1
|
Karimi A, Bogdani C, O'Dwyer E, Siolas D. Emerging innovations in theranostics for pancreatic neuroendocrine tumors. NPJ Precis Oncol 2025; 9:146. [PMID: 40389624 PMCID: PMC12089376 DOI: 10.1038/s41698-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) often overexpress somatostatin receptor type 2 (SSTR2), making them ideal targets for theranostics, which integrates molecular imaging with targeted radionuclide therapy. 177Lu-DOTATATE significantly extends progression-free survival (22.8 vs. 8.5 months) compared to octreotide LAR. Despite these advances, challenges remain, including treatment resistance and long-term toxicities. In this review, we explore advancements in specialized imaging techniques, rationale combination strategies, and exploring next-generation radiopharmaceuticals.
Collapse
Affiliation(s)
- Anita Karimi
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Christina Bogdani
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
| | - Elisabeth O'Dwyer
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Despina Siolas
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Abdlkadir AS, Al-Adhami D, Al Rammahi M, Badarneh M, Al Yasjeen S, Al Busaidi K, Khalaf A, Al-Alawi H, Al-Alawi H, Al-Ibraheem A. Diagnostic pitfalls in [68Ga]Ga-DOTATATE PET/CT imaging: a systematic review. Nucl Med Commun 2025:00006231-990000000-00423. [PMID: 40325977 DOI: 10.1097/mnm.0000000000001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
[68Ga]Ga-DOTA-Tyr3-octreotate ([68Ga]Ga-DOTATATE) is an established somatostatin receptor imaging agent that has demonstrated superior efficacy in visualizing neuroendocrine tumors (NETs) and meningiomas compared with traditional [111In]In-octreotide imaging. Despite its enhanced affinity and sensitivity, [68Ga]Ga-DOTATATE imaging is not without challenges. To date, numerous diagnostic pitfalls and false-positive findings have been reported. This systematic review investigates the currently recognized diagnostic pitfalls in [68Ga]Ga-DOTATATE positron imaging. A systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, with the most recent update on 8 March 2024. Two authors screened the titles and abstracts of retrieved articles and selected studies based on predefined inclusion and exclusion criteria. Qualitative analysis of 70 included research articles, encompassing 199 patients, identified 234 diagnostic pitfalls. Malignant neoplastic etiologies predominated, constituting 56% of pitfalls, followed by nononcologic pitfalls (32.1%), and benign oncologic tumors (11.9%). Anatomically, the head and neck region was the most frequent site for pitfalls (35.5%), followed by the musculoskeletal system (27.4%), abdomen (17.5%), and chest (16.6%). Pelvic-related pitfalls were least common, accounting for only 3% of cases. This study details potential diagnostic pitfalls, predominantly occurring in the head-neck regions - primary sites for meningiomas and paragangliomas. Understanding these diagnostic pitfalls is crucial for accurate diagnosis. Moreover, recognizing these diagnostic pitfalls may lead to novel applications of [68Ga]Ga-DOTATATE beyond its conventional use in NETs and meningiomas, potentially expanding its diagnostic utility.
Collapse
Affiliation(s)
- Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Dhuha Al-Adhami
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Mohammed Al Rammahi
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Mohannad Badarneh
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Salem Al Yasjeen
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Khalid Al Busaidi
- Department of Nuclear Medicine and Molecular Imaging, Royal Hospital, Muscat, Oman,
| | - Aysar Khalaf
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala,
| | - Haider Al-Alawi
- Department of Nuclear Medicine, Amir Al-Momineen Specialty Hospital, Najaf, Iraq and
| | - Hasan Al-Alawi
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan,
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Herr FL, Dascalescu C, Fabritius MP, Sheikh GT, Zacherl MJ, Wenter V, Unterrainer LM, Brendel M, Holzgreve A, Auernhammer CJ, Spitzweg C, Burkard T, Ricke J, Heimer MM, Cyran CC. PET- and CT-Based Imaging Criteria for Response Assessment of Gastroenteropancreatic Neuroendocrine Tumors Under Radiopharmaceutical Therapy. J Nucl Med 2025; 66:726-731. [PMID: 40147845 DOI: 10.2967/jnumed.124.268621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Despite well-documented limitations, current guidelines recommend the use of size-based RECIST 1.1 for response assessment of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) under radiopharmaceutical therapy (RPT). We hypothesize that functional criteria are superior to RECIST 1.1 for response assessment and progression-free survival (PFS) prediction, and molecular scores can be used in prognosticating PFS. Methods: This single-center, retrospective study included 178 patients with GEP-NETs (G1 and G2) who were treated with at least 2 consecutive cycles of RPT with [177Lu]Lu-DOTATATE and who underwent somatostatin receptor PET/CT at baseline and after 2 cycles of RPT (follow-up). PFS was defined as the time between baseline and clinical progression, as reported by a GEP-NET multidisciplinary tumor board (MDT) assessment or reported death. The differences in categorization and PFS between RECIST 1.1, Choi (functional criteria), and the MDT were evaluated, and 3-y PFS with MDT defined PFS as the reference. The predictive values of the different scores in somatostatin receptor standardized reporting and data system and Krenning (molecular scores) for PFS were analyzed. Results: Choi criteria classified a higher number of patients as having progressive disease and partial response and a lower number of patients as having stable disease compared with RECIST 1.1 (P < 0.01). The PFS of patients with progressive disease according to RECIST 1.1 and Choi criteria was shorter than that of patients with stable disease and partial response (P < 0.05). Choi criteria showed a nonsignificantly higher concordance with the MDT than with RECIST 1.1. There was a shift in category from a Krenning score of 4 to a score of 3 between baseline and follow-up (P < 0.01). At baseline, a Krenning score of 3 was associated with a shorter median PFS compared with a score of 4 (P < 0.05). Conclusion: In addition to RECIST 1.1, further PET- and CT-based imaging criteria have the potential to assess response and predict PFS in patients with GEP-NETs undergoing RPT. Our data support the assumption to use Choi criteria for prediction of PFS and agreement in response assessment. At baseline, the Krenning score can be used to predict therapy response after 2 cycles of RPT.
Collapse
Affiliation(s)
- Felix L Herr
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany;
| | | | | | - Gabriel T Sheikh
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung, partner site Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany
- German Cancer Consortium, partner site Munich, a partnership between DKFZ and LMU, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph J Auernhammer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany; and
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany; and
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tanja Burkard
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maurice M Heimer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Wakabayashi N, Watanabe S, Takeuchi S, Tsuchikawa T, Munakata Y, Hirata K, Kimura R, Takenaka J, Ishii H, Kudo K. Factors and predictors affecting late external dose rates and isolation period in patients after lutetium-177-labeled DOTA-Tyr3-octreotate treatment for neuroendocrine tumors. Ann Nucl Med 2025:10.1007/s12149-025-02044-5. [PMID: 40186742 DOI: 10.1007/s12149-025-02044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE In peptide receptor radionuclide therapy (PRRT) using lutetium-177-labeled DOTA-Tyr3-octreotate ([177Lu] DOTATATE), isolation is required until the external dose rate at 1 m (EDR-1 m) from the body surface falls below the regulatory standards of each country. While it is known that renal function influences EDR-1 m reduction within 180 min post-administration, the factors affecting EDR-1 m on the day following administration (Late EDR-1 m) remain unclear. This study aimed to identify factors influencing Late EDR-1 m after PRRT using [177Lu] DOTATATE for neuroendocrine tumors and to predict Late EDR-1 m using pretreatment [111In] pentetreotide single-photon emission computed tomography/computed tomography (SPECT/CT) data. METHODS This study analyzed 111 PRRT cycles administered to 36 patients between September 2021 and August 2024. Late EDR-1 m was set as the dependent variable, whereas total radiopharmaceutical uptake (LUTtotal), dose per body weight, creatinine clearance (CCr), and albumin-bilirubin (ALBI) score were set as the independent variables in the multiple regression analysis. LUTtotal was calculated using SPECT/CT data acquired after the patient left the radiation therapy room, defining the volume of interest (VOI) as the area with SUVmean + 2SD or higher in the skeletal muscle. The VOI volume multiplied by the SUVmean was used to define LUTtotal. In addition, using [111In] pentetreotide SPECT/CT data, the total radiopharmaceutical uptake (OCTtotal) was calculated in a manner similar to LUTtotal, and its correlation with LUTtotal was examined. A predictive equation for Late EDR-1 m was developed using the results of the multivariate analysis, and its performance was tested using subsequent cases between August 2024 and January 2025. RESULTS The median measured Late EDR-1 m was 8.0 (range, 4.0-26.0) μSv/h. LUTtotal and dose per body weight were significantly correlated with Late EDR-1 m, whereas CCr and ALBI scores were not. Based on the results of the multivariate analysis, the predictive equation using the dose per body weight, assuming a dosage of 7400 MBq and OCTtotal, achieved a root mean square error (RMSE) of 2.24 μSv/h. In subsequent test cases, the RMSE was 3.47 μSv/h. CONCLUSIONS Late EDR-1 m is significantly correlated with LUTtotal and dose per body weight. It can be accurately predicted using [111In] pentetreotide SPECT/CT data.
Collapse
Affiliation(s)
- Naoto Wakabayashi
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Shiro Watanabe
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan.
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan.
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan.
| | - Satoshi Takeuchi
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
- Neuroendocrine Tumor Center, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
- Neuroendocrine Tumor Center, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Yamato Munakata
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
- Neuroendocrine Tumor Center, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Rina Kimura
- Department of Diagnostic Imaging and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Junki Takenaka
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Hiroshi Ishii
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Ebner R, Sheikh GT, Brendel M, Ricke J, Cyran CC. ESR Essentials: role of PET/CT in neuroendocrine tumors-practice recommendations by the European Society for Hybrid, Molecular and Translational Imaging. Eur Radiol 2025; 35:1903-1912. [PMID: 39387873 PMCID: PMC11914302 DOI: 10.1007/s00330-024-11095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
Neuroendocrine neoplasms (NEN) originate from the secretory cells of the neuroendocrine system, with the majority arising in the gastrointestinal tract and pancreas. Given the heterogeneity in the biological behavior and morphological differentiation of these tumors, advanced imaging techniques are crucial for supporting the suspected diagnosis, accurate staging, and monitoring therapy. As most well-differentiated NEN demonstrate overexpression of somatostatin receptors (SSR) on the cell surface, SSR-directed PET/CT is considered the reference standard for imaging of this particular entity. SSR-PET/CT should be the imaging method of choice in every NEN G1 or G2 and considered for re-staging after both potentially curative and non-curative surgeries. The extent of SSR expression is also crucial for determining a patient's eligibility for peptide receptor radionuclide therapy (PRRT). PRRT utilizes [177Lu]Lu-DOTA-TATE to target the SSR receptor and can significantly prolong progression-free survival in patients with advanced, progressive neuroendocrine tumor of the gastroenteropancreatic system (GEP-NET). PET/CT is a central component of the multidisciplinary management of NEN. Variable follow-up intervals are recommended, considering that tumors with higher proliferation rates or advanced metastatic disease require more frequent assessments. The combination with other imaging modalities, like MRI, complements SSR-PET/CT, further enhancing overall diagnostic accuracy. KEY POINTS: Somatostatin receptor-PET/CT (SSR-PET/CT) is the guideline-recommended reference standard for imaging well-differentiated neuroendocrine tumors (NET). SSR-PET/CT should be the diagnostic imaging of choice for staging and post-therapy re-staging of grade 1 or 2 NET (G1 or G2). Variable follow-up intervals are recommended for NET G1 and G2. Tumors with higher proliferation rates or advanced metastatic disease necessitate more frequent assessments.
