1
|
Musumeci F, Fasce A, Falesiedi M, Oleari F, Grossi G, Carbone A, Schenone S. Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective. Eur J Med Chem 2025; 294:117760. [PMID: 40393260 DOI: 10.1016/j.ejmech.2025.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Nuclear medicine has revolutionized disease diagnosis and treatment, particularly in oncology, by enabling precise imaging and targeted therapies using radiopharmaceuticals. Recently, Gallium-68 (68Ga) has emerged as a powerful positron emission tomography (PET) imaging agent, with a growing role in theranostics when paired with 177Lu for cancer treatment. The ability to obtain 68Ga from 68Ge/68Ga generators, along with its favorable radiochemical and pharmacokinetic properties, has driven an increasing number of clinical applications, which culminated with the approvals of 68Ga-DOTA-TOC and 68Ga-DOTA-TATE for the treatment of neuroendocrine tumors, and 68Ga-PSMA-11 for prostate cancer over the past decade. This review provides a comprehensive overview of 68Ga radiochemistry, chelators, and key compounds in clinical trials, highlighting the potential of this radionuclide in precision oncology.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Alessandro Fasce
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Federica Oleari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|
2
|
Kaur H, Kumar S, Watts A, Singh C, Sachdeva MUS, Sreedharanunni S, Kumar R, Malhotra P, Singh B. 68 Ga-Pentixafor PET/CT-Based Response Evaluation and its Prognostic Value in Multiple Myeloma: Comparison With IMWG and 18 F-FDG-Based Response. Clin Nucl Med 2025; 50:e331-e339. [PMID: 40051087 DOI: 10.1097/rlu.0000000000005731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 05/06/2025]
Abstract
PURPOSE 68 Ga-Pentixafor PET/CT targets CXCR4 receptors and provides superior diagnostic accuracy in multiple myeloma (MM) compared with 18 F-FDG PET/CT. However, its role in response evaluation remains unexplored. We propose a 68 Ga-Pentixafor PET/CT-based response evaluation criterion and evaluate its utility compared with International Myeloma Working Group (IMWG) criteria and 18 F-FDG PET/CT-based response. PATIENTS AND METHODS In this prospective single-center study, 40 treatment-naive myeloma patients were recruited between February 2021 and April 2023. Both 68 Ga-Pentixafor and 18 F-FDG PET/CT were performed at baseline and at follow-up (7.2 mo-median). Response to treatment was evaluated using the proposed 68 Ga-Pentixafor PET/CT criteria and compared with responses assessed by IMWG and 18 F-FDG PET/CT. Progression-free survival (PFS) and overall survival (OS) were analyzed and compared using Kaplan-Meier survival curves. RESULTS Among the 40 newly diagnosed MM patients [median age: 56.5 years (IQR 45.25 to 63.75); 24 men], 68 Ga-Pentixafor PET/CT was positive in a greater proportion of patients than 18 F-FDG PET/CT [90% (36/40) vs. 67.5% (27/40); P =0.02] thus, adequately evaluated response in additional 27.5% (11/40) of cases. Using the proposed criteria for 68 Ga-Pentixafor PET/CT, significant differences in PFS were observed across response categories [complete response (CR)-not reached, partial response (PR)-26.2 mo, progressive disease (PD)-15.3 mo; P =0.001]. Among patients achieving ≥very good partial response (VGPR) as per IMWG, those with positive 68 Ga-Pentixafor PET/CT had shorter PFS compared with those with negative findings (median PFS: 34.2 mo vs. not reached; P =0.056), whereas no significant difference was noted with 18 F-FDG PET/CT ( P =0.68). In addition, on follow-up of patients with negative 18 F-FDG at the response, those with discordant 68 Ga-Pentixafor findings had significantly shorter PFS (17.73 mo vs. not reached; P =0.010) compared with those with concordant negative findings. CONCLUSIONS 68 Ga-Pentixafor PET/CT offers a more accurate assessment of treatment response and prognosis in MM patients, adding valuable information beyond the IMWG and 18 F-FDG PET/CT-based criteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Sreejesh Sreedharanunni
- Hematology, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | |
Collapse
|
3
|
Erfani M, Mikaeili A, Goudarzi M, Fallah Z. Development of a 177Lu-labeled radiopeptide for targeted CXCR4 positive tumor therapy. Bioorg Chem 2025; 162:108617. [PMID: 40424784 DOI: 10.1016/j.bioorg.2025.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
The peptide sequence as an antagonist of chemokine receptor 4 (CXCR4) was evaluated as a radio-therapeutic agent. The peptide derivative was coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and radiolabeled by lutetium-177. Labeling yield, lipophilicity, and plasma stability of 177Lu-labeled ligand were determined. In vitro tests such as cellular uptake and internalization in the C6 glioma cell line were analyzed. Tissue biodistribution was investigated in rats bearing C6 glioma tumors. Radioligand showed >90 % radiochemical purity and specific activity of 5.60 GBq/μmol. 177Lu-DOTA-CXCR4 ligand showed binding to C6 tumor cells. The ex vivo distribution profile of 177Lu-labeled ligand showed that, except for the kidneys, all non-target organs exhibited extremely low uptake of the 177Lu-labeled ligand. The data confirm acceptable CXCR4-targeting by the prepared radioligand and establish it as a candidate for further optimization for clinical use.
