1
|
Omidian H, Wilson RL, Cubeddu LX. Quantum Dot Research in Breast Cancer: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2152. [PMID: 38730959 PMCID: PMC11085412 DOI: 10.3390/ma17092152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The multifaceted role of quantum dots (QDs) in breast cancer research highlights significant advancements in diagnostics, targeted therapy, and drug delivery systems. This comprehensive review addresses the development of precise imaging techniques for early cancer detection and the use of QDs in enhancing the specificity of therapeutic delivery, particularly in challenging cases like triple-negative breast cancer (TNBC). The paper also discusses the critical understanding of QDs' interactions with cancer cells, offering insights into their potential for inducing cytotoxic effects and facilitating gene therapy. Limitations such as biocompatibility, toxicity concerns, and the transition from laboratory to clinical practice are critically analyzed. Future directions emphasize safer, non-toxic QD development, improved targeting mechanisms, and the integration of QDs into personalized medicine, aiming to overcome the current challenges and enhance breast cancer management.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (L.X.C.)
| | | | | |
Collapse
|
2
|
Dalag L, Fergus JK, Zangan SM. Lung and Abdominal Biopsies in the Age of Precision Medicine. Semin Intervent Radiol 2019; 36:255-263. [PMID: 31435134 DOI: 10.1055/s-0039-1693121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Image-guided percutaneous needle biopsies (PNBs) are one of the most common procedures performed in radiology departments today. Rapid developments in precision medicine, which identifies molecular and genomic biomarkers in cancers, have ushered a new paradigm of oncologic workup and treatment. PNB has conventionally been used to establish a benign or malignant nature of a lesion during initial diagnosis or in suspected metastatic or recurrent disease. However, increasing amounts of tissue are being required to meet the demands of molecular pathologic analysis, which are now being sought at multiple time points during the course of the disease to guide targeted therapy. As primary providers of biopsy, radiologists must be proactive in these developments to improve diagnostic yield and tissue acquisition in PNB. Herein, we discuss the important and expanding role of PNB in the age of precision medicine and review the technical considerations of percutaneous lung and intra-abdominal biopsy. Finally, we examine promising state-of-the-art techniques in PNB that may safely increase tissue acquisition for optimal molecular pathologic analysis.
Collapse
Affiliation(s)
- Leonard Dalag
- Department of Radiology, University of Chicago, Chicago, Illinois
| | | | - Steven M Zangan
- Department of Radiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol Lett 2018; 15:9093-9100. [PMID: 29805641 PMCID: PMC5958779 DOI: 10.3892/ol.2018.8471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor survival as chemotherapy is currently limited to conventional cytotoxic agents. Curcumin has promising anticancer actions against TNBC, but its application is hindered by poor bioavailability and rapid degradation in vivo. In the present study, curcumin-loaded phospholipid nanoparticles (Cur-NPs) conjugated with epidermal growth factor (EGF) were prepared for specific targeting of EGF receptors overexpressed in TNBC. NP formulation was performed by reacting EGF peptide with N-hydroxysuccinimide-Polyethylene Glycol-1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (NHS-PEG10000-DSPE), followed by efficient curcumin loading through lipid film hydration. EGF conjugation did not significantly affect NP size, zeta potential or morphology. Specific targeting was confirmed by EGF receptor activation and blocking of 125I-labeled NP binding by excess EGF. EGF-Cur-NP dose-dependently suppressed MDA-MB-468 TNBC cell survival (IC50, 620 nM), and completely abolished their capacity to form colonies. The cytotoxic effects were more potent compared with those of free curcumin or Cur-NP. In mice bearing MDA-MB-468 tumors, injections of 10 mg/kg EGF-Cur-NP caused a 59.1% retardation of tumor growth at 3 weeks compared with empty NP, whereas the antitumor effect of Cur-NP was weak. These results indicate that EGF-conjugated NHS-PEG10000-DSPE phospholipid NPs loaded with curcumin may be useful for treating TNBCs that overexpress the EGF receptor.