Collapse
Affiliation(s)
- Ricarda Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Ruhwedel T, Rogasch J, Schatka I, Galler M, Steinhagen P, Wetz C, Amthauer H. Beyond similarities: overall survival and prognostic insights from [¹⁷⁷Lu]Lu-DOTATOC therapy in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07221-2. [PMID: 40148509 DOI: 10.1007/s00259-025-07221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE Therapy with [177Lu]Lu-DOTATATE is well established for neuroendocrine tumors (NET), but its production generates [177mLu], raising concerns about waste disposal due to its longer half-life. In contrast, [177mLu] is not formed during [177Lu]Lu-DOTATOC production. However, data on overall survival (OS) and prognostic factors for [177Lu]Lu-DOTATOC remain limited, and its efficacy compared to [177Lu]Lu-DOTATATE is uncertain. This study aimed to analyze OS and radiological response in NET patients treated with [177Lu]Lu-DOTATOC. METHODS Monocentric, retrospective analysis of 141 patients with NET (grading: 21% G1, 71% G2, 4% G3, 4% grading unknown; primary: 48% small intestine (SI-NET); 27% pancreas (P-NET); 9% colon/rectum; 1% stomach, 7% lung; 9% CUP-NET) receiving PRRT with [177Lu]Lu-DOTATOC. Cox and logistic regression were used to identify prognostic factors for OS or risk of primary progression. RESULTS Death from any cause was observed in 85 of 141 patients (60.3%). Median OS was 55.2 months (SI NET G1-G2: 62.7 months; P-NET G1-G2: 41.2 months; NET G3: 26.3 months). Multivariable Cox regression identified baseline De Ritis Ratio (p < 0.001), ALP (p < 0.001), CgA (p < 0.001) and prior therapy with mTOR-inhibitors (p = 0.005) as significant prognostic factors of OS. Overall response rate was 12% and disease control rate was 72%. In multivariable logistic regression, primary tumor location (p = 0.04) and CgA (p = 0.01) were significant prognostic factors for higher risk of primary progression. CONCLUSION The analysis of OS from routine clinical practice shows that PRRT with [177Lu]Lu-DOTATOC is an effective treatment option for NET patients, while generating minimal [177mLu]. The evaluated prognostic factors could help to identify patients who particularly benefit from shorter follow-up intervals.
Collapse
Affiliation(s)
- Tristan Ruhwedel
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Julian Rogasch
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Markus Galler
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Steinhagen
- Department of Gastroenterology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
7
|
Filizoglu N, Ozguven S, Kesim S, Oksuzoglu K, Caglıyan F, Ones T, Dede F, Turoglu HT, Erdil TY. Physiological bio-distribution of 68Ga-DOTA-TATE in pediatric patients. Ann Nucl Med 2025:10.1007/s12149-025-02040-9. [PMID: 40106206 DOI: 10.1007/s12149-025-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Somatostatin receptors (SSTRs) are G protein-coupled transmembrane receptors that serve as a specific molecular target for a number of radiopharmaceuticals utilized for the imaging of neuroendocrine tumors (NETs). 68Ga-DOTA-TATE is a somatostatin analog that demonstrates a high affinity for SSTR2. Pediatric malignancies, such as neuroblastoma, pheochromocytoma, and paraganglioma, have been shown to express SSTR2, and 68Ga-DOTA-TATE is currently being used to evaluate these pediatric neoplasms. We aimed to analyze the distribution pattern of 68Ga-DOTA-TATE based on age and location in pediatric patients. METHODS We retrospectively analyzed 247 consecutive 68Ga-DOTA-TATE whole-body PET/CT scans performed in our department from May 2015 to April 2024 in pediatric patients with known or suspected neuroblastoma, neuroendocrine malignancy, pheochromocytoma, and paraganglioma. 93 subjects were included in this study who were disease-free at the time of imaging and had no tracer-avid lesion on 68Ga-DOTA-TATE PET/CT. The patients were divided into four groups according to age: infant (0-2 years), pre-school (3-6 years), school (7-12 years), and adolescent (13-18 years). A comparison of the SUV values of each organ across age groups was performed. RESULTS The highest levels of physiological uptake were observed in the spleen across all age groups, except for infants, who demonstrated the highest SUV values in the kidneys. 68Ga-DOTA-TATE uptake in the parotid glands, submandibular glands, thyroid gland, thymus, liver, spleen, adrenal glands, stomach, intestines, uterus, prostate, and testes demonstrated a statistically significant increase in the adolescent age group. In contrast to all internal organs, the lowest SUV max values were observed for all growth plates within the adolescent age group. CONCLUSION This study presents the bio-distribution pattern of 68Ga-DOTA-TATE in pediatric patients, according to age and location. The ranges of the SUVmax and SUVmean values of 68Ga-DOTA-TATE obtained in the various organs are of paramount importance for accurately diagnosing malignancy in 68Ga-DOTA-TATE PET/CT studies.
Collapse
Affiliation(s)
- Nuh Filizoglu
- Department of Nuclear Medicine, University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, D-100 Güney Yanyol No:47 Cevizli Mevkii, Kartal, 34865, Istanbul, Turkey.
| | - Salih Ozguven
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Selin Kesim
- Department of Nuclear Medicine, University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, D-100 Güney Yanyol No:47 Cevizli Mevkii, Kartal, 34865, Istanbul, Turkey
| | - Kevser Oksuzoglu
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Feyza Caglıyan
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Tunc Ones
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Fuat Dede
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Halil Turgut Turoglu
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Tanju Yusuf Erdil
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Saidi A, Stallons TA, Wong AG, Schatzmann AT, Soysal U, Torgue JJ. Side-by-Side Comparison of the In Vivo Performance of [ 212Pb]Pb-DOTAMTATE and Other SSTR2-Targeting Compounds. J Nucl Med 2025; 66:391-397. [PMID: 39884771 PMCID: PMC11876737 DOI: 10.2967/jnumed.124.268345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
There are numerous versions of octreotide and octreotate, including DOTAMTATE, DOTATATE, JR11, and lead-specific chelator (PSC)-PEG2-TOC. These peptides, which can be either analogs or antagonists, are used in nuclear medicine for diagnostic imaging or targeted radionuclide therapy of neuroendocrine tumors that are positive for somatostatin receptors (SSTRs). Despite their structural and targeting similarities, they have distinct properties and clinical uses. We aimed to perform an extensive preclinical comparison of all these somatostatin analogs with 212Pb, directly studying their pharmacokinetic properties in tumors overexpressing SSTR2. Methods: All SSTR2 analogs were manufactured with the DOTAM, PSC, or DOTA chelators for appropriate comparison after radiolabeling with 212Pb. Chelation, quantification, and pharmacokinetics were compared side by side in AR42J-tumor-bearing animals. Results: These findings highlight the superior chelation efficiency and faster kinetics of DOTAM and then DOTA compared with the PSC. We also discovered a superior tumor-to-kidney area under the curve ratio for [212Pb]Pb-DOTAMTATE over other SSTR2-targeting peptides when radiolabeled with 212Pb. Conclusion: Taken together, the results indicates that [212Pb]Pb-DOTAMTATE has favorable tumor retention and a more favorable dosimetry profile, which is crucial for targeted α-therapy in treating SSTR2-positive neuroendocrine tumors.
Collapse
|
9
|
Kuiper J, Zoetelief E, Brabander T, de Herder WW, Hofland J. Current status of peptide receptor radionuclide therapy in grade 1 and 2 gastroenteropancreatic neuroendocrine tumours. J Neuroendocrinol 2025; 37:e13469. [PMID: 39563515 PMCID: PMC11919478 DOI: 10.1111/jne.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) using [177Lu-DOTA0,Tyr3]octreotate (177Lu-DOTATATE) represents an established treatment modality for somatostatin receptor-positive, locally advanced or metastatic gastroenteropancreatic neuroendocrine tumours (GEP NET) of grade 1 or 2. The studies have demonstrated that four cycles of PRRT with 177Lu-DOTATATE prolongs progression-free survival and preserves quality of life, in patients with grade 1 and 2 advanced GEP NET. Notably, first-line PRRT using 177Lu-DOTATATE in grade 2 and 3 GEP NET patients has also shown efficacy and safety. Furthermore, PRRT can ameliorate symptoms in patients with NET-associated functioning syndromes. Although various studies have explored alternative radionuclides for PRRT, none currently meet the criteria for routine clinical implementation. Ongoing research aims to further enhance PRRT, and the results from large clinical trials comparing PRRT with other NET treatments are anticipated, potentially leading to significant modifications in NET treatment strategies and PRRT protocols. The results of these studies are likely to help address existing knowledge gaps in the coming years. This review describes the clinical practice, recent developments and future treatment options of PRRT in patients with grade 1 and 2 GEP NET.
Collapse
Affiliation(s)
- Jelka Kuiper
- Department of Internal Medicine, Section of EndocrinologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Eline Zoetelief
- Department of Radiology & Nuclear MedicineErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear MedicineErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Wouter W. de Herder
- Department of Internal Medicine, Section of EndocrinologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Johannes Hofland
- Department of Internal Medicine, Section of EndocrinologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
10
|
Bao X, Li S, Yao S, Chen Q. Research process of PET tracers for neuroendocrine tumors diagnosis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2025; 15:1-14. [PMID: 40124763 PMCID: PMC11929009 DOI: 10.62347/jxly1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Neuroendocrine tumors (NETs) can affect several organ systems and present a variety of clinical symptoms, which are difficult to diagnose by conventional methods. Somatostatin receptor (SSTR) is a group of specific receptors expressed on the well-differentiated NET cell membrane. [68Ga]-labeled somatostatin analogues (SSAs) PET/CT, endogenous ligands targeting SSTR, is widely used in currently clinical NETs diagnosis. The dual-tracer strategy ([68Ga]Ga-SSAs + [18F]FDG) allows for a more detailed evaluation of tumor metabolism and receptor expression. The NETPET score, integrating [68Ga]Ga-SSAs PET/CT and [18F]FDG PET/CT results, enhances the accuracy of predicting treatment response and prognosis. In addition, novel isotopes ([18F]/[64Cu]) labeled SSAs and SSTR antagonists outperformed [68Ga]-SSAs in lesion detection, tumor uptake, and tumor-to-background ratio. Due to undifferentiated or dedifferentiated NETs, SSTR may not be expressed. [68Ga]Ga-Pentixafor and [18F]-FDG PET/CT are applicable for SSTR-negative NET diagnosis. [18F]-MFBG and [18F]-DOPA have a higher sensitivity for identifying non-metastatic pheochromocytoma and paraganglioma (PPGL) than other radiotracers. This review addressed NET diagnosis with conventional imaging techniques, the clinical application of novel radiotracers, and the merits and limitations of the various radiotracers.
Collapse
Affiliation(s)
- Xiangyuan Bao
- Department of PET/CT Diagnostic, Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General HospitalTianjin 300052, China
- The Clinical Research and Translational Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, Fujian, China
| | - Shuai Li
- Department of PET/CT Diagnostic, Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General HospitalTianjin 300052, China
| | - Shaobo Yao
- Department of PET/CT Diagnostic, Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General HospitalTianjin 300052, China
- The Clinical Research and Translational Center, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, Fujian, China
| | - Qiusong Chen
- Department of PET/CT Diagnostic, Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General HospitalTianjin 300052, China
| |
Collapse
|
11
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
12
|
Tong J, Chen B, Volpi T, Li Y, Ellison PA, Cai Z. Current Advances in PARP1-Targeted Theranostics. J Labelled Comp Radiopharm 2025; 68:e4135. [PMID: 39995212 DOI: 10.1002/jlcr.4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays critical roles in DNA repair, chromatin regulation, and cellular equilibrium, positioning it as a pivotal target for therapeutic interventions in cancer and central nervous system (CNS) disorders. PARP1 responds to oxidative stress and DNA damage through PARylation, influencing energy depletion, survival, inflammation, and genomic regulation in many biological scenarios. PARP inhibitors (PARPis) have demonstrated efficacy against cancers harboring defective homologous recombination repair pathways, notably those linked to BRCA mutations. PARP1-targeted PET imaging enables patient stratification, treatment assessment, and PARPi pharmacodynamic evaluation in cancers and other pathophysiological conditions. Importantly, PARP1-targeted theranostics have emerged for both diagnostic imaging and therapeutic applications in multiple types of cancers, representing a pivotal advancement in personalized oncology. However, its application in brain tumors is limited by the heterogeneous integrity of the blood brain barrier (BBB) and the blood-tumor barrier. Thus, the development of BBB-penetrant PARP1 tracers remains an unmet need for imaging brain cancers. This review summarizes the current landscape of radiopharmaceuticals and radioligands targeting PARP1, detailing their pharmacological characteristics and potential clinical uses. Furthermore, this review discusses PARP1 tracers that can cross the BBB, underscoring their potential applications in neurooncology and other neurological disorders.