Collapse
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Azadeh Mikaeili
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Goudarzi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Zhila Fallah
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
4
|
Wu R, Zhu W, Shao F, Wang J, Li D, Tuo Z, Yoo KH, Wusiman D, Shu Z, Ge W, Yang Y, Ke M, Wei W, Heavey S, Cho WC, Feng D. Expanding horizons in theragnostics: from oncology to multidisciplinary applications. LA RADIOLOGIA MEDICA 2025; 130:613-628. [PMID: 40042756 DOI: 10.1007/s11547-025-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Theragnostics is the integration of treatment and diagnosis, involving a drug or technology that combines diagnostic imaging with targeted therapy. This approach utilizes imaging to identify specific biological targets, which are then used to deliver therapeutic effects for the benefit of patients. The effectiveness and potential of theragnostics in improving patient outcomes are supported by significant clinical trials and technological innovations. Theragnostics has demonstrated its capacity to deliver targeted and real-time interventions, making it adaptable to diverse clinical domains. Its applications range from visualizing and eradicating tumors to addressing complex neurological disorders and cardiovascular diseases. The integration of nanomaterials and advancements in molecular biology further enhance the capabilities of theragnostics, promising a future where treatments are highly personalized, and diseases are understood and managed at a molecular level previously unattainable. Our comprehensive overview focuses on the current advancements in theragnostics applications across different disease domains. We highlight the role of molecular imaging technologies, such as PET/CT scans, in early diagnosis and treatment. Additionally, we explore the potential of chemokines as molecular imaging targets in systemic inflammatory diseases and central nervous system pathologies. In conclusion, the progression of theragnostics represents a transformative phase in medical practice, providing new avenues for precise treatment and improved patient outcomes. Its multidisciplinary nature and continuous innovation have the potential to profoundly impact the future of medical research and clinical practice, as well as revolutionizing the treatment and management of a wide array of diseases.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, West Lafayette, USA
- Purdue Institute for Cancer Research, Purdue University, Westlll Lafayette, IN, USA
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Wenjing Ge
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
5
|
Spahn MA, Anbuhl SM, Luyten K, Loy TV, Pronker MF, Cawthorne C, Deroose CM, Schols D, Heukers R, Bormans G, Cleeren F. Indium-111-Labeled Single-Domain Antibody for In Vivo CXCR4 Imaging Using Single-Photon Emission Computed Tomography. Bioconjug Chem 2025; 36:737-747. [PMID: 40067691 DOI: 10.1021/acs.bioconjchem.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in a range of pathologies, including cancers like multiple myeloma and non-Hodgkin lymphoma, inflammatory diseases such as rheumatoid arthritis, and viral infections like HIV. Currently, the most advanced radiotracer for CXCR4 imaging in clinics is [68Ga]PentixaFor. However, its structure is prone to modifications, complicating the development of a specific CXCR4 fluorine-18-labeled tracer with good pharmacokinetic properties. This study aimed to screen multiple CXCR4-targeting variable domains of heavy-chain-only antibody (VHH or single-domain antibody (sdAb)) constructs to identify the most promising sdAb as a vector molecule for the future development of a CXCR4 fluorine-18 tracer. We have generated five CXCR4-specific sdAb constructs with a cysteine-containing C-terminal tag (C-Direct tag) (VUN400-C-Direct, VUN401-C-Direct, VUN410-C-Direct, VUN411-C-Direct, and VUN415-C-Direct) and one probe (VUN400-C) without. The reduced sdAbs were coupled to maleimide-DOTAGA for 111In-labeling. Their binding affinity against human CXCR4 (hCXCR4) was assessed by using a previously described BRET-based displacement assay. The in vivo profile was assessed using naive mice. Based on the plasma stability (60 min post injection (p.i.)), we selected VUN400-C-Direct and its derivative VUN400-C for further evaluation. These compounds ([111In]In-DOTAGA-VUN400-C-Direct and [111In]In-DOTAGA-VUN400-C) were tested in mice bearing xenografts derived