results Significant changes were observed in DWI data during the tumor growth, indicated by ADCm, ADCs, and ADCk. Similar results were obtained using low as well as high b-values. No marked changes in model preference were present between the weeks 1−4. The parameters of the mono-exponential, stretched exponential, and kurtosis models had smaller confidence interval and coefficient of repeatability values than the parameters of the bi-exponential model. Conclusion Stretched exponential and kurtosis models showed better fit to DWI data than the mono-exponential model and presented with good repeatability.
Collapse
Affiliation(s)
- Harri Merisaari
- Department of Radiology, University of Turku, Turku, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Hanne Laakso
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Helena Virtanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Hannu J Aronen
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Clinical Radiology, Oulu University Hospital, Oulu, Finland.,Department of Radiology, University of Oulu, Oulu, Finland
| | - Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
48
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
49
|
In Vivo Biodistribution and Efficacy Evaluation of NeoB, a Radiotracer Targeted to GRPR, in Mice Bearing Gastrointestinal Stromal Tumor. Cancers (Basel) 2021; 13:cancers13051051. [PMID: 33801382 PMCID: PMC7958597 DOI: 10.3390/cancers13051051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary NeoB is undergoing evaluation as a novel theragnostic agent—that is, that it can be employed either for the diagnosis of tumor expressing gastrin-releasing peptide receptor (GRPR) using nuclear imaging, or for the therapy of such GRPR positive tumors using internal radiotherapy. The switch from diagnosis to therapy simply rely on the choice of the radioisotope that is coupled to NeoB. The aim of our study was to investigate—for the first time—the potency of NeoB for tumor therapy once labeled with the beta- emitter Lu-177. This study has been conducted in mice bearing human Gastrointestinal Stromal Tumors (GIST). [177Lu]Lu-NeoB was found to accumulate in the tumor, with only minimal retention in off-target organs. Consequently, mice treated with therapeutic doses of [177Lu]Lu-NeoB (37MBq/week for three weeks) exhibited tumor regression and therefore long term survival in comparison to the control untreated mice. Abstract NeoB is a radiotracer targeting the gastrin-releasing peptide receptor (GRPR), a G-protein–coupled receptor expressed in various cancers. The aim of the present study was to evaluate the biodistribution and efficacy of this new therapeutic agent in Gastrointestinal Stromal Tumors (GIST). Eighty-two SCID mice bearing GIST-882 tumors were employed. [177Lu]Lu-NeoB biodistribution was evaluated up to seven days by organ sampling (200 pmol/0.8 MBq, i.v.). For efficacy evaluation, mice received either saline, 400 pmol or 800 pmol of [177Lu]Lu-NeoB (37MBq, 1/w, 3 w, i.v.). SPECT/CT imaging was performed at 24 h, and tumor volume was determined up to 100 days. Elevated and specific [177Lu]Lu-NeoB uptake was found in the GIST tumor, as demonstrated by in vivo competition (19.1 ± 3.9 %ID/g vs. 0.3 ± 0.1 %ID/g at 4h). [177Lu]Lu-NeoB tumor retention (half-life of 40.2 h) resulted in elevated tumor-to-background ratios. Tumor volumes were significantly reduced in both treated groups (p < 0.01), even leading to complete tumor regression at the 400 pmol dose. [177Lu]Lu-NeoB exhibited excellent pharmacokinetics with elevated and prolonged tumor uptake and low uptake in non-target organs such as pancreas. The potential of this new theragnostic agent in different indications, including GIST, is under evaluation in the FIH [177Lu]Lu-NeoB clinical trial.
Collapse
|
50
|
Palmioli A, Nicolini G, Tripodi F, Orsato A, Ceresa C, Donzelli E, Arici M, Coccetti P, Rocchetti M, La Ferla B, Airoldi C. Targeting GRP receptor: Design, synthesis and preliminary biological characterization of new non-peptide antagonists of bombesin. Bioorg Chem 2021; 109:104739. [PMID: 33626451 DOI: 10.1016/j.bioorg.2021.104739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
We report the rational design, synthesis, and in vitro preliminary evaluation of a new small library of non-peptide ligands of Gastrin Releasing Peptide Receptor (GRP-R), able to antagonize its natural ligand bombesin (BN) in the nanomolar range of concentration. GRP-R is a transmembrane G-protein coupled receptor promoting the stimulation of cancer cell proliferation. Being overexpressed on the surface of different human cancer cell lines, GRP-R is ideal for the selective delivery to tumor cells of both anticancer drug and diagnostic devices. What makes very challenging the design of non-peptide BN analogues is that the 3D structure of the GRP-R is not available, which is the case for many membrane-bound receptors. Thus, the design of GRP-R ligands has to be based on the structure of its natural ligands, BN and GRP. We recently mapped the BN binding epitope by NMR and here we exploited the same spectroscopy, combined with MD, to define BN conformation in proximity of biological membranes, where the interaction with GRP-R takes place. The gained structural information was used to identify a rigid C-galactosidic scaffold able to support pharmacophore groups mimicking the BN key residues' side chains in a suitable manner for binding to GRP-R. Our BN antagonists represent hit compounds for the rational design and synthesis of new ligands and modulators of GRP-R. The further optimization of the pharmacophore groups will allow to increase the biological activity. Due to their favorable chemical properties and stability, they could be employed for the active receptor-mediated targeting of GRP-R positive tumors.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Gabriella Nicolini
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Alexandre Orsato
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Departamento de Química, CCE, Universidade Estadual de Londrina, CEP 86057-970 Londrina, Paraná, Brazil
| | - Cecilia Ceresa
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Elisabetta Donzelli
- Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy; School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | - Martina Arici
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy.
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126 Milan, Italy; Milan Center for Neuroscience, University of Milano-Bicocca, P.zza dell'Ateneo Nuovo 1, 20126 Milano, Italy.
| |
Collapse
|