Collapse
Affiliation(s)
- Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Tommaso Volpi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Mair MJ, Tabouret E, Johnson DR, Sulman EP, Wen PY, Preusser M, Albert NL. Radioligand therapies in meningioma: Evidence and future directions. Neuro Oncol 2024; 26:S215-S228. [PMID: 38702966 PMCID: PMC11631075 DOI: 10.1093/neuonc/noae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 05/06/2024] Open
Abstract
Meningiomas are the most common intracranial neoplasms in adults. While most meningiomas are cured by resection, further treatment by radiotherapy may be needed, particularly in WHO grades 2 and 3 tumors which have an increased risk of recurrence, even after conventional therapies. Still, there is an urgent need for novel therapeutic strategies after the exhaustion of local treatment approaches. Radionuclide therapies combine the specificity of tumor-specific antibodies or ligands with the cytotoxic activity of radioactive emitters. Alongside this, integrated molecular imaging allows for a noninvasive assessment of predictive biomarkers as treatment targets. Whereas the concept of "theranostics" has initially evolved in extracranial tumors such as thyroid diseases, neuroendocrine tumors, and prostate cancer, data from retrospective case series and early phase trials underscore the potential of this strategy in meningioma. This review aims to explore the available evidence of radionuclide treatments and ongoing clinical trial initiatives in meningioma. Moreover, we discuss optimal clinical trial design and future perspectives in the field, including compound- and host-specific determinants of the efficacy of "theranostic" treatment approaches.
Collapse
Affiliation(s)
- Maximilian J Mair
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, GlioME Team, plateforme PETRA, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, New York, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Teles L, Tolboom N, Plasschaert SL, Poot AJ, Braat AJ, van Noesel MM. Potential of non-FDG PET radiotracers for paediatric patients with solid tumours. EJC PAEDIATRIC ONCOLOGY 2024; 4:100203. [DOI: 10.1016/j.ejcped.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Tomiyoshi K, Wilson LJ, Mourtada F, Mourtada JS, Namiki Y, Kamata W, Yang DJ, Inoue T. Optimization Processes of Clinical Chelation-Based Radiopharmaceuticals for Pathway-Directed Targeted Radionuclide Therapy in Oncology. Pharmaceutics 2024; 16:1458. [PMID: 39598580 PMCID: PMC11597032 DOI: 10.3390/pharmaceutics16111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted radionuclide therapy (TRT) for internal pathway-directed treatment is a game changer for precision medicine. TRT improves tumor control while minimizing damage to healthy tissue and extends the survival for patients with cancer. The application of theranostic-paired TRT along with cellular phenotype and genotype correlative analysis has the potential for malignant disease management. Chelation chemistry is essential for the development of theranostic-paired radiopharmaceuticals for TRT. Among image-guided TRT, 68Ga and 99mTc are the current standards for diagnostic radionuclides, while 177Lu and 225Ac have shown great promise for β- and α-TRT, respectively. Their long half-lives, potent radiobiology, favorable decay schemes, and ability to form stable chelation conjugates make them ideal for both manufacturing and clinical use. The current challenges include optimizing radionuclide production processes, coordinating chelation chemistry stability of theranostic-paired isotopes to reduce free daughters [this pertains to 225Ac daughters 221Fr and 213Bi]-induced tissue toxicity, and improving the modeling of micro dosimetry to refine dose-response evaluation. The empirical approach to TRT delivery is based on standard radionuclide administered activity levels, although clinical trials have revealed inconsistent outcomes and normal-tissue toxicities despite equivalent administered activities. This review presents the latest optimization methods for chelation-based theranostic radiopharmaceuticals, advancements in micro-dosimetry, and SPECT/CT technologies for quantifying whole-body uptake and monitoring therapeutic response as well as cytogenetic correlative analyses.
Collapse
Affiliation(s)
- Katsumi Tomiyoshi
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Lydia J. Wilson
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | - Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.J.W.); (F.M.)
| | | | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Wataru Kamata
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - David J. Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan; (Y.N.); (W.K.); (D.J.Y.)
| |
Collapse
|
16
|
Morawiec-Sławek K, Opalińska M, Lenda-Tracz W, Sitarz K, Kurzyńska A, Stefańska A, Kolasa M, Sowa-Staszczak A, Hubalewska-Dydejczyk A. Predictive value of 68[Ga]Ga-DOTA-TATE PET/CT volumetric parameters in assessing treatment response to long-acting somatostatin analogues in patients with well-differentiated neuroendocrine tumours. EJNMMI Res 2024; 14:105. [PMID: 39538103 PMCID: PMC11561214 DOI: 10.1186/s13550-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Over the past decade, numerous treatment options have emerged for patients with locally advanced and metastatic neuroendocrine tumours (NETs). Nevertheless, the optimal timing of treatment interventions remains uncertain, given the highly variable disease course observed in these patients, even when patients have the same tumour stage and grade. The aim of the study was to evaluate the predictive role of standardized uptake values (SUVs) and volumetric parameters obtained from pretreatment [68Ga]Ga-DOTA-TATE for response to SSA therapy in patients with NET. In this retrospective study, we included 42 patients (21 women, 21 men; age range: 46-84 years) with histologically confirmed, metastatic, NET (G1 13, G2 28 cases); median Ki-67 index 5%, range 1-16) who received long acting SSA as a first line treatment and underwent [68Ga]Ga-DOTA-TATE PET/CT before SSA treatment. For all [68Ga]Ga-DOTA-TATE avid lesion SUVmax, SUVmean, somatostatin receptor expression tumour volume (STV), total lesion somatostatin receptor expression (TLD, STV multiplied by SUV mean) and Tmean/Smean (SUVmean of tumours/metastases divided by SUVmean of normal spleen) were measured. Finally, the sum of STV (total STV, TSTV) and TLD (total TLD, TTLD) was calculated for each patient and used in the analysis. RESULTS During the study period, 14 patients had stable disease (33.3%) and 28 patients experienced progression (66.7%), among whom 12 patients died. The median progression-free survival (PFS) and overall survival (OS) were 26.5 and 46.5 months, respectively. In the univariate and multivariate analysis, in the whole population study, Tmean/Smean ratio (HR 1.88, 95% CI 1.06-3.35, p = 0.03), Ki-67 index (HR 1.14, CI 1.03-1.26, p = 0.01) and pre-treatment chromogranin A serum concentration (HR 1.01, CI 1.0-1.03, p = 0.01) were significantly associated with PFS. Among patients with small intestinal NETs, TSTV (< 125.85 cm3 vs. ≥ 125.85 cm3, p = 0.023) and TTLD (< 4168.95 vs. ≥ 4168.95, p = 0.026) were significantly associated with PFS in the univariate analyses. No significant correlation was found between measured volumetric parameters and OS. CONCLUSION Volumetric parameters of pretreatment 68[Ga]Ga-DOTA-TATE PET/CT may be useful in prediction of the response to SSA (used in monotherapy as a first-line therapy) in patients with NET.
Collapse
Affiliation(s)
| | - Marta Opalińska
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Wioletta Lenda-Tracz
- Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Sitarz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kurzyńska
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Stefańska
- Department of Endocrinology, Oncological Endocrinology, Nuclear Medicine and Internal Medicine, University Hospital, Kraków, Poland
| | - Magdalena Kolasa
- Department of Endocrinology, Oncological Endocrinology, Nuclear Medicine and Internal Medicine, University Hospital, Kraków, Poland
| | - Anna Sowa-Staszczak
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
17
|
Ebner R, Lohse A, Fabritius MP, Rübenthaler J, Wängler C, Wängler B, Schirrmacher R, Völter F, Schmid HP, Unterrainer LM, Öcal O, Hinterberger A, Spitzweg C, Auernhammer CJ, Geyer T, Ricke J, Bartenstein P, Holzgreve A, Grawe F. Validation of the standardization framework SSTR-RADS 1.0 for neuroendocrine tumors using the novel SSTR‑targeting peptide [ 18F]SiTATE. Eur Radiol 2024; 34:7222-7232. [PMID: 38769164 PMCID: PMC11519286 DOI: 10.1007/s00330-024-10788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Somatostatin receptor positron emission tomography/computed tomography (SSTR-PET/CT) using [68Ga]-labeled tracers is a widely used imaging modality for neuroendocrine tumors (NET). Recently, [18F]SiTATE, a SiFAlin tagged [Tyr3]-octreotate (TATE) PET tracer, has shown great potential due to favorable clinical characteristics. We aimed to evaluate the reproducibility of Somatostatin Receptor-Reporting and Data System 1.0 (SSTR-RADS 1.0) for structured interpretation and treatment planning of NET using [18F]SiTATE. METHODS Four readers assessed [18F]SiTATE-PET/CT of 95 patients according to the SSTR-RADS 1.0 criteria at two different time points. Each reader evaluated up to five target lesions per scan. The overall scan score and the decision on peptide receptor radionuclide therapy (PRRT) were considered. Inter- and intra-reader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS The ICC analysis on the inter-reader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 85%), overall scan score (ICC ≥ 90%), and the decision to recommend PRRT (ICC ≥ 85%) showed excellent agreement. However, significant differences were observed in recommending PRRT among experienced readers (ER) (p = 0.020) and inexperienced readers (IR) (p = 0.004). Compartment-based analysis demonstrated good to excellent inter-reader agreement for most organs (ICC ≥ 74%), except for lymph nodes (ICC ≥ 53%). CONCLUSION SSTR-RADS 1.0 represents a highly reproducible and consistent framework system for stratifying SSTR-targeted PET/CT scans, even using the novel SSTR-ligand [18F]SiTATE. Some inter-reader variability was observed regarding the evaluation of uptake intensity prior to PRRT as well as compartment scoring of lymph nodes, indicating that those categories require special attention during further clinical validation and might be refined in a future SSTR-RADS version 1.1. CLINICAL RELEVANCE STATEMENT SSTR-RADS 1.0 is a consistent framework for categorizing somatostatin receptor-targeted PET/CT scans when using [18F]SiTATE. The framework serves as a valuable tool for facilitating and improving the management of patients with NET. KEY POINTS SSTR-RADS 1.0 is a valuable tool for managing patients with NET. SSTR-RADS 1.0 categorizes patients with showing strong agreement across diverse reader expertise. As an alternative to [68Ga]-labeled PET/CT in neuroendocrine tumor imaging, SSTR-RADS 1.0 reliably classifies [18F]SiTATE-PET/CT.
Collapse
Affiliation(s)
- R Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - A Lohse
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - M P Fabritius
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Rübenthaler
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - C Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - B Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - R Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Canada
| | - F Völter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - H P Schmid
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - L M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - O Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Hinterberger
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
| | - C Spitzweg
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - C J Auernhammer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - T Geyer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - F Grawe
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Şahin R, Baloğlu MC, Ergül N, Çermik TF, Arslan E. 68 Ga-DOTA-FAPI-46 PET/CT Imaging for Restaging in a Patient With Metastatic Pheochromocytoma : Comparison With 68 Ga-DOTA-TATE PET/CT. Clin Nucl Med 2024; 49:e622-e624. [PMID: 39365092 DOI: 10.1097/rlu.0000000000005481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
ABSTRACT Pheochromocytomas (PHEOs) are neural crest-derived tumors originating from the chromaffin cells of the adrenal medulla and were recognized as one of the subtypes of paragangliomas by the World Health Organization in 2022. 68 Ga-labeled somatostatin analog ( 68 Ga-DOTA-NOC, 68 Ga-DOTA-TOC, and 68 Ga-DOTA-TATE) PET imaging has shown significant performance compared with 123 MIBG scintigraphy in the diagnosis of paragangliomas. It is now known that fibroblast activation protein (FAP) is overexpressed by various cancer-associated fibroblasts, including PHEOs. We would like to present the findings of 68 Ga-DOTA-FAPI-46 PET/CT and 68 Ga-DOTA-TATE PET/CT imaging performed for restaging on a 42-year-old man diagnosed with metastatic PHEO.