from U87.CD4, U87.CXCR4, and U87.CD4.CXCR4 cells through ex vivo biodistribution studies and SPECT/CT imaging. The six sdAb constructs were labeled with a high radiochemical conversion (75-97%) and purity (>95%). In radioactive binding assays using U87.CD4.CXCR4 cells, [111In]In-DOTAGA-VUN400-C-Direct and [111In]In-DOTAGA-VUN401-C-Direct displayed the highest cellular uptake, achieving 10.4 ± 1.6% and 11.5 ± 1.1%, respectively. In naive mice, [111In]In-DOTAGA-VUN400-C-Direct showed the most favorable biodistribution profile, with low uptake across all organs except the kidneys (Standardized Uptake Value (SUV) > 50, n = 3, 60 min p.i.), but average plasma stability (40.6 ± 9.4%, n = 3, 60 min p.i.). In a xenografted tumor model, [111In]In-DOTAGA-VUN400-C-Direct showed only minor uptake (SUVU87.CXCR4 0.71 ± 0.002, n = 3, 60 min p.i.). [111In]In-DOTAGA-VUN400-C demonstrated nearly identical plasma stability (41.08 ± 5.45%, n = 4) but showed high and specific uptake in the CXCR4-expressing xenografted tumor (SUVU87.CD4.CXCR4 3.75 ± 1.08 vs SUVU87.CD4 = 0.64 ± 0.19, n = 5, 60 min p.i.), which could be blocked by coinjection of AMD3100 (5 mg/kg) (SUVU87.CD4.CXCR4 0.55 ± 0.32 vs SUVU87.CD4 = 0.39 ± 0.07, n = 2, 60 min p.i.). In conclusion, all six sdAbs exhibited high in vitro affinity against hCXCR4. Among these, [111In]In-DOTAGA-VUN400-C showed high CXCR4-specific tumor uptake and favorable pharmacokinetic properties, indicating VUN400-C's potential as a promising vector for future CXCR4 PET imaging applications with fluorine-18.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Stephanie Mareike Anbuhl
- QVQ Holding B.V., Yalelaan 1, Utrecht 3584 CL, The Netherlands
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HV, The Netherlands
| | - Kaat Luyten
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation Rega Institute for Medical Research,Molecular Structural and Translational Virology Research Group, Leuven B-3000, Belgium
| | - Matti F Pronker
- QVQ Holding B.V., Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation Rega Institute for Medical Research,Molecular Structural and Translational Virology Research Group, Leuven B-3000, Belgium
| | - Raimond Heukers
- QVQ Holding B.V., Yalelaan 1, Utrecht 3584 CL, The Netherlands
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HV, The Netherlands
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
6
|
Chen Z, Liu H, Yang A, Liao J, Wu Z, Chen J, Miao W. 68 Ga-Pentixafor PET in Combination With MRI Improves the Differential Diagnosis of Glioblastoma and Primary Central Nervous System Lymphoma. Clin Nucl Med 2025; 50:324-331. [PMID: 39761437 DOI: 10.1097/rlu.0000000000005657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
PURPOSES This study aims to investigate the diagnostic performance of combining 68 Ga-pentixafor PET with MRI to differentiate primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM), particularly focusing on atypical lymphoma identification. PATIENTS AND METHODS Seventy-one PCNSL and 53 GBM patients who underwent both 68 Ga-pentixafor PET/CT and MRI were retrospectively included. We evaluated the quantitative imaging parameters and MRI features of positive lesions, identifying atypical PCNSL by hemorrhage, necrosis, or heterogeneous enhancement. Logistic regression identified key variables, and the ROC-AUC evaluated their diagnostic value. Immunohistochemistry for CXCR4 was performed. RESULTS PCNSLs, including 23 atypical cases, showed higher SUV max and TBR, and lower MTV, ADC min , and relative ADC min (rADC min ) than GBMs (all P 's < 0.05). The CXCR4 staining in PCNSL was also more pronounced in GBM ( P = 0.048). Multivariate logistic regression indicated that a combination of TBR, MTV, and ADC min (quantitative model 1) had a superior AUC of 0.913 in distinguishing PCNSL from GBM, outperforming single parameters (all P 's < 0.05). For differentiating atypical PCNSL from GBM, single quantitatively parameters showed moderate performance (AUC, 0.655-0.767). Further combining TBR with ADC min (quantitative model 2) significantly improve the AUC to 0.883. Multiparameter models, incorporating significant quantitative and qualitative MRI features, achieved AUCs of 0.953 (PCNSL vs GBM) and 0.902 (atypical PCNSL vs GBM), significantly outperforming single parameters (all P 's < 0.05). CONCLUSIONS 68 Ga-pentixafor PET in combination with MRI provides valuable diagnostic information in differentiating PCNSL from GBM, especially for atypical PCNSL.