Collapse
|
4
|
Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B Biointerfaces 2017; 159:232-240. [DOI: 10.1016/j.colsurfb.2017.07.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
|
5
|
Lee J, Lee EJ, Moon SH, Kim S, Hyun SH, Cho YS, Choi JY, Kim BT, Lee KH. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake. Eur J Nucl Med Mol Imaging 2017; 44:1438-1447. [PMID: 28488029 DOI: 10.1007/s00259-017-3705-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE Imaging tumor FDG uptake could complement breast cancer biomarkers of risk and treatment response. Although breast cancer FDG uptake is reputedly influenced by major biomarker states, the role of epidermal growth factor receptor (EGFR) expression remains largely unexplored. METHODS This is a retrospective study that included 499 patients with primary breast cancer at initial presentation. Tumor FDG uptake was measured on pretreatment PET/CT as maximum standardized uptake value (SUVmax), and biomarkers were assessed by immunohistochemistry of tumor tissue. Regression analysis was performed for predictors of high tumor FDG uptake (SUVmax ≥ 8.6). RESULTS SUVmax was higher in ER- (36.5%; 11.2 ± 6.0 vs. 8.3 ± 5.3), PR- (42.3%; 10.9 ± 6.0 vs. 8.2 ± 5.2), and triple-negative tumors (19.8%; 12.0 ± 6.9 vs. 8.7 ± 5.2; all p < 0.0001). EGFR expression (28.5%) was more frequent in ER-, PR-, triple-negative, cytokeratin 5/6 (CK5/6) + and mutant P53 (mP53) + tumors (all p < 0.0001). EGFR+ was associated with higher SUVmax among all tumors (11.9 ± 6.0 vs. 8.3 ± 5.3), ER- tumors (p < 0.0001), PR- and + tumors (p < 0.0001 and 0.027), hormone receptor- and + tumors (p < 0.0001 and 0.004), human epidermal growth factor receptor 2 (HER2)- and + tumors (p < 0.0001 and 0.006), non-triple negative tumors (p < 0.0001), CK5/6- and + tumors (p = 0.021 and <0.0001), and mP53- and + tumors (p < 0.0001 and 0.008). Tumors had high FDG uptake in 73.2% of EGFR+ and 40.6% of EGFR- tumors. On regression analysis, significant multivariate predictors of high tumor FDG uptake were large size, EGFR+ and CK5/6+ for the entire subjects, and EGFR+ and CK5/6+ for ER- and hormone receptor negative subgroups. High FDG uptake was able to sub-stratify EGFR+ tumors that were more likely to be ER- and CK5/6+, and EGFR- tumors more likely to be mP53 +. CONCLUSIONS Primary breast tumor FDG uptake is strongly influenced by EGFR status beyond that by other major biomarkers including hormone receptor and HER2 status, and EGFR expression is a strong independent predictor of high breast tumor FDG uptake.
Collapse
Affiliation(s)
- Joohee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 131-795, South Korea.
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Seokhwi Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Hyup Hyun
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
| |
Collapse
|
6
|
Li W, Liu Z, Li C, Li N, Fang L, Chang J, Tan J. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J Cancer Res Clin Oncol 2016; 142:619-32. [PMID: 26573511 DOI: 10.1007/s00432-015-2067-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. METHODS This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. RESULTS The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. CONCLUSION The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake compared with those of the control BSA-PCL. The EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL exhibited favorable intracellular retention of (131)I. Radionuclide therapy using (131)I-EGFR-BSA-PCL, which showed excellent targeted cell killing, suppressed cancer cell growth caused by EGFR overexpression.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Zhongyun Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, People's Republic of China
| | - Chengxia Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, People's Republic of China
| | - Lei Fang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
7
|
Kang CM, Koo HJ, An GI, Choe YS, Choi JY, Lee KH, Kim BT. Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a (64)Cu-labeled streptavidin/biotin-based dimeric RGD peptide. EJNMMI Res 2015; 5:60. [PMID: 26518424 PMCID: PMC4628001 DOI: 10.1186/s13550-015-0140-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hybrid PET/optical imaging provides quantitative and complementary information for diagnosis of tumors. Herein, we developed a (64)Cu-labeled AlexaFluor 680-streptavidin ((AF)SAv)/biotin-based dimeric cyclic RGD peptide (RGD2) for hybrid PET/optical imaging of integrin αVβ3 expression. METHODS (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-(AF)SAv/biotin-PEG-RGD2 was prepared by formation of a complex comprising DOTA-(AF)SAv and biotin-PEG-RGD2, followed by radiolabeling with (64)Cu. Receptor binding studies of DOTA-(AF)SAv/biotin-PEG-RGD2 were performed using U87MG cells and (125)I-RGDyK as the radioligand, and cellular uptake studies of (64)Cu-DOTA-(AF)SAv/biotin-PEG-RGD2 were also performed. MicroPET imaging followed by optical imaging of U87MG tumor-bearing mice was acquired after injection of the hybrid probe, and region of interest (ROI) analysis of tumors was performed. Ex vivo PET/optical imaging and biodistribution studies of the major tissues