Collapse
Affiliation(s)
- Rahime Şahin
- From the Clinic of Nuclear Medicine, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
19
|
Nazar AK, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024; 54:914-940. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
20
|
Mallak N, Yilmaz B, Meyer C, Winters C, Mench A, Jha AK, Prasad V, Mittra E. Theranostics in Neuroendocrine Tumors: Updates and Emerging Technologies. Curr Probl Cancer 2024; 52:101129. [PMID: 39232443 DOI: 10.1016/j.currproblcancer.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/22/2024] [Indexed: 09/06/2024]
Abstract
Advancements in somatostatin receptor (SSTR) targeted imaging and treatment of well-differentiated neuroendocrine tumors (NETs) have revolutionized the management of these tumors. This comprehensive review delves into the current practice, discussing the use of the various FDA-approved SSTR-agonist PET tracers and the predictive imaging biomarkers, and elaborating on Lu177-DOTATATE peptide receptor radionuclide therapy (PRRT) including the evolving areas of post-therapy imaging practices, PRRT retreatment, and the potential role of dosimetry in optimizing patient treatments. The future directions sections highlight ongoing research on investigational PET imaging radiotracers, future prospects in alpha particle therapy, and combination therapy strategies.
Collapse
Affiliation(s)
- Nadine Mallak
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Burcak Yilmaz
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Catherine Meyer
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Celeste Winters
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Anna Mench
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Vikas Prasad
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Erik Mittra
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
21
|
Gålne A, Sundlöv A, Enqvist O, Sjögreen Gleisner K, Larsson E, Trägårdh E. Retrospective evaluation of the predictive value of tumour burden at baseline [ 68 Ga]Ga-DOTA-TOC or -TATE PET/CT and tumour dosimetry in GEP-NET patients treated with PRRT. EJNMMI REPORTS 2024; 8:24. [PMID: 39112915 PMCID: PMC11306659 DOI: 10.1186/s41824-024-00210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE There is a lack of validated imaging biomarkers for prediction of response to peptide receptor radionuclide therapy (PRRT). The primary objective was to evaluate if tumour burden at baseline PET/CT could predict treatment outcomes to PRRT with [177Lu]Lu-DOTA-TATE. Secondary objectives were to evaluate if there was a correlation between tumour burden and mean tumour absorbed dose (AD) during first cycle, and if mean tumour AD or the relative change of tumour burden at first follow-up PET/CT could predict progression free survival (PFS) or overall survival (OS). METHODS Patients with gastroenteropancreatic neuroendocrine tumour (GEP-NET) treated with [177Lu]Lu-DOTA-TATE PRRT were retrospectively included. Tumour burden was quantified from [68 Ga]Ga-DOTA-TOC/TATE PET/CT-images at baseline and first follow-up and expressed as; whole-body somatostatin receptor expressing tumour volume (SRETVwb), total lesion somatostatin receptor expression (TLSREwb), largest tumour lesion diameter and highest SUVmax. The relative change of tumour burden was evaluated in three categories. Mean tumour AD was estimated from the first cycle of PRRT. PFS was defined as time from start of PRRT to radiological or clinical progression. OS was evaluated as time to death. Kaplan Meier survival curves and log-rank test were used to compare PFS and OS between different groups. RESULTS Thirty-one patients had a baseline PET/CT < 6 months before treatment and 25 had a follow-up examination. Median tumour burden was 132 ml (IQR 61-302) at baseline and 71 ml (IQR 36-278) at follow-up. Twenty-two patients had disease progression (median time to progression 17.2 months) and 9 patients had no disease progression (median follow-up 28.7 months). SRETVwb dichotomized by the median at baseline was not associated with longer PFS (p = 0.861) or OS (p = 0.937). Neither TLSREwb, largest tumour lesion or SUVmax showed significant predictive value. There was a moderately strong correlation, however, between SUVmax and mean tumour AD r = 0.705, p < 0.001, but no significant correlation between SRETVwb nor TLSREwb and mean tumour AD. An increase of SRETVwb, TLSREwb or largest tumour lesion at first follow-up PET/CT was significantly correlated with shorter PFS/OS. CONCLUSION Tumour burden at baseline showed no predictive value of PFS/OS after PRRT in this small retrospective study. An increase of tumour burden was predictive of worse outcome.
Collapse
Affiliation(s)
- Anni Gålne
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden.
| | - Anna Sundlöv
- Department of Clinical Sciences, Oncology and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Olof Enqvist
- Eigenvision AB, Malmö, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Elin Trägårdh
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden
| |
Collapse
|
22
|
Kaletsch M, Pfestroff A, Luster M. [Nuclear medicine approaches in the diagnosis and treatment of neuroendocrine neoplasms]. Dtsch Med Wochenschr 2024; 149:871-878. [PMID: 39013407 DOI: 10.1055/a-2145-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Despite, or perhaps because of the rarity of neuroendocrine neoplasms, the diagnosis and treatment of these malignancies is of particular importance. Nuclear medicine can make an important contribution to this challenge. It offers the most sensitive and specific imaging of these tumor entities and can be helpful in treatment due to the radiotherapeutic drugs that have recently been approved. This theragnostic (fusion of therapeutic and diagnostic) concept is based on the frequent overexpression of somatostatin receptors on neuroendocrine tumor cells.Using diagnostic and therapeutic pharmaceuticals based on analogues from somatostatin, most applications from the nuclear medicine are successful, an additional therapeutic method is SIRT, also known as TARE, in which the hypervascularization of NEN-metastases is used as a therapeutic target.
Collapse
|
23
|
van de Weijer T, Bemer F, de Vos-Geelen J, Hermans B, Mitea C, van der Pol JAJ, Lodewick T, Wildberger JE, Mottaghy FM. Altered biodistribution of [ 68Ga]Ga-DOTA-TOC during somatostatin analogue treatment. Eur J Nucl Med Mol Imaging 2024; 51:2420-2427. [PMID: 38403723 PMCID: PMC11178651 DOI: 10.1007/s00259-024-06659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE The need for an interval between the administration of long-acting Somatostatin Receptor Analogues (SSA) and the [68Ga]Ga-DOTA-TATE PET has been questioned based on recent literature in the new EANM guidelines. Here an earlier studies showed that SSA injection immediately before SSTR PET had minimal effect on normal organ and tumor uptake (1). However, data are scarce and there are (small) differences between [68Ga]Ga-DOTA-TATE and [68Ga]Ga-DOTA-TOC binding affinity, and it remains unknown whether these findings can be directly translated to scans with [68Ga]Ga-DOTA-TOC as well. The purpose of this study was to assess the effect of SSA use on the biodistribution in a subsequent [68Ga]Ga-DOTA-TOC PET/CT and compare this intra-individually across several cycles of SSA treatments. METHODS Retrospectively, 35 patients with NENs were included. [68Ga]Ga-DOTA-TOC PET at staging and after the 1st and 2nd cycle of SSA were included. SUVmean and SUVmax of blood, visceral organs, primary tumor and two metastases were determined. Also, the interval between SSA therapy and the PET scan was registered. RESULTS Treatment with SSA resulted in a significantly higher bloodpool activity and lower visceral tracer uptake. This effect was maintained after a 2nd cycle of SSA therapy. Furthermore, there was an inverse relationship between bloodpool tracer availability and visceral tracer binding and a positive correlation between bloodpool tracer availability and primary tumor tracer uptake. With an interval of up to 5 days, there was a significantly higher bloodpool activity than at longer intervals. CONCLUSION Absolute comparison of the SUV on [68Ga]Ga-DOTA-TOC PET should be done with caution as the altered biodistribution of the tracer after SSA treatment should be taken into account. We recommend not to perform a scan within the first 5 days after the injection of lanreotide.
Collapse
Affiliation(s)
- T van de Weijer
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht (UM), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - F Bemer
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - J de Vos-Geelen
- Department of Medical Oncology, ENETS Center of Excellence, MUMC+, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - B Hermans
- Department of Medical Oncology, ENETS Center of Excellence, MUMC+, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - C Mitea
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - J A J van der Pol
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - T Lodewick
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - J E Wildberger
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands
| | - F M Mottaghy
- Department of Radiology and Nuclear Medicine, ENETS Center of Excellence, Maastricht University Medical Center (MUMC+), P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands.
- School for Oncology and Reproduction (GROW), UM, P. Debeylaan 25, P.O. Box 5800, 6202, 6229 HX, AZ, Maastricht, The Netherlands.
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Sakellis C, Jacene HA. Neuroendocrine Tumors: Diagnostics. PET Clin 2024; 19:325-339. [PMID: 38714399 DOI: 10.1016/j.cpet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Neuroendocrine neoplasms (NEN) are rare tumors arising from neuroendocrine cells. NEN are ideally suited for a theragnostic approach due to their specific expression of somatostatin receptors (SSTR). SSTR imaging of NEN dates back to the 1980s, but has evolved recently due to the introduction of more sensitive SSTR PET radiotracers. SSTR PET is a primary imaging modality for identifying NEN and characterizing SSTR expression. SSTR PET is complementary to anatomic imaging for assessing tumor response to treatment. SSTR PET is mandated to determine eligibility for peptide receptor radionuclide therapy. Here, the role of imaging to aid management of NEN is reviewed.
Collapse
Affiliation(s)
- Christopher Sakellis
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Avenue, DL198, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02215, USA
| | - Heather A Jacene
- Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Avenue, DL198, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Ebner R, Rübenthaler J, Ricke J, Sheikh GT, Unterrainer LM, Auernhammer CJ, Spitzweg C, Brendel M, Schmid-Tannwald C, Cyran CC. [Imaging of neuroendocrine tumors of the gastrointestinal tract : Value of (hybrid) imaging diagnostics in radiology]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:553-558. [PMID: 38713221 DOI: 10.1007/s00117-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 05/08/2024]
Abstract
CLINICAL/METHODICAL ISSUE Neuroendocrine tumors (NET) represent a heterogeneous group of rare tumors that predominantly arise in the gastrointestinal tract. At the time of initial diagnosis, the NET has already spread locoregionally in about half of the patients, and 27% of patients have already developed distant metastases. Since this plays a crucial role in therapy planning, accurate diagnostic imaging is important. STANDARD RADIOLOGICAL METHODS Due to its high temporal and spatial resolution (multiphasic including arterial phase), computed tomography (CT) plays a decisive role in primary staging and follow-up care, while magnetic resonance imaging (MRI) with its excellent soft tissue contrast offers advantages in the assessment of parenchymal organs in the upper abdomen. METHODICAL INNOVATIONS Somatostatin receptor (SSR) positron emission tomography (PET) provides additional functional information that not only helps to detect the primary tumor and distant metastases, but also has a significant influence on therapeutic management in a theranostic approach. PERFORMANCE Hybrid imaging using SSR-PET/CT has proven to be particularly effective in the detection of NET. Compared to conventional imaging, it provides additional information in 68% of patients, which has a significant impact on clinical management. ACHIEVEMENTS Imaging of NET requires the combined use of various methods such as ultrasound, CT, MRI, and PET/CT to enable accurate diagnosis and effective treatment planning. PRACTICAL RECOMMENDATIONS SSR-PET/CT is a valuable tool for the accurate staging of neuroendocrine tumors of the gastrointestinal tract, especially with small metastases, while MRI with hepatocyte-specific contrast agent and diffusion-weighted imaging is useful for the specific assessment of liver metastases.