Collapse
Affiliation(s)
| | | | - Apeng Yang
- Department of Hematology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | | | | | - Junmin Chen
- Department of Hematology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | | |
Collapse
|
7
|
Dadgar H, Norouzbeigi N, Assadi M, Jafari E, Al-Balooshi B, Al-Ibraheem A, Esmail AA, Marafi F, Haidar M, Al-Alawi HM, Omar Y, Usmani S, Cimini A, Ricci M, Arabi H, Zaidi H. A Prospective Evaluation of Chemokine Receptor-4 (CXCR4) Overexpression in High-grade Glioma Using 68Ga-Pentixafor (Pars-Cixafor™) PET/CT Imaging. Acad Radiol 2025; 32:2247-2256. [PMID: 39690071 DOI: 10.1016/j.acra.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND While magnetic resonance imaging (MRI) remains the gold standard for morphological imaging, its ability to differentiate between tumor tissue and treatment-induced changes on the cellular level is insufficient. Notably, glioma cells, particularly glioblastoma multiforme (GBM), demonstrate overexpression of chemokine receptor-4 (CXCR4). This study aims to evaluate the feasibility of non-invasive 68Ga-Cixafor™ PET/CT as a tool to improve diagnostic accuracy in patients with high-grade glioma. METHODS In this retrospective analysis, a database of histopathology-confirmed glioma patients with MRI findings consistent with high-grade gliomas was utilized. Within 2 weeks of their MRI, these patients underwent 68Ga-Cixafor™ PET/CT scans to assess CXCR4 expression. Both visual scoring based on established criteria and semi-quantitative measures including maximum standardized uptake value (SUVmax) and tumor-to-background ratios (TBR) were calculated to analyze the PET/CT data. RESULTS Our retrospective study enrolled 29 histologically confirmed glioma patients with MRI findings consistent with high-grade gliomas. All patients underwent 68Ga-Cixafor™ PET/CT scans within 2 weeks of their MRI, specifically at one-hour post-injection time point. Visual assessment based on a standardized scoring system identified 27 positive scans out of 29 (93.1%). Median SUVmax was 2.31 (range: 0.49-9.96) and median TBR was 20 (range: 6.12-124.5). Pathological analysis revealed 5 grade III (17.24%) and 24 grade IV (82.75%) lesions among the 29 patients. Notably, the median SUVmax of grade IV lesions (2.85) was significantly higher than grade III lesions (1.27) (P=0.02). Conversely, there was no significant difference in median TBR between grade IV (20) and grade III (22.37). These findings support the correlation between high CXCR4 expression, particularly in high-grade gliomas, and elevated uptake of 68Ga-Pentixafor. While areas with high uptake showed CXCR4 expression, areas with low uptake did not exhibit noticeable expression (data not shown). CONCLUSION This study demonstrated that 68Ga-Cixafor™ PET exhibits a TBR with minimal cortical uptake, significantly enhancing glioma detection compared to conventional imaging methods. This, combined with the potential therapeutic capabilities of CXCR4-targeting radiopharmaceuticals, highlights the promise of 68Ga-Cixafor™ as a valuable tool for not only improved glioma diagnosis but also personalized treatment strategies.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Nasim Norouzbeigi
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Batool Al-Balooshi
- Dubai Nuclear medicine & Molecular imaging Center, Dubai Academic Health corporation, DAHC, United Arab Emirates (B.A.B.)
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan (A.A.I.); Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan (A.A.I.)
| | - Abdulredha A Esmail
- Nuclear Medicine Department, Kuwait Cancer Control Center, Kuwait City, Kuwait (A.A.E.)
| | - Fahad Marafi
- Jaber Alahmad Center of Nuclear Medicine and Molecular Imaging, Kuwait City, Kuwait (F.M.)
| | - Mohamad Haidar
- Diagnostic Clinical Radiology Department, American University of Beirut, Beirut, Lebanon (M.H.)
| | - Haider Muhsin Al-Alawi
- Nuclear Medicine department, Amir Al-momineen Specialty Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.); Middle Euphrates Cancer Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.)
| | - Yehia Omar
- PET-CT department at Misr Radiology Center, Heliopolis, Egypt (Y.O.)
| | - Sharjeel Usmani
- Department of Nuclear Medicine Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Seeb, Oman (S.U.)