were performed after the in vivo imaging, and immunofluorescence staining of the tumor tissue sections was carried out. RESULTS (64)Cu-DOTA-(AF)SAv/biotin-PEG-RGD2 was prepared in 52.1 ± 5.4 % radiochemical yield and with specific activity of 1.0 ± 0.1 GBq/mg. Receptor binding studies showed that DOTA-(AF)SAv/biotin-PEG-RGD2 had higher binding affinity for integrin αVβ3 than RGD2, reflecting a possible polyvalency effect. Moreover, the hybrid probe revealed time-dependent uptake by U87MG cells. In a microPET/optical imaging study, the hybrid probe demonstrated high accumulation in tumors; ROI analysis revealed 2.7 ± 0.2 % ID/g at 1 h and 4.7 ± 0.2 % ID/g at 21 h after injection, and subsequently acquired optical images showed tumors with strong fluorescence intensity. Ex vivo PET/optical images of the major tissues confirmed the in vivo imaging data, and biodistribution studies demonstrated high and specific uptake in tumors (4.8 ± 0.1 % ID/g). Immunofluorescence staining showed the formation of new blood vessels in tumor tissues, suggesting that the tumor uptake was due to specific binding of the hybrid probe to integrin αVβ3 expressed on tumor cells. CONCLUSIONS These results indicate that a (64)Cu-DOTA-(AF)SAv/biotin-PEG-RGD2 is able to provide quantitative information on hybrid PET/optical imaging of integrin αVβ3 expression.
Collapse
Affiliation(s)
- Choong Mo Kang
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Hyun-Jung Koo
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Gwang Il An
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| |
Collapse
|
8
|
Vu TQ, Lam WY, Hatch EW, Lidke DS. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res 2015; 360:71-86. [PMID: 25620410 DOI: 10.1007/s00441-014-2087-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information concerning protein dynamics and localization, including single particle tracking and immunohistochemistry, and finish by examining the prospects of upcoming applications, such as correlative light and electron microscopy and super-resolution. Advances in single molecule imaging, including multi-color and three-dimensional QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed the observation of biological processes at molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays should enable more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes.
Collapse
Affiliation(s)
- Tania Q Vu
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Ore., USA,
| | | | | | | |
Collapse
|
9
|
Jung KH, Lee KH. Molecular imaging in the era of personalized medicine. J Pathol Transl Med 2015; 49:5-12. [PMID: 25812652 PMCID: PMC4357402 DOI: 10.4132/jptm.2014.10.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.
Collapse
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Adv Drug Deliv Rev 2014; 74:53-74. [PMID: 24120351 DOI: 10.1016/j.addr.2013.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
A new chapter in the history of medical diagnosis happened when the first X-ray technology was invented in the late 1800s. Since then, many non-invasive and minimally invasive imaging techniques have been invented for clinical diagnosis to research in cellular biology, drug discovery, and disease monitoring. These imaging modalities have leveraged the benefits of significant advances in computer, electronics, and information technology and, more recently, targeted molecular imaging. The development of targeted contrast agents such as fluorescent and nanoparticle probes coupled with optical imaging techniques has made it possible to selectively view specific biological events and processes in both in vivo and ex vivo systems with great sensitivity and selectivity. Thus, the combination of targeted molecular imaging probes and optical imaging techniques have become a mainstay in modern medicinal and biological research. Many promising results have demonstrated great potentials to translate to clinical applications. In this review, we describe a discussion of employing imaging probes and optical microendoscopic imaging techniques for cancer diagnosis.
Collapse
|
11
|
Zhu Y, Hong H, Xu ZP, Li Z, Cai W. Quantum dot-based nanoprobes for in vivo targeted imaging. Curr Mol Med 2014; 13:1549-67. [PMID: 24206136 DOI: 10.2174/1566524013666131111121733] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/30/2013] [Accepted: 10/02/2013] [Indexed: 02/06/2023]
Abstract
Fluorescent semiconductor quantum dots (QDs) have attracted tremendous attention over the last decade. The superior optical properties of QDs over conventional organic dyes make them attractive labels for a wide variety of biomedical applications, whereas their potential toxicity and instability in biological environment have puzzled scientific researchers. Much research effort has been devoted to surface modification and functionalization of QDs to make them versatile probes for biomedical applications, and significant progress has been made over the last several years. This review article aims to describe the current state-of-the-art of the synthesis, modification, bioconjugation, and applications of QDs for in vivo targeted imaging. In addition, QD-based multifunctional nanoprobes are also summarized.