Collapse
Affiliation(s)
- R Ebner
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland.
| | - J Rübenthaler
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
- Interdisziplinäres Zentrum für Neuroendokrine Tumoren des Gastroenteropankreatischen Systems (GEPNET-KUM), LMU Klinikum, LMU München, München, Deutschland
| | - J Ricke
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
- Interdisziplinäres Zentrum für Neuroendokrine Tumoren des Gastroenteropankreatischen Systems (GEPNET-KUM), LMU Klinikum, LMU München, München, Deutschland
| | - G T Sheikh
- Klinik und Poliklinik für Nuklearmedizin, LMU Klinikum, LMU München, München, Deutschland
| | - L M Unterrainer
- Klinik und Poliklinik für Nuklearmedizin, LMU Klinikum, LMU München, München, Deutschland
| | - C J Auernhammer
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Deutschland
- Interdisziplinäres Zentrum für Neuroendokrine Tumoren des Gastroenteropankreatischen Systems (GEPNET-KUM), LMU Klinikum, LMU München, München, Deutschland
| | - C Spitzweg
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Deutschland
- Interdisziplinäres Zentrum für Neuroendokrine Tumoren des Gastroenteropankreatischen Systems (GEPNET-KUM), LMU Klinikum, LMU München, München, Deutschland
| | - M Brendel
- Klinik und Poliklinik für Nuklearmedizin, LMU Klinikum, LMU München, München, Deutschland
| | - C Schmid-Tannwald
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
| | - C C Cyran
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
- Interdisziplinäres Zentrum für Neuroendokrine Tumoren des Gastroenteropankreatischen Systems (GEPNET-KUM), LMU Klinikum, LMU München, München, Deutschland
| |
Collapse
|
26
|
Firsova M, Treglia G, Sempoux C, Dromain C, Prior JO, Schaefer N, Boughdad S. Increased [ 68Ga]Ga-SST uptake in the uncinate pancreatic process in new digital PET/CT machine and potential association with clinical and histologic factors in NET patients. EJNMMI REPORTS 2024; 8:18. [PMID: 38910232 PMCID: PMC11194230 DOI: 10.1186/s41824-024-00203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION A physiological increase in the uptake of [68Ga]Ga-labeled somatostatin analogues ([68Ga]Ga-SST) PET tracers has been reported in the uncinate pancreatic process (UP) and might be even higher in latest generation of PET/CT scanners and might be falsely interpreted as NET. We aimed to investigate the uptake of UP in a large population of NET patients who underwent [68Ga]Ga-SST PET/CT with digital SiPM detectors. We also explored potential associations between UP uptake and various clinical, imaging, and pathological factors routinely assessed in NET patients. METHODS We analyzed all consecutive NET patients from July 2018 to June 2022 in this retrospective, single-center study. All patients underwent a [68Ga]Ga-SST PET/CT scan on a digital SiPM PET/CT scanner. On visual analysis, we distinguished between normal linear and homogenous UP uptake or abnormal if otherwise. We compared SUVmax/mean in patients with normal UP uptake to those with abnormal UP uptake with suspicious NET lesions on contrast-enhanced CT (ce-CT) and according to the site of the primary NET (pancreatic NET vs. other), patient gender (female vs. male) and tumor grade (grade 1-2 vs. 3) using a Mann-Whitney test. We also assessed the correlation between SUVmax/mean values in UP with patients' age, primary NET Ki-67 counting, and its SUVmax/mean, TLA and MTV values. RESULTS We included 131 NET patients with a total of 34 [68Ga]Ga-DOTATATE PET/CT and 113 [68Ga]Ga-DOTATOC PET/CT scans. An abnormal UP uptake was seen in 32 patients with 65.7% of suspicious NET lesion or extrinsic compression on morphological imaging. Normal UP uptake SUVmax/mean were measured in 115 [68Ga]Ga-SST scans (78.2%) with normal UP uptake and without suspicious lesion on morphological imaging. We found an average SUVmax of 12.3 ± 4.1 for [68Ga]Ga-DOTATATE and 19.8 ± 9.8 g/ml for [68Ga]Ga-DOTATOC, hence higher than those reported in the literature [SUVmax 5 ± 1.6 to 12.6 ± 2.2 g/ml] with significant difference with abnormal UP uptake and between both PET tracers (both p < 0.01). Significant results were a higher UP uptake on [68Ga]Ga-DOTATOC in male patients (p = 0.02) and significant associations between UP uptake on [68Ga]Ga-DOTATOC and SUVmax/mean of the primary tumor (ρ [0.337-0.363]; p [0.01-0.02]). CONCLUSION We confirmed a higher and very frequent UP uptake in latest SiPM-detector [68Ga]Ga-SST PET/CT with an even higher uptake in patients that had [68Ga]Ga-DOTATOC PET/CT. SUVmean/max were significantly higher in abnormal UP uptake but there were overlaps with UP SUV values for both [68Ga]Ga-SST and a correlation to morphological imaging is crucial. Besides, significant associations between UP uptake and SUVmean/max of the primary NET as well as patients' gender were seen in the larger cohort of [68Ga]Ga-DOTATOC patients suggesting that both physiological and pathological parameters could affect UP uptake.
Collapse
Affiliation(s)
- Maria Firsova
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Giorgio Treglia
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Via A. Gallino 12, 6500, Bellinzona, Switzerland
- Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christine Sempoux
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Clarisse Dromain
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
27
|
Sharma A, Singh LR. An insight into the pharmacology of cysteine/methionine containing peptide drugs. Eur J Med Chem 2024; 271:116456. [PMID: 38691890 DOI: 10.1016/j.ejmech.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Since last century, peptides have emerged as potential drugs with >90 FDA approvals for various targets with several in the pipeline. Sulphur, in peptides is present either as thiol (-SH) from Cys or thioether from Met. In this review, all the peptides approved by FDA since 2000 containing sulphur have been included. Among them ∼50 % contains disulphide bridges. This clearly demonstrates the significance of disulphide bonds in peptide drugs. This can be achieved synthetically by using orthogonal protecting groups (PGs) for -SH. These PGs are compatible with Solid Phase Peptide Synthesis (SPPS), which is still the method of choice for peptide synthesis. The orthogonal PGs used for Cys thiol side chain protecting for disulphide bond formation have been included which are currently in use both by academia and industry from small scale to large scale synthesis. In addition, the details of the FDA approved drugs containing Cys and Met (or both) have also been discussed.
Collapse
Affiliation(s)
- Anamika Sharma
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Chemical Science Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - L Ravithej Singh
- Chemical Science Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Fluoro-Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
28
|
Mallak N, O'Brien SR, Pryma DA, Mittra E. Theranostics in Neuroendocrine Tumors. Cancer J 2024; 30:185-193. [PMID: 38753753 DOI: 10.1097/ppo.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.
Collapse
Affiliation(s)
- Nadine Mallak
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Sophia R O'Brien
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Erik Mittra
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
29
|
Müller PC, Pfister M, Eshmuminov D, Lehmann K. Liver transplantation as an alternative for the treatment of neuroendocrine liver metastasis: Appraisal of the current evidence. Hepatobiliary Pancreat Dis Int 2024; 23:146-153. [PMID: 37634987 DOI: 10.1016/j.hbpd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Liver transplantation (LT) for neuroendocrine liver metastases (NELM) is still in debate. Studies comparing LT with liver resection (LR) for NELM are scarce, as patient selection is heterogeneous and experience is limited. The goal of this review was to provide a critical analysis of the evidence on LT versus LR in the treatment of NELM. DATA SOURCES A scoping literature search on LT and LR for NELM was performed with PubMed, including English articles up to March 2023. RESULTS International guidelines recommend LR for NELM in resectable, well-differentiated tumors in the absence of extrahepatic metastatic disease with superior results of LR compared to systemic or liver-directed therapies. Advanced liver surgery has extended resectability criteria whilst entailing increased perioperative risk and short disease-free survival. In highly selected patients (based on the Milan criteria) with unresectable NELM, oncologic results of LT are promising. Prognostic factors include tumor biology (G1/G2) and burden, waiting time for LT, patient age and extrahepatic spread. Based on low-level evidence, LT for low-grade NELM within the Milan criteria resulted in improved disease-free survival and overall survival compared to LR. The benefits of LT were lost in patients beyond the Milan NELM-criteria. CONCLUSIONS With adherence to strict selection criteria especially tumor biology, LT for NELM is becoming a valuable option providing oncologic benefits compared to LR. Recent evidence suggests even stricter selection criteria with regard to tumor biology.
Collapse
Affiliation(s)
- Philip C Müller
- Department of Surgery and Transplantation, University Hospital Zurich, Rämistrasse 100, Zurich CH-8091, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, University Hospital Zurich, Rämistrasse 100, Zurich CH-8091, Switzerland
| | - Dilmurodjon Eshmuminov
- Department of Surgery and Transplantation, University Hospital Zurich, Rämistrasse 100, Zurich CH-8091, Switzerland
| | - Kuno Lehmann
- Department of Surgery and Transplantation, University Hospital Zurich, Rämistrasse 100, Zurich CH-8091, Switzerland.
| |
Collapse
|
30
|
Harini K, Jayanthi MR, Hari KSV, Batchu S. A Rare Presentation of Extrahepatic Biliary Neuroendocrine Tumor Diagnosed using 68Ga-DOTA-TOC Imaging, But Undetectable on 68Ga-FAPI Imaging. Indian J Nucl Med 2024; 39:155-157. [PMID: 38989315 PMCID: PMC11232718 DOI: 10.4103/ijnm.ijnm_149_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) are commonly seen in the small intestine and rarely found within the bile ducts. This low incidence is due to a smaller number of Kulchitsky cells in the extrahepatic biliary tree, which predisposes to the disease. The diagnosis of biliary tree carcinoid preoperatively is very rare, with most cases in the literature being incidentally diagnosed during surgery or being identified on the histopathology report postoperatively. Here, we present an interesting case of an extrahepatic biliary NET which was diagnosed preoperatively.
Collapse
Affiliation(s)
- Koorma Harini
- Department of Nuclear Medicine and PET-CT, AIG Hospitals, Hyderabad, Telangana, India
| | - Mohan Roop Jayanthi
- Department of Nuclear Medicine and PET-CT, AIG Hospitals, Hyderabad, Telangana, India
| | - K S Vishnu Hari
- Department of Nuclear Medicine and PET-CT, AIG Hospitals, Hyderabad, Telangana, India
| | - Suneetha Batchu
- Department of Nuclear Medicine and PET-CT, AIG Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Dubash S, Barwick TD, Kozlowski K, Rockall AG, Khan S, Khan S, Yusuf S, Lamarca A, Valle JW, Hubner RA, McNamara MG, Frilling A, Tan T, Wernig F, Todd J, Meeran K, Pratap B, Azeem S, Huiban M, Keat N, Lozano-Kuehne JP, Aboagye EO, Sharma R. Somatostatin Receptor Imaging with [ 18F]FET-βAG-TOCA PET/CT and [ 68Ga]Ga-DOTA-Peptide PET/CT in Patients with Neuroendocrine Tumors: A Prospective, Phase 2 Comparative Study. J Nucl Med 2024; 65:jnumed.123.266601. [PMID: 38331457 PMCID: PMC10924162 DOI: 10.2967/jnumed.123.266601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
There is a clinical need for 18F-labeled somatostatin analogs for the imaging of neuroendocrine tumors (NET), given the limitations of using [68Ga]Ga-DOTA-peptides, particularly with regard to widespread accessibility. We have shown that [18F]fluoroethyl-triazole-[Tyr3]-octreotate ([18F]FET-βAG-TOCA) has favorable dosimetry and biodistribution. As a step toward clinical implementation, we conducted a prospective, noninferiority study of [18F]FET-βAG-TOCA PET/CT compared with [68Ga]Ga-DOTA- peptide PET/CT in patients with NET. Methods: Forty-five patients with histologically confirmed NET, grades 1 and 2, underwent PET/CT imaging with both [18F]FET-βAG-TOCA and [68Ga]Ga-peptide performed within a 6-mo window (median, 77 d; range, 6-180 d). Whole-body PET/CT was conducted 50 min after injection of 165 MBq of [18F]FET-βAG-TOCA. Tracer uptake was evaluated by comparing SUVmax and tumor-to-background ratios at both lesion and regional levels by 2 unblinded, experienced readers. A randomized, blinded reading of both scans was also then undertaken by 3 experienced readers, and consensus was assessed at a regional level. The ability of both tracers to visualize liver metastases was also assessed. Results: A total of 285 lesions were detected on both imaging modalities. An additional 13 tumor deposits were seen in 8 patients on [18F]FET-βAG-TOCA PET/CT, and [68Ga]Ga-DOTA-peptide PET/CT detected an additional 7 lesions in 5 patients. Excellent correlation in SUVmax was observed between both tracers (r = 0.91; P < 0.001). No difference was observed between median SUVmax across regions, except in the liver, where the median tumor-to-background ratio of [18F]FET-βAG-TOCA was significantly lower than that of [68Ga]Ga-DOTA-peptide (2.5 ± 1.9 vs. 3.5 ± 2.3; P < 0.001). Conclusion: [18F]FET-βAG-TOCA was not inferior to [68Ga]Ga-DOTA-peptide in visualizing NET and may be considered in routine clinical practice given the longer half-life and availability of the cyclotron-produced fluorine radioisotope.