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L'Aquila, Italy (A.C.)
| | - Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, 86100 Campobasso, Italy (M.R.)
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.)
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, Netherlands (H.Z.); Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark (H.Z.); University Research and Innovation Center, Óbuda University, Budapest, Hungary (H.Z.).
| |
Collapse
|
8
|
Spahn MA, Loy TV, Celen S, Koole M, Deroose CM, Cawthorne C, Vanduffel W, Schols D, Bormans G, Cleeren F. Selective PET imaging of CXCR4 using the Al 18F-labeled antagonist LY2510924. Eur J Nucl Med Mol Imaging 2025; 52:1723-1738. [PMID: 39658737 PMCID: PMC11928405 DOI: 10.1007/s00259-024-07025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND [68Ga]PentixaFor detects C-X-C chemokine receptor type 4 (CXCR4) overexpression in various malignancies, such as multiple myeloma and non-Hodgkin lymphomas, as well as in endocrine and inflammatory disorders. This study aimed to develop an Al18F-labeled radiotracer derived from LY2510924 for CXCR4-targeted imaging, leveraging the physical and logistical advantages of fluorine-18. METHODS We designed a CXCR4-specific radioprobe, [18F]AlF-NOTA-SC, based on LY2510924 by incorporating a triglutamate linker and NOTA chelator to enable Al18F-labeling. The in vitro CXCR4 affinity was assessed using cell-based binding assays. Subsequently, in vivo pharmacokinetics and tumor uptake of [18F]AlF-NOTA-SC were assessed in naïve mice and mice with xenografts derived from U87.CD4/U87.CD4.CXCR4 and MM.1 S cells. Finally, biodistribution was determined in a non-human primate using PET-MR. RESULTS Compared to Ga-PentixaFor, AlF-NOTA-SC demonstrated similar in vitro affinity for human CXCR4. [18F]AlF-NOTA-SC was produced with a decay-corrected radiochemical yield of 21.0 ± 7.1% and an apparent molar activity of 16.4 ± 3.6 GBq/µmol. In [18F]AlF-NOTA-SC binding assays on U87.CD4.CXCR4 cells, the total bound fraction was 7.1 ± 0.5% (58% blocking by AMD3100). In naïve mice, the radiotracer did not accumulate in any organs; however, it showed a significant CXCR4-specific uptake in xenografted tumors (SUVmeanU87.CD4 = 0.04 ± 0.00 (n = 3); SUVmeanU87.CD4.CXCR4 = 3.04 ± 0.65 (n = 3); SUVmeanMM.1 S = 1.95 ± 0.11 (n = 3)). In a non-human primate, [18F]AlF-NOTA-SC accumulated in CXCR4 expressing organs, such as the spleen and bone marrow. CONCLUSION [18F]AlF-NOTA-SC exhibited CXCR4-specific uptake in vitro and in vivo, with fast and persistent tumor accumulation, making it a strong candidate for clinical translation as an 18F-alternative to [68Ga]PentixaFor.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Sofie Celen
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Xie S, Zhu X, Han F, Wang S, Cui K, Xue J, Xi X, Shi C, Li S, Wang F, Tian J. Discussion on the comparison of Raman spectroscopy and cardiovascular disease-related imaging techniques and the future applications of Raman technology: a systematic review. Lasers Med Sci 2025; 40:116. [PMID: 39988624 PMCID: PMC11847755 DOI: 10.1007/s10103-025-04315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Cardiovascular disease (CVD) is a major cause of unnatural death worldwide, so timely diagnosis of CVD is crucial for improving patient outcomes. Although the traditional diagnostic tools can locate plaque and observe inner wall of blood vessel structure, they commonly have radioactivity and cannot detect the chemical composition of the plaque accurately. Recently emerging Raman techniques can detect the plaque composition precisely, and have the advantages of being fast, high-resolution and marker-free. This makes Raman have great potential for detecting blood samples, understanding disease conditions, and real-time monitoring. This review summarizes the origin and state-of-art of Raman techniques, including the following aspects: (a) the principle and technical classification of Raman techniques; (b) the applicability of Raman techniques and its comparison with traditional diagnostic tools at different diagnosis targets; (c) the applicability of Raman spectroscopy in advanced CVD. Lastly, we highlight the possible future applications of Raman techniques in CVD diagnosis.