Collapse
Affiliation(s)
- Y Zhu
- (W. Cai) Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, USA.
| | | | | | | | | |
Collapse
|
12
|
A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression. Biomaterials 2013; 34:6839-45. [DOI: 10.1016/j.biomaterials.2013.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022]
|
13
|
Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013; 65:703-18. [PMID: 23000745 PMCID: PMC3541463 DOI: 10.1016/j.addr.2012.09.036] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/19/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023]
Abstract
Nanoparticle-based drug delivery (NDD) has emerged as a promising approach to improving upon the efficacy of existing drugs and enabling the development of new therapies. Proof-of-concept studies have demonstrated the potential for NDD systems to simultaneously achieve reduced drug toxicity, improved bio-availability, increased circulation times, controlled drug release, and targeting. However, clinical translation of NDD vehicles with the goal of treating particularly challenging diseases, such as cancer, will require a thorough understanding of how nanoparticle properties influence their fate in biological systems, especially in vivo. Consequently, a model system for systematic evaluation of all stages of NDD with high sensitivity, high resolution, and low cost is highly desirable. In theory, this system should maintain the properties and behavior of the original NDD vehicle, while providing mechanisms for monitoring intracellular and systemic nanocarrier distribution, degradation, drug release, and clearance. For such a model system, quantum dots (QDots) offer great potential. QDots feature small size and versatile surface chemistry, allowing their incorporation within virtually any NDD vehicle with minimal effect on overall characteristics, and offer superb optical properties for real-time monitoring of NDD vehicle transport and drug release at both cellular and systemic levels. Though the direct use of QDots for drug delivery remains questionable due to their potential long-term toxicity, the QDot core can be easily replaced with other organic drug carriers or more biocompatible inorganic contrast agents (such as gold and magnetic nanoparticles) by their similar size and surface properties, facilitating translation of well characterized NDD vehicles to the clinic, maintaining NDD imaging capabilities, and potentially providing additional therapeutic functionalities such as photothermal therapy and magneto-transfection. In this review we outline unique features that make QDots an ideal platform for nanocarrier design and discuss how this model has been applied to study NDD vehicle behavior for diverse drug delivery applications.
Collapse
Affiliation(s)
| | | | - Vaishali Bagalkot
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Ma G. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2835-2844. [PMID: 23448359 DOI: 10.1021/am3028519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interest in optical molecular imaging of small animals in vivo has been steadily increased in the last two decades as it is being adopted by not only academic laboratories but also the biotechnical and pharmaceutical industries. In this Spotlight paper, the elements for in vivo optical molecular imaging are briefly reviewed, including contrast agents, i.e., various fluorescent reporters, and the most commonly used technologies to detect the reporters. The challenges particularly for in vivo fluorescence imaging are discussed and solutions to overcome the said-challenges are presented. An advanced imaging technique, in vivo fluorescence lifetime imaging, is introduced together with a few application examples. Taking advantage of the long fluorescence lifetime of quantum dots, a method to achieve background-free in vivo fluorescence small animal imaging is demonstrated.
Collapse
Affiliation(s)
- Guobin Ma
- ART Advanced Research Technologies Inc., 2300 Alfred-Nobel Boulevard, Montreal, Quebec, Canada H4S 2A4.
| |
Collapse
|
15
|
Meng Q, Li Z. Molecular imaging probes for diagnosis and therapy evaluation of breast cancer. Int J Biomed Imaging 2013; 2013:230487. [PMID: 23533377 PMCID: PMC3600346 DOI: 10.1155/2013/230487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/27/2012] [Accepted: 01/09/2013] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained.