Collapse
Affiliation(s)
- Suraiya Dubash
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tara D Barwick
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kasia Kozlowski
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrea G Rockall
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sairah Khan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sameer Khan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Siraj Yusuf
- Radiology and Nuclear Medicine Department, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Angela Lamarca
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Richard A Hubner
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G McNamara
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Andrea Frilling
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tricia Tan
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Florian Wernig
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jeannie Todd
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Karim Meeran
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Bhavesh Pratap
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Saleem Azeem
- Invicro-London, Imperial College London, London, United Kingdom; and
| | - Michael Huiban
- Invicro-London, Imperial College London, London, United Kingdom; and
| | - Nicholas Keat
- Invicro-London, Imperial College London, London, United Kingdom; and
| | - Jingky P Lozano-Kuehne
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Population Health Sciences Institute, Faculty of Medical Sciences, University of Newcastle, Newcastle, United Kingdom
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom;
| |
Collapse
|
32
|
Deiser S, Drexler M, Moreno-Alcántar G, Irl M, Schmidt C, Günther T, Casini A. Synthesis of 177Lu-Labeled, Somatostatin-2 Receptor-Targeted Metalla-Assemblies: Challenges in the Design of Supramolecular Radiotherapeutics. Inorg Chem 2023; 62:20710-20720. [PMID: 37556427 DOI: 10.1021/acs.inorgchem.3c02090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Self-assembled supramolecular coordination complexes (SCCs) hold promise for biomedical applications in cancer therapy, although their potential in the field of nuclear medicine is still substantially unexplored. Therefore, in this study an exo-functionalized cationic [Pd2L2]4+ metallacycle (L = 3,5-bis(3-ethynylpyridine)phenyl), targeted to the somatostatin-2 receptor (sst2R) and featuring the DOTA chelator (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in order to bind the β-- and γ-emitter lutetium-177, was synthesized by self-assembly following ligand synthesis via standard solid-phase peptide synthesis (SPPS). This metallacycle was then characterized by reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESI-MS), and 1H and 1H-DOSY NMR (DOSY = diffusion-ordered spectroscopy). A procedure for the radiolabeling of the metallacycle with 177Lu was also optimized. The resulting [nat/177Lu]Lu-DOTA-metallacycle, termed [nat/177Lu]Lu-Cy, was evaluated concerning its stability and in vitro properties. The compound was more lipophilic compared to the reference [177Lu]Lu-DOTA-TATE (logPOct/H2O = -0.85 ± 0.10 versus -3.67 ± 0.04, respectively). While [natLu]Lu-Cy revealed low stability in a DMEM/F12 GlutaMax medium, it demonstrated good stability in other aqueous media as well as in DMSO. A high sst2R binding affinity (expressed as IC50) was determined in CHOsst2 cells (Chinese hamster ovary cells that were stably transfected with human sst2R). Moreover, the metallacycle exhibited high human serum albumin binding, as assessed by high-performance affinity chromatography (HPAC), and moderate stability in human serum compared to [177Lu]Lu-DOTA-TATE (TATE = (Tyr3)-octreotate). In order to improve stability, a heteroleptic approach was used to develop a less sterically hindered cage-like SCC that is potentially endowed with host-guest chemistry capability, which has been preliminarily characterized by RP-HPLC and ESI-MS. Overall, our initial results encourage future studies on sst2R-directed SCCs and have led to new insights into the chemistry of ss2R-directed SCCs for radiopharmaceutical applications.
Collapse
Affiliation(s)
- Sandra Deiser
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Marike Drexler
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Maximilian Irl
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
| | - Claudia Schmidt
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - Thomas Günther
- Chair of Pharmaceutical Radiochemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Walther-Meißner-Str. 3, 85748 Garching b. München, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b. München, Germany
| |
Collapse
|
33
|
Mourtada F, Tomiyoshi K, Sims-Mourtada J, Mukai-Sasaki Y, Yagihashi T, Namiki Y, Murai T, Yang DJ, Inoue T. Actinium-225 Targeted Agents: Where Are We Now? Brachytherapy 2023; 22:697-708. [PMID: 37690972 PMCID: PMC10840862 DOI: 10.1016/j.brachy.2023.06.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 09/12/2023]
Abstract
α-particle targeted radionuclide therapy has shown promise for optimal cancer management, an exciting new era for brachytherapy. Alpha-emitting nuclides can have significant advantages over gamma- and beta-emitters due to their high linear energy transfer (LET). While their limited path length results in more specific tumor 0kill with less damage to surrounding normal tissues, their high LET can produce substantially more lethal double strand DNA breaks per radiation track than beta particles. Over the last decade, the physical and chemical attributes of Actinium-225 (225Ac) including its half-life, decay schemes, path length, and straightforward chelation ability has peaked interest for brachytherapy agent development. However, this has been met with challenges including source availability, accurate modeling for standardized dosimetry for brachytherapy treatment planning, and laboratory space allocation in the hospital setting for on-demand radiopharmaceuticals production. Current evidence suggests that a simple empirical approach based on 225Ac administered radioactivity may lead to inconsistent outcomes and toxicity. In this review article, we highlight the recent advances in 225Ac source production, dosimetry modeling, and current clinical studies.
Collapse
Affiliation(s)
- Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.
| | - Katsumi Tomiyoshi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | - Yuki Mukai-Sasaki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Takayuki Yagihashi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Taro Murai
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - David J Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
34
|
Halfdanarson TR, Mallak N, Paulson S, Chandrasekharan C, Natwa M, Kendi AT, Kennecke HF. Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers (Basel) 2023; 15:4836. [PMID: 37835530 PMCID: PMC10571645 DOI: 10.3390/cancers15194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Radioligand therapy (RLT) with [177Lu]Lu-DOTA-TATE is a standard of care for adult patients with somatostatin-receptor (SSTR)-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Taking advantage of this precision nuclear medicine approach requires diligent monitoring and surveillance, from the use of diagnostic SSTR-targeted radioligand imaging for the selection of patients through treatment and assessments of response. Published evidence-based guidelines assist the multidisciplinary healthcare team by providing acceptable approaches to care; however, the sheer heterogeneity of GEP-NETs can make these frameworks difficult to apply in individual clinical circumstances. There are also contradictions in the literature regarding the utility of novel approaches in monitoring and surveilling patients with GEP-NETs receiving RLT. This article discusses the emerging evidence on imaging, clinical biochemistry, and tumor assessment criteria in the management of patients receiving RLT for GEP-NETs; additionally, it documents our own best practices. This allows us to offer practical guidance on how to effectively implement monitoring and surveillance measures to aid patient-tailored clinical decision-making.
Collapse
Affiliation(s)
| | - Nadine Mallak
- Division of Molecular Imaging and Therapy, Oregon Health and Science University, Portland, OR 97239, USA;
| | | | | | - Mona Natwa
- Langone Health, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|
35
|
Fabritius MP, Soltani V, Cyran CC, Ricke J, Bartenstein P, Auernhammer CJ, Spitzweg C, Schnitzer ML, Ebner R, Mansournia S, Hinterberger A, Lohse A, Sheikh GT, Winkelmann M, Knösel T, Ingenerf M, Schmid-Tannwald C, Kunz WG, Rübenthaler J, Grawe F. Diagnostic accuracy of SSR-PET/CT compared to histopathology in the identification of liver metastases from well-differentiated neuroendocrine tumors. Cancer Imaging 2023; 23:92. [PMID: 37770958 PMCID: PMC10537814 DOI: 10.1186/s40644-023-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Histopathology is the reference standard for diagnosing liver metastases of neuroendocrine tumors (NETs). Somatostatin receptor-positron emission tomography / computed tomography (SSR-PET/CT) has emerged as a promising non-invasive imaging modality for staging NETs. We aimed to assess the diagnostic accuracy of SSR-PET/CT in the identification of liver metastases in patients with proven NETs compared to histopathology. METHODS Histopathologic reports of 139 resected or biopsied liver lesions of patients with known NET were correlated with matching SSR-PET/CTs and the positive/negative predictive value (PPV/NPV), sensitivity, specificity, and diagnostic accuracy of SSR-PET/CT were evaluated. PET/CT reading was performed by one expert reader blinded to histopathology and clinical data. RESULTS 133 of 139 (95.7%) liver lesions showed malignant SSR-uptake in PET/CT while initial histopathology reported on 'liver metastases of NET´ in 127 (91.4%) cases, giving a PPV of 91.0%. Re-biopsy of the initially histopathologically negative lesions (reference standard) nevertheless diagnosed 'liver metastases of NET' in 6 cases, improving the PPV of PET/CT to 95.5%. Reasons for initial false-negative histopathology were inadequate sampling in the sense of non-target biopsies. The 6 (4.3%) SSR-negative lesions were all G2 NETs with a Ki-67 between 2-15%. CONCLUSION SSR-PET/CT is a highly accurate imaging modality for the diagnosis of liver metastases in patients with proven NETs. However, we found that due to the well-known tumor heterogeneity of NETs, specifically in G2 NETs approximately 4-5% are SSR-negative and may require additional imaging with [18F]FDG PET/CT.
Collapse
Affiliation(s)
- M P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V Soltani
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - C C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - J Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - C Spitzweg
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - M L Schnitzer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - R Ebner
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Mansournia
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Hinterberger
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Lohse
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - G T Sheikh
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - M Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - T Knösel
- Department of Pathology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - M Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - C Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - W G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - J Rübenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
36
|
Kalaitzidis P, Gustafsson J, Hindorf C, Ljungberg M. Monte Carlo investigation of PET [ 68Ga]Ga-DOTA-TOC activity-administration protocols for consistent image quality. Heliyon 2023; 9:e19504. [PMID: 37681181 PMCID: PMC10480678 DOI: 10.1016/j.heliyon.2023.e19504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
One example of a PET exam that suffers from noise problems is [68Ga]Ga-DOTA-TOC, where patients are generally administered between 100 and 200 MBq [68Ga]Ga-DOTA-TOC, irrespective of size. However, a fixed activity can result in low signal-to-noise ratios (SNRs) in larger patients. This study aimed to evaluate the impact on image quality with respect to injected activity and patient habitus through Monte Carlo (MC) simulation. Eight anthropomorphic computer phantoms with body mass indices (BMIs) between 19 kg/m2 and 38 kg/m2 and tumours distributed in the liver were simulated using the MC software Gate v8.2 with an activity distribution defined according to [68Ga]Ga-DOTA-TOC standardised uptake values. Three activity-administration protocols were simulated: (i) with a fixed activity of 100 MBq, (ii) with the activity scaled by 2 MBq/kg, and (iii) with the activity scaled by a body size-dependent power-function based on the SNR obtained with (ii). BMI, weight, body surface area, and abdominal circumference were evaluated body size parameters. Images were reconstructed with the CASToR software and evaluated for background SNR and lesion contrast-to-noise ratio (CNR). Large SNR variabilities were obtained with protocols (i) and (ii), while (iii) generated good consistency. Several tumours failed to reach a CNR of 5 for large phantoms with protocol (i), but the CNR was generally improved by (ii) and (iii). An activity scaled by patient habitus generate better image quality consistency, which increases the likelihood that patients receive a similar standard of care.
Collapse
Affiliation(s)
| | | | - Cecilia Hindorf
- Medical Radiation Physics, Lund, Lund University, Lund, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | |
Collapse
|
37
|
Navin PJ, Ehman EC, Liu JB, Halfdanarson TR, Gupta A, Laghi A, Yoo DC, Carucci LR, Schima W, Sheedy SP. Imaging of Small-Bowel Neuroendocrine Neoplasms: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2023; 221:289-301. [PMID: 36752369 DOI: 10.2214/ajr.22.28877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neuroendocrine neoplasms (NENs) of the small bowel are typically slow-growing lesions that remain asymptomatic until reaching an advanced stage. Imaging modalities for lesion detection, staging, and follow-up in patients with known or suspected NEN include CT enterography, MR enterography, and PET/CT using a somatostatin receptor analog. FDG PET/CT may have a role in the evaluation of poorly differentiated NENs. Liver MRI, ideally with a hepatocyte-specific contrast agent, should be used in the evaluation of hepatic metastases. Imaging informs decisions regarding both surgical approaches and systematic therapy (specifically, peptide receptor radionuclide therapy). This AJR Expert Panel Narrative Review describes the multimodality imaging features of small-bowel NENs; explores the optimal imaging modalities for their diagnosis, staging, and follow-up; and discusses how imaging may be used to guide therapy.