Collapse
Affiliation(s)
- Songcai Xie
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhu
- Wuhan National Laboratory for Optoelectronics, Hua zhong Univeresity of Science and Technology, Wuhan, China
| | - Feiyuan Han
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengyuan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xue
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyu Shi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinwei Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
11
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
12
|
Lucinian YA, Martineau P, Abikhzer G, Harel F, Pelletier-Galarneau M. Novel tracers to assess myocardial inflammation with radionuclide imaging. J Nucl Cardiol 2024; 42:102012. [PMID: 39069249 DOI: 10.1016/j.nuclcard.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Myocardial inflammation plays a central role in the pathophysiology of various cardiac diseases. While FDG-PET is currently the primary method for molecular imaging of myocardial inflammation, its effectiveness is hindered by physiological myocardial uptake as well as its propensity for uptake by multiple disease-specific mechanisms. Novel radiotracers targeting diverse inflammatory immune cells and molecular pathways may provide unique insight through the visualization of underlying mechanisms central to the pathogenesis of inflammatory cardiac diseases, offering opportunities for increased understanding of immunocardiology. Moreover, the potentially enhanced specificity may lead to better quantification of disease activity, aiding in the guidance and monitoring of immunomodulatory therapy. This review aims to provide an update on advancements in non-FDG radiotracers for imaging myocardial inflammatory diseases, with a focus on cardiac sarcoidosis, myocarditis, and acute myocardial infarction.
Collapse
Affiliation(s)
| | | | - Gad Abikhzer
- Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
13
|
Alexandru I, Davidescu L, Motofelea AC, Ciocarlie T, Motofelea N, Costachescu D, Marc MS, Suppini N, Șovrea AS, Coșeriu RL, Bondor DA, Bobeică LG, Crintea A. Emerging Nanomedicine Approaches in Targeted Lung Cancer Treatment. Int J Mol Sci 2024; 25:11235. [PMID: 39457017 PMCID: PMC11508987 DOI: 10.3390/ijms252011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is characterized by its aggressive nature and poor prognosis. As traditional chemotherapy has the disadvantage of non-specificity, nanomedicine offers innovative approaches for targeted therapy, particularly through the development of nanoparticles that can deliver therapeutic agents directly to cancer cells, minimizing systemic toxicity and enhancing treatment efficacy. VEGF and VEGFR are shown to be responsible for activating different signaling cascades, which will ultimately enhance tumor development, angiogenesis, and metastasis. By inhibiting VEGF and VEGFR signaling pathways, these nanotherapeutics can effectively disrupt tumor angiogenesis and proliferation. This review highlights recent advancements in nanoparticle design, including lipid-based, polymeric, and inorganic nanoparticles, and their clinical implications in improving lung cancer outcomes, exploring the role of nanomedicine in lung cancer diagnoses and treatment.
Collapse
Affiliation(s)
- Isaic Alexandru
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Lavinia Davidescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Tudor Ciocarlie
- Department VII Internal Medicine II, Discipline of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Nadica Motofelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Dan Costachescu
- Radiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Steluta Marc
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Noemi Suppini
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Alina Simona Șovrea
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Răzvan-Lucian Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mures, Romania;
| | - Daniela-Andreea Bondor
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Laura-Gabriela Bobeică
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Andreea Crintea
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| |
Collapse
|
14
|
Bao G, Wang Z, Liu L, Zhang B, Song S, Wang D, Cheng S, Moon ES, Roesch F, Zhao J, Yu B, Zhu X. Targeting CXCR4/CXCL12 axis via [ 177Lu]Lu-DOTAGA.(SA.FAPi) 2 with CXCR4 antagonist in triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:2744-2757. [PMID: 38587644 PMCID: PMC11224082 DOI: 10.1007/s00259-024-06704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Radiopharmaceutical therapies targeting fibroblast activation protein (FAP) have shown promising efficacy against many tumor types. But radiopharmaceuticals alone in most cases are insufficient to completely eradicate tumor cells, which can partially be attributed to the protective interplay between tumor cells and cancer-associated fibroblasts (CAFs). The C-X-C chemokine receptor type 4/C-X-C motif chemokine 12 (CXCR4/CXCL12) interaction plays an important role in orchestrating tumor cells and CAFs. We hereby investigated the feasibility and efficacy of [177Lu]Lu-DOTAGA.