Collapse
Affiliation(s)
- Qingqing Meng
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Zheng Li
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6670 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
16
|
Jung KH, Park JW, Paik JY, Lee EJ, Choe YS, Lee KH. Hydrazinonicotinamide prolongs quantum dot circulation and reduces reticuloendothelial system clearance by suppressing opsonization and phagocyte engulfment. NANOTECHNOLOGY 2012; 23:495102. [PMID: 23149806 DOI: 10.1088/0957-4484/23/49/495102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we investigated the effects of hydrazinonicotinamide (HYNIC)-a bifunctional crosslinker widely used to (99m)Tc radiolabel protein and nanoparticles for imaging studies-on quantum dot opsonization, macrophage engulfment and in vivo kinetics. In streptavidin-coated quantum dots (SA-QDots), conjugation with HYNIC increased the net negative charge without affecting the zeta potential. Confocal microscopy and fluorescence-activated cell sorting showed HYNIC attachment to suppress SA-QDot engulfment by macrophages. Furthermore, HYNIC conjugation suppressed surface opsonization by serum protein including IgG. When intravenously injected into mice, HYNIC conjugation significantly prolonged the circulation of SA-QDots and reduced their hepatosplenic uptake. Diminished reticuloendothelial system clearance of SA-QDots and aminoPEG-QDots by HYNIC conjugation was also demonstrated by in vivo and ex vivo optical imaging. The effects of HYNIC on the opsonization, phagocytosis and in vivo kinetics of quantum dots were reversed by removal of the hydrazine component from HYNIC. Thus, surface functionalization with HYNIC can improve the in vivo kinetics of quantum dots by reducing phagocytosis via suppression of surface opsonization.
Collapse
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Multiplexed mAbs: a new strategy in preclinical time-domain imaging of acute myeloid leukemia. Blood 2012; 121:e34-42. [PMID: 23243270 DOI: 10.1182/blood-2012-05-429555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antibodies play a fundamental role in diagnostic immunophenotyping of leukemias and in cell-targeting therapy. However, this versatility is not reflected in imaging diagnostics. In the present study, we labeled anti–human mAbs monochromatically against selected human myeloid markers expressed on acute myeloid leukemia (AML) cells, all with the same near-infrared fluorochrome. In a novel “multiplexing” strategy, we then combined these mAbs to overcome the limiting target-to-background ratio to image multiple xenografts of AML. Time-domain imaging was used to discriminate autofluorescence from the distinct fluorophore-conjugated antibodies. Imaging with multiplexed mAbs demonstrated superior imaging of AML to green fluorescent protein or bioluminescence and permitted evaluation of therapeutic efficacy with the standard combination of anthracycline and cytarabine in primary patient xenografts. Multiplexing mAbs against CD11b and CD11c provided surrogate imaging biomarkers of differentiation therapy in an acute promyelocytic leukemia model treated with all-trans retinoic acid combined with the histone-deacetylase inhibitor valproic acid. We present herein an optimizedapplication of multiplexed immunolabeling in vivo for optical imaging of AML cellxenografts that provides reproducible, highly accurate disease staging and monitoring of therapeutic effects.
Collapse
|
18
|
EGF receptor targeted tumor imaging with biotin-PEG-EGF linked to 99mTc-HYNIC labeled avidin and streptavidin. Nucl Med Biol 2012; 39:1122-7. [DOI: 10.1016/j.nucmedbio.2012.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022]
|
19
|
Current world literature. Curr Opin Oncol 2012; 24:756-68. [PMID: 23079785 DOI: 10.1097/cco.0b013e32835a4c91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, Yu X, Ni Q. Quantum dots in cancer therapy. Expert Opin Drug Deliv 2011; 9:47-58. [PMID: 22171712 DOI: 10.1517/17425247.2012.638624] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Quantum dots (QDs) are nanometer-size luminescent semiconductor nanocrystals. Their unique optical properties, such as high brightness, long-term stability, simultaneous detection of multiple signals and tunable emission spectra, make them appealing as potential diagnostic and therapeutic systems in the field of oncology. AREAS COVERED This paper summarizes the recent progress of promising applications of QDs in cancer therapy, from the following aspects: identifying molecular targets, sentinel lymph-node mapping, surgical oncology, drug delivery and tracking, fluorescence resonance energy transfer and photodynamic therapy, personalized and predictive medicine, and multifunctional design and development. Limitations and toxicity issues related to QDs in living organisms are also discussed. EXPERT OPINION Bioconjugated QDs can be used to identify potential molecular biomarkers for cancer diagnosis, treatment and prognosis. They may allow the surgeon to map sentinel lymph nodes and perform a complete surgical resection. Their unique optical properties make them ideal donors of fluorescence resonance energy transfer and photodynamic therapy studies. Multifunctional QDs have become effective materials for synchronous cancer diagnosis, targeting and treatment. For QDs, toxicity remains the major barrier to clinical translation.
Collapse
Affiliation(s)
- Guopei Luo
- Fudan University Shanghai, Shanghai Cancer Center, Department of Pancreas & Hepatobiliary Surgery, No. 270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|