Collapse
Affiliation(s)
- Patrick J Navin
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Eric C Ehman
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jason B Liu
- Department of Surgery, Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA
| | | | - Akshya Gupta
- Department of Imaging Sciences, University of Rochester, Rochester, NY
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, AOU Sant'Andrea, Sapienza University of Rome, Rome, Italy
| | - Don C Yoo
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Laura R Carucci
- Department of Radiology, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus and Sankt Josef Krankenhaus, Vienna, Austria
| | - Shannon P Sheedy
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
38
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Gålne A, Enqvist O, Sundlöv A, Valind K, Minarik D, Trägårdh E. AI-based quantification of whole-body tumour burden on somatostatin receptor PET/CT. Eur J Hybrid Imaging 2023; 7:14. [PMID: 37544941 PMCID: PMC10404578 DOI: 10.1186/s41824-023-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Segmenting the whole-body somatostatin receptor-expressing tumour volume (SRETVwb) on positron emission tomography/computed tomography (PET/CT) images is highly time-consuming but has shown value as an independent prognostic factor for survival. An automatic method to measure SRETVwb could improve disease status assessment and provide a tool for prognostication. This study aimed to develop an artificial intelligence (AI)-based method to detect and quantify SRETVwb and total lesion somatostatin receptor expression (TLSREwb) from [68Ga]Ga-DOTA-TOC/TATE PET/CT images. METHODS A UNet3D convolutional neural network (CNN) was used to train an AI model with [68Ga]Ga-DOTA-TOC/TATE PET/CT images, where all tumours were manually segmented with a semi-automatic method. The training set consisted of 148 patients, of which 108 had PET-positive tumours. The test group consisted of 30 patients, of which 25 had PET-positive tumours. Two physicians segmented tumours in the test group for comparison with the AI model. RESULTS There were good correlations between the segmented SRETVwb and TLSREwb by the AI model and the physicians, with Spearman rank correlation coefficients of r = 0.78 and r = 0.73, respectively, for SRETVwb and r = 0.83 and r = 0.81, respectively, for TLSREwb. The sensitivity on a lesion detection level was 80% and 79%, and the positive predictive value was 83% and 84% when comparing the AI model with the two physicians. CONCLUSION It was possible to develop an AI model to segment SRETVwb and TLSREwb with high performance. A fully automated method makes quantification of tumour burden achievable and has the potential to be more widely used when assessing PET/CT images.
Collapse
Affiliation(s)
- Anni Gålne
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden.
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden.
| | - Olof Enqvist
- Eigenvision AB, Malmö, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sundlöv
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Kristian Valind
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden
| | - David Minarik
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden
- Radiation Physics, Skåne University Hospital, Malmö, Sweden
| | - Elin Trägårdh
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
40
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
41
|
Loken EK, Huang RY. Advanced Meningioma Imaging. Neurosurg Clin N Am 2023; 34:335-345. [PMID: 37210124 DOI: 10.1016/j.nec.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noninvasive imaging methods are used to accurately diagnose meningiomas and track their growth and location. These techniques, including computed tomography, MRI, and nuclear medicine, are also being used to gather more information about the biology of the tumors and potentially predict their grade and impact on prognosis. In this article, we will discuss the current and developing uses of these imaging techniques including additional analysis using radiomics in the diagnosis and treatment of meningiomas, including treatment planning and prediction of tumor behavior.
Collapse
Affiliation(s)
- Erik K Loken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
42
|
Milosevic A, Styczen H, Grueneisen J, Li Y, Weber M, Fendler WP, Kirchner J, Damman P, Wrede K, Lazaridis L, Glas M, Guberina M, Eckstein A, Blau T, Herrmann K, Umutlu L, Forsting M, Deuschl C, Schaarschmidt B. Evaluation of [ 68Ga]-DOTATOC PET/MRI in Patients with Meningioma of the Subcranial and Intraorbital Space. J Nucl Med 2023:jnumed.123.265424. [PMID: 37385668 DOI: 10.2967/jnumed.123.265424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
Meningiomas are known to express somatostatin receptor (SSTR) type 2 to a high degree. Therefore, radiolabeled somatostatin analogs, such as DOTATOC, have been introduced for PET imaging of meningiomas. However, the benefit of hybrid SSTR PET/MRI is still debated. Here, we report our experience with [68Ga]-DOTATOC PET/MRI. Methods: PET/MRI was performed in 60 patients with suspected or diagnosed meningiomas of the skull plane and eye socket. Acquired datasets were reported by 2 independent readers regarding local tumor extent and signal characteristics. Histopathologic results and follow-up imaging served as the reference standard. SUVs of target lesions were analyzed according to the corresponding maximal tracer uptake. The diagnostic accuracy of PET/MRI and conventional MRI was determined independently and compared with the reference standard. Results: In total, 60 target lesions were identified, with 54 considered to be meningiomas according to the reference standard. Sensitivity and specificity of PET/MRI versus MRI alone were 95% versus 96% and 75% versus 66%, respectively. The McNemar test was not able to distinguish any differences between PET/MRI and the reference standard or MRI and the reference standard. No differences were found between the 2 modalities with respect to local infiltration. Conclusion: SSTR PET/MRI and MRI yielded similar accuracy for the detection of meningiomas of the skull base and intraorbital space. Here, sequential low-dose SSTR PET/CT might be helpful for the planning of radioligand therapy or radiotherapy.
Collapse
Affiliation(s)
- Aleksandar Milosevic
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany;
| | - Hanna Styczen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, Düsseldorf, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Düsseldorf, Germany
| | - Julian Kirchner
- Institute of Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Philipp Damman
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Düsseldorf, Germany
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Düsseldorf, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Neurooncology, University Hospital Essen, Düsseldorf, Germany
| | - Martin Glas
- Department of Neurology and Neurooncology, University Hospital Essen, Düsseldorf, Germany
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, Düsseldorf, Germany
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, Düsseldorf, Germany; and
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, Düsseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Düsseldorf, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| | - Benedikt Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Düsseldorf, Germany
| |
Collapse
|
43
|
Adnan A, Basu S. Somatostatin Receptor Targeted PET-CT and Its Role in the Management and Theranostics of Gastroenteropancreatic Neuroendocrine Neoplasms. Diagnostics (Basel) 2023; 13:2154. [PMID: 37443548 DOI: 10.3390/diagnostics13132154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Somatostatin receptor (SSTR) agonist-based Positron Emission Tomography-Computed Tomography (PET-CT) imaging is nowadays the mainstay for the assessment and diagnostic imaging of neuroendocrine neoplasms (NEN), especially in well-differentiated neuroendocrine tumors (NET) (World Health Organization (WHO) grade I and II). Major clinical indications for SSTR imaging are primary staging and metastatic workup, especially (a) before surgery, (b) detection of unknown primary in metastatic NET, (c) patient selection for theranostics and appropriate therapy, especially peptide receptor radionuclide therapy (PRRT), while less major indications include treatment response evaluation on and disease prognostication. Dual tracer PET-CT imaging using SSTR targeted PET tracers, viz. [68Ga]Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) and [68Ga]Ga-DOTA-NaI3-Octreotide (DOTA-NOC), and fluorodeoxyglucose (FDG), have recently gained widespread acceptance for better assessment of whole-body tumor biology compared to single-site histopathology, in terms of being non-invasive and the ability to assess inter- and intra-tumoral heterogeneity on a global scale. FDG uptake has been identified as independent adverse risk factor in various studies. Recently, somatostatin receptor antagonists have been shown to be more sensitive and specific in detecting the disease. The aim of this review article is to summarize the clinical importance of SSTR-based imaging in the clinical management of neuroendocrine and related tumors.
Collapse
Affiliation(s)
- Aadil Adnan
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
| |
Collapse
|
44
|
Grawe F, Rosenberger N, Ingenerf M, Beyer L, Eschbach R, Todica A, Seidensticker R, Schmid-Tannwald C, Cyran CC, Ricke J, Bartenstein P, Auernhammer CJ, Ruebenthaler J, Fabritius MP. Diagnostic performance of PET/CT in the detection of liver metastases in well-differentiated NETs. Cancer Imaging 2023; 23:41. [PMID: 37098632 PMCID: PMC10131442 DOI: 10.1186/s40644-023-00556-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The aim of this retrospective study was to compare the diagnostic accuracy of somatostatin receptor (SSR)-PET/CT to liver MRI as reference standard in the evaluation of hepatic involvement in neuroendocrine tumors (NET). METHODS An institutional database was screened for "SSR" imaging studies between 2006 and 2021. 1000 NET Patients (grade 1/2) with 2383 SSR-PET/CT studies and matching liver MRI in an interval of +3 months were identified. Medical reports of SSR-PET/CT and MRI were retrospectively evaluated regarding hepatic involvement and either confirmed by both or observed in MRI but not in SSR-PET/CT (false-negative) or in SSR-PET but not in MRI (false-positive). RESULTS Metastatic hepatic involvement was reported in 1650 (69.2%) of the total 2383 SSR-PET/CT imaging studies, whereas MRI detected hepatic involvement in 1685 (70.7%) cases. There were 51 (2.1%) false-negative and 16 (0.7%) false-positive cases. In case of discrepant reports, MRI and PET/CT were reviewed side by side for consensus reading. SSR-PET/CT demonstrated a sensitivity of 97.0% (95%CI: 96.0%, 97.7%), a specificity of 97.7% (95%CI: 96.3%, 98.7%), a PPV of 99.0% (95%CI: 98.4%, 99.4%) and NPV of 93.0% (95%CI: 91.0, 94.8%) in identifying hepatic involvement. The most frequent reason for false-negative results was the small size of lesions with the majority < 0.6 cm. CONCLUSION This study confirms the high diagnostic accuracy of SSR-PET/CT in the detection of hepatic involvement in NET patients based on a patient-based analysis of metastatic hepatic involvement with a high sensitivity and specificity using liver MRI imaging as reference standard. However, one should be aware of possible pitfalls when a single imaging method is used in evaluating neuroendocrine liver metastases in patients.
Collapse
Affiliation(s)
- Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Natalie Rosenberger
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ralf Eschbach
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine 4, University Hospital, LMU Munich, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
45
|
[ 99mTc]Tc-HYNIC-RM2: A potential SPECT probe targeting GRPR expression in prostate cancers. Nucl Med Biol 2023; 118-119:108331. [PMID: 36933456 DOI: 10.1016/j.nucmedbio.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Elevated density of gastrin releasing peptide receptors (GRPR) in prostate cancer has led to exploration of several radiolabeled peptides for imaging and staging of the disease. The GRPR antagonist peptide RM2 has been successfully conjugated with several chelators and radiolabeled with gallium-68. The goal of this study was to synthesize a 99mTc-labeled probe and investigate its potential for SPECT imaging of prostate cancer. Towards this HYNIC-RM2 peptide conjugate was synthesized, radiolabeled with 99mTc and evaluated in GRPR-positive PC3 tumor xenografts. METHODS HYNIC-RM2 was manually synthesized by standard Fmoc solid phase strategy and radiolabeled with 99mTc. In vitro cell studies were performed in GRPR-positive human prostate carcinoma (PC3) cells. Metabolic stability studies of [99mTc]Tc-HYNIC-RM2 were performed in normal mice in the presence as well as absence of neutral endopeptidase (NEP) inhibitor, phosphoramidon (PA). Biodistribution and imaging studies of [99mTc]Tc-HYNIC-RM2 were performed in SCID mice bearing PC3-xenograft. RESULTS [99mTc]Tc-HYNIC-RM2 exhibited high binding affinity in low nanomolar range (Kd = 1.83 ± 0.31 nM). Metabolic stability studies in mice indicated that in the absence of PA, radiolabeled peptide was about 65 % intact in the blood at 15 min p.i., whereas proportion of intact radiolabeled peptide was enhanced to 90 % on co-administration of PA. Biodistribution studies in PC3 tumor bearing mice demonstrated high tumor uptake (8.02 ± 0.9%ID/g and 6.13 ± 0.44%ID/g at 1 h and 3 h p.i.). Co-administration of PA with the radiolabeled peptide resulted in further enhancement of tumor uptake (14.24 ± 0.76 % ID/g and 11.71 ± 0.59%ID/g at 1 h and 3 h p.i.). SPECT/CT images of [99mTc]Tc-HYNIC-RM2 could clearly visualize the tumor. Significant (p < 0.001) reduction in the tumor uptake with a co-injected blocking dose of unlabeled peptide ascertained the GRPR specificity of [99mTc]Tc-HYNIC-RM2. CONCLUSION Encouraging results obtained in biodistribution and imaging studies indicate the potential of [99mTc]Tc-HYNIC-RM2 for further exploration as GRPR targeting agent.