(SA.FAPi)2, a FAP-targeting radiopharmaceutical, in combination with AMD3100, a CXCR4 antagonist, in a preclinical murine model of triple-negative breast cancer (TNBC). METHODS Public database was first interrogated to reveal the correlation between CAFs' scores and the prognosis of TNBC patients, as well as the expression levels of FAP and CXCR4 in normal tissues and tumors. In vitro therapeutic efficacy regarding cell proliferation, migration, and colony formation was assessed in BALB/3T3 fibroblasts and 4T1 murine breast cancer cells. In vivo therapeutic efficacy was longitudinally monitored using serial 18F-FDG, [18F]AlF-NOTA-FAPI-04, and [68Ga]Ga-DOTA-Pentixafor PET/CT scans and validated using tumor sections through immunohistochemical staining of Ki-67, α-SMA, CXCR4, and CXCL12. Intratumoral abundance of myeloid-derived suppressive cells (MDSCs) was analyzed using flow cytometry in accordance with the PET/CT schedules. Treatment toxicity was evaluated by examining major organs including heart, lung, liver, kidney, and spleen. RESULTS CAFs' scores negatively correlated with the survival of TNBC patients (p < 0.05). The expression of CXCR4 and FAP was both significantly higher in tumors than in normal tissues. The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 significantly suppressed cell proliferation, migration, and colony formation in cell culture, and exhibited synergistic effects in 4T1 tumor models along with a decreased number of MDSCs. PET/CT imaging revealed lowest tumor accumulation of 18F-FDG and [18F]AlF-NOTA-FAPI-04 on day 13 and day 14 after treatment started, both of which gradually increased at later time points. A similar trend was observed in the IHC staining of Ki-67, α-SMA, and CXCL12. CONCLUSION The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 is a feasible treatment against TNBC with minimal toxicity in main organs.
Collapse
Affiliation(s)
- Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Luoxia Liu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Siyuan Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Eu-Song Moon
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Frank Roesch
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
15
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Zamanian M, Albano D, Treglia G, Rizzo A, Abedi I. The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. J Clin Med 2024; 13:2945. [PMID: 38792485 PMCID: PMC11122120 DOI: 10.3390/jcm13102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: We conducted a comprehensive investigation to explore the pathological expression of the CXCR4 receptor in lymphoproliferative disorders (LPDs) using [68Ga]Ga-Pentixafor PET/CT or PET/MRI technology. The PICO question was as follows: What is the diagnostic role (outcome) of [68Ga]Ga-Pentixafor PET (intervention) in patients with LPDs (problem/population)? Methods: The study was written based on the reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines, and it was registered on the prospective register of systematic reviews (PROSPERO) website (CRD42024506866). A comprehensive computer literature search of Scopus, MEDLINE, Scholar, and Embase databases was conducted, including articles indexed up to February 2024. To the methodological evaluation of the studies used the quality assessment of diagnosis accuracy studies-2 (QUADAS-2) tool. Results: Of the 8380 records discovered, 23 were suitable for systematic review. Fifteen studies (on 571 LPD patients) focused on diagnosis and staging, and eight trials (194 LPD patients) assessed treatment response. Conclusions: The main conclusions that can be inferred from the published studies are as follows: (a) [68Ga]Ga-Pentixafor PET may have excellent diagnostic performance in the study of several LPDs; (b) [68Ga]Ga-Pentixafor PET may be superior to [18F]FDG or complementary in some LPDs variants and settings; (c) multiple myeloma seems to have a high uptake of [68Ga]Ga-Pentixafor. Overall, this technique is probably suitable for imaging, staging, and follow-up on patients with LPD. Due to limited data, further studies are warranted to confirm the promising role of [68Ga]Ga-Pantixafor in this context.
Collapse
Affiliation(s)
- Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (M.Z.); (I.A.)
| | - Domenico Albano
- Nuclear Medicine, ASST Spedali Civili Brescia, 25128 Brescia, Italy;
- Nuclear Medicine Department, University of Brescia, 25121 Brescia, Italy
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy;
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; (M.Z.); (I.A.)
| |
Collapse
|
17
|
Sanchis-Pascual D, Del Olmo-García MI, Prado-Wohlwend S, Zac-Romero C, Segura Huerta Á, Hernández-Gil J, Martí-Bonmatí L, Merino-Torres JF. CXCR4: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:1799. [PMID: 38791878 PMCID: PMC11120359 DOI: 10.3390/cancers16101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.