Collapse
|
46
|
Correlations between [ 68Ga]Ga-DOTA-TOC Uptake and Absorbed Dose from [ 177Lu]Lu-DOTA-TATE. Cancers (Basel) 2023; 15:cancers15041134. [PMID: 36831477 PMCID: PMC9954147 DOI: 10.3390/cancers15041134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE The aim of this paper was to investigate correlations between pre- therapeutic [68Ga]Ga-DOTA-TOC uptake and absorbed dose to tumours from therapy with [177Lu]Lu-DOTA-TATE. METHODS This retrospective study included 301 tumours from 54 GEP-NET patients. The tumours were segmented on pre-therapeutic [68Ga]Ga-DOTA-TOC PET/CT, and post-therapy [177Lu]Lu-DOTA-TATE SPECT/CT images, using a fixed 40% threshold. The SPECT/CT images were used for absorbed dose calculations by assuming a linear build-up from time zero to day one, and mono-exponential wash-out after that. Both SUVmean and SUVmax were measured from the PET images. A linear absorbed-dose prediction model was formed with SUVmean as the independent variable, and the accuracy was tested with a split 70-30 training-test set. RESULTS Mean SUVmean and SUVmax from [68Ga]Ga-DOTA-TOC PET was 24.0 (3.6-84.4) and 41.0 (6.7-146.5), and the mean absorbed dose from [177Lu]Lu-DOTA-TATE was 26.9 Gy (2.4-101.9). A linear relationship between SUVmean and [177Lu]Lu-DOTA-TATE activity concentration at 24 h post injection was found (R2 = 0.44, p < 0.05). In the prediction model, a root mean squared error and a mean absolute error of 1.77 and 1.33 Gy/GBq, respectively, were found for the test set. CONCLUSIONS There was a high inter- and intra-patient variability in tumour measurements, both for [68Ga]Ga-DOTA-TOC SUVs and absorbed doses from [177Lu]Lu-DOTA-TATE. Depending on the required accuracy, [68Ga]Ga-DOTA-TOC PET imaging may estimate the [177Lu]Lu-DOTA-TATE uptake. However, there could be a high variance between predicted and actual absorbed doses.
Collapse
|
47
|
Siebinga H, de Wit-van der Veen BJ, Beijnen JH, Dorlo TPC, Huitema ADR, Hendrikx JJMA. A physiologically based pharmacokinetic model for [ 68Ga]Ga-(HA-)DOTATATE to predict whole-body distribution and tumor sink effects in GEP-NET patients. EJNMMI Res 2023; 13:8. [PMID: 36735114 PMCID: PMC9898489 DOI: 10.1186/s13550-023-00958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Little is known about parameters that have a relevant impact on (dis)similarities in biodistribution between various 68Ga-labeled somatostatin analogues. Additionally, the effect of tumor burden on organ uptake remains unclear. Therefore, the aim of this study was to describe and compare organ and tumor distribution of [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE using a physiologically based pharmacokinetic (PBPK) model and to identify factors that might cause biodistribution and tumor uptake differences between both peptides. In addition, the effect of tumor burden on peptide biodistribution in gastroenteropancreatic (GEP) neuroendocrine tumor (NET) patients was assessed. METHODS A PBPK model was developed for [68Ga]Ga-(HA-)DOTATATE in GEP-NET patients. Three tumor compartments were added, representing primary tumor, liver metastases and other metastases. Furthermore, reactions describing receptor binding, internalization and recycling, renal clearance and intracellular degradation were added to the model. Scan data from GEP-NET patients were used for evaluation of model predictions. Simulations with increasing tumor volumes were performed to assess the tumor sink effect. RESULTS Data of 39 and 59 patients receiving [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE, respectively, were included. Evaluations showed that the model adequately described image-based patient data and that different receptor affinities caused organ uptake dissimilarities between both peptides. Sensitivity analysis indicated that tumor blood flow and blood volume impacted tumor distribution most. Tumor sink predictions showed a decrease in spleen uptake with increasing tumor volume, which seemed clinically relevant for patients with total tumor volumes higher than ~ 550 mL. CONCLUSION The developed PBPK model adequately predicted tumor and organ uptake for this GEP-NET population. Relevant organ uptake differences between [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE were caused by different affinity profiles, while tumor uptake was mainly affected by tumor blood flow and blood volume. Furthermore, tumor sink predictions showed that for the majority of patients a tumor sink effect is not expected to be clinically relevant.
Collapse
Affiliation(s)
- Hinke Siebinga
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Berlinda J. de Wit-van der Veen
- grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H. Beijnen
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas P. C. Dorlo
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alwin D. R. Huitema
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.5477.10000000120346234Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands ,grid.487647.eDepartment of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jeroen J. M. A. Hendrikx
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Patel R, Marano G, Joseph J, Chung J, Plata A, Vos JA. 18 F-fludeoxyglucose positron emission computed tomography ( 18 F-FDG-PET/CT) versus 68 Ga-DOTATATE-PET/CT in patients with head and neck cancer: Comparisons and implications for treatment. Head Neck 2023; 45:347-354. [PMID: 36591637 DOI: 10.1002/hed.27243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tumor-specific molecular imaging in head and neck squamous cell carcinoma (HNSCC) is not well established. Somatostatin receptors (SSTRs) are found in solid tumors, including HNSCC. 68 Ga-DOTATATE, a commercially available radionuclide that binds SSTRs, may have utility in imaging HNSCC. METHODS Patients with HNSCC received pretreatment imaging with 18 F-FDG-PET/CT and 68 Ga-DOTATATE. Imaging was compared for concordance. When available, surgical resection specimens were compared to pretreatment imaging findings. Historic HNSCC tumor specimens were assessed for both SSTR and p16/human papilloma virus (HPV) expression. RESULTS Twenty patients were imaged. Fifteen had oropharyngeal cancer. Primary tumor site was concordant between imaging modalities for all patients. One of 45 lymph nodes was discordant. Retrospective specimen review showed a significant correlation with SSTR expression and HPV/p16 expression. No adverse events occurred. CONCLUSIONS 68 Ga-DOTATATE imaging is safe and effective in HNSCC. SSTR expression may be increased in HPV-mediated tumors. Targeted therapies to SSTR should be explored.
Collapse
Affiliation(s)
- Rusha Patel
- Department of Otolaryngology, Oklahoma University, Oklahoma City, Oklahoma, United States
| | - Gary Marano
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Joe Joseph
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffson Chung
- Department of Otolaryngology, West Virginia University, Morgantown, West Virginia, USA
| | - Andrew Plata
- Department of Pathology, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffrey A Vos
- Department of Pathology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
49
|
Pellegrino F, Granata V, Fusco R, Grassi F, Tafuto S, Perrucci L, Tralli G, Scaglione M. Diagnostic Management of Gastroenteropancreatic Neuroendocrine Neoplasms: Technique Optimization and Tips and Tricks for Radiologists. Tomography 2023; 9:217-246. [PMID: 36828370 PMCID: PMC9958666 DOI: 10.3390/tomography9010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) comprise a heterogeneous group of neoplasms, which derive from cells of the diffuse neuroendocrine system that specializes in producing hormones and neuropeptides and arise in most cases sporadically and, to a lesser extent, in the context of complex genetic syndromes. Furthermore, they are primarily nonfunctioning, while, in the case of insulinomas, gastrinomas, glucagonomas, vipomas, and somatostatinomas, they produce hormones responsible for clinical syndromes. The GEP-NEN tumor grade and cell differentiation may result in different clinical behaviors and prognoses, with grade one (G1) and grade two (G2) neuroendocrine tumors showing a more favorable outcome than grade three (G3) NET and neuroendocrine carcinoma. Two critical issues should be considered in the NEN diagnostic workup: first, the need to identify the presence of the tumor, and, second, to define the primary site and evaluate regional and distant metastases. Indeed, the primary site, stage, grade, and function are prognostic factors that the radiologist should evaluate to guide prognosis and management. The correct diagnostic management of the patient includes a combination of morphological and functional evaluations. Concerning morphological evaluations, according to the consensus guidelines of the European Neuroendocrine Tumor Society (ENETS), computed tomography (CT) with a contrast medium is recommended. Contrast-enhanced magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI), is usually indicated for use to evaluate the liver, pancreas, brain, and bones. Ultrasonography (US) is often helpful in the initial diagnosis of liver metastases, and contrast-enhanced ultrasound (CEUS) can solve problems in characterizing the liver, as this tool can guide the biopsy of liver lesions. In addition, intraoperative ultrasound is an effective tool during surgical procedures. Positron emission tomography (PET-CT) with FDG for nonfunctioning lesions and somatostatin analogs for functional lesions are very useful for identifying and evaluating metabolic receptors. The detection of heterogeneity in somatostatin receptor (SSTR) expression is also crucial for treatment decision making. In this narrative review, we have described the role of morphological and functional imaging tools in the assessment of GEP-NENs according to current major guidelines.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Salvatore Tafuto
- S.C. Sarcomi e Tumori Rari, Istituto Nazionale Tumori, IRCCS, Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Luca Perrucci
- Ferrara Department of Interventional and Diagnostic Radiology, Ospedale di Lagosanto, Azienda AUSL, 44023 Ferrara, Italy
| | - Giulia Tralli
- Department of Radiology, Ospedale Santa Maria della Misericordia, 45100 Rovigo, Italy
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
50
|
Shi L, Zhang J, Toyonaga T, Shao D, Onofrey JA, Lu Y. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application. Phys Med Biol 2023; 68. [PMID: 36584395 DOI: 10.1088/1361-6560/acaf49] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Objective. In PET/CT imaging, CT is used for positron emission tomography (PET) attenuation correction (AC). CT artifacts or misalignment between PET and CT can cause AC artifacts and quantification errors in PET. Simultaneous reconstruction (MLAA) of PET activity (λ-MLAA) and attenuation (μ-MLAA) maps was proposed to solve those issues using the time-of-flight PET raw data only. However,λ-MLAA still suffers from quantification error as compared to reconstruction using the gold-standard CT-based attenuation map (μ-CT). Recently, a deep learning (DL)-based framework was proposed to improve MLAA by predictingμ-DL fromλ-MLAA andμ-MLAA using an image domain loss function (IM-loss). However, IM-loss does not directly measure the AC errors according to the PET attenuation physics. Our preliminary studies showed that an additional physics-based loss function can lead to more accurate PET AC. The main objective of this study is to optimize the attenuation map generation framework for clinical full-dose18F-FDG studies. We also investigate the effectiveness of the optimized network on predicting attenuation maps for synthetic low-dose oncological PET studies.Approach. We optimized the proposed DL framework by applying different preprocessing steps and hyperparameter optimization, including patch size, weights of the loss terms and number of angles in the projection-domain loss term. The optimization was performed based on 100 skull-to-toe18F-FDG PET/CT scans with minimal misalignment. The optimized framework was further evaluated on 85 clinical full-dose neck-to-thigh18F-FDG cancer datasets as well as synthetic low-dose studies with only 10% of the full-dose raw data.Main results. Clinical evaluation of tumor quantification as well as physics-based figure-of-merit metric evaluation validated the promising performance of our proposed method. For both full-dose and low-dose studies, the proposed framework achieved <1% error in tumor standardized uptake value measures.Significance. It is of great clinical interest to achieve CT-less PET reconstruction, especially for low-dose PET studies.
Collapse
Affiliation(s)
- Luyao Shi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Jiazhen Zhang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Dan Shao
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - John A Onofrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America.,Department of Urology, Yale University, New Haven, CT, United States of America
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| |
Collapse
|