Collapse
Affiliation(s)
- David Sanchis-Pascual
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
| | - María Isabel Del Olmo-García
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Carlos Zac-Romero
- Patholoy Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Ángel Segura Huerta
- Medical Oncology Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Javier Hernández-Gil
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Luis Martí-Bonmatí
- Medical Imaging Department, Biomedical Imaging Research Group, Health Research Institute, University and Politecnic Hospital La Fe, 46026 Valencia, Spain;
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
18
|
Spahn MA, Luyten K, Van Loy T, Sathekge M, Deroose CM, Koole M, Schols D, Vanduffel W, De Vos K, Annaert P, Bormans G, Cleeren F. Second generation Al 18F-labeled D-amino acid peptide for CXCR4 targeted molecular imaging. Nucl Med Biol 2024; 132-133:108906. [PMID: 38518400 DOI: 10.1016/j.nucmedbio.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 μM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Luyten
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
21
|
Lindenberg L, Ahlman M, Lin F, Mena E, Choyke P. Advances in PET Imaging of the CXCR4 Receptor: [ 68Ga]Ga-PentixaFor. Semin Nucl Med 2024; 54:163-170. [PMID: 37923671 PMCID: PMC10792730 DOI: 10.1053/j.semnuclmed.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
[68Ga]Ga-PentixaFor, a PET agent targeting CXCR4 is emerging as a versatile radiotracer with promising applications in oncology, cardiology and inflammatory disease. Preclinical work in various cancer cell lines have demonstrated high specificity and selectivity. In human investigations of several tumors, the most promising applications may be in multiple myeloma, certain lymphomas and myeloproliferative neoplasms. In the nononcologic setting, [68Ga]Ga-PentixaFor could greatly improve detection for primary aldosteronism and other endocrine abnormalities. Similarly, atherosclerotic disease and other inflammatory conditions could also benefit from enhanced identification by CXCR4 targeting. Rapidly cleared from the body with a favorable imaging and radiation dosimetry profile that has been already studied in over 1000 patients, [68Ga]Ga-PentixaFor is a worthy agent for further clinical exploration with potential for theranostic applications in hematologic malignancies.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Uniformed Services University of the Health Sciences, Bethesda, MD.
| | - Mark Ahlman
- Department of Radiology and Imaging, Medical College of Georgia, Augusta, GA
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Esther Mena
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Peter Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
22
|
Hassanzadeh L, Erfani M, Jokar S, Shariatpanahi M. Design of a New 99mTc-radiolabeled Cyclo-peptide as Promising Molecular Imaging Agent of CXCR 4 Receptor: Molecular Docking, Synthesis, Radiolabeling, and Biological Evaluation. Curr Radiopharm 2024; 17:77-90. [PMID: 37921191 DOI: 10.2174/0118744710249305231017073022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION C-X-C Chemokine receptor type 4 (CXCR4) is often overexpressed or overactivated in different types and stages of cancer disease. Therefore, it is considered a promising target for imaging and early detection of primary tumors and metastasis. In the present research, a new cyclo-peptide radiolabelled with 99mTc, 99mTc-Cyclo [D-Phe-D-Tyr-Lys (HYNIC)- D-Arg-2-Nal-Gly-Lys(iPr)], was designed based on the parental LY251029 peptide, as a potential in vivo imaging agent of CXCR4-expressing tumors. METHODS The radioligand was successfully prepared using the method of Fmoc solid-phase peptide synthesis and was evaluated in biological assessment. Molecular docking findings revealed high affinity (binding energy of -9.7 kcal/mol) and effective interaction of Cyclo [D-Phe- D-Tyr-Lys (HYNIC)-D-Arg-2-Nal-Gly-Lys(iPr)] in the binding pocket of CXCR4 receptor (PDB code: 3OE0) as well. RESULT The synthesized peptide and its purity were assessed by both reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectroscopy. High stability (95%, n = 3) in human serum and favorable affinity (Kd = 28.70 ± 13.56 nM and Bmax = 1.896 ± 0.123 fmol/mg protein) in the B16-F10 cell line resulted. Biodistribution evaluation findings and planar image interpretation of mice both showed high affinity and selectivity of the radiotracer to the CXCR4 receptors. CONCLUSION Therefore, the findings indicate this designed radioligand could be used as a potential SPECT imaging agent in highly proliferated CXCR4 receptor tumors.
Collapse
Affiliation(s)
- Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Imaging Technology, Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, (NSTRI), P.O. Box: 14395-836, Tehran, Iran
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Nair A, Pandit N, Kavadichanda C. Role of [68Ga]-pentixafor positron emission tomography/computed tomography imaging in assessing disease activity in patients with lupus nephritis: A pilot study. Lupus 2023; 32:1267-1275. [PMID: 37691452 DOI: 10.1177/09612033231201625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
OBJECTIVE The primary objective of our study was to evaluate renal uptake of 68Ga-pentixafor in patients with lupus nephritis. Eighteen patients who satisfied the inclusion criteria were included in our study. METHODS The study participants were patients with histopathologically confirmed lupus nephritis who were referred to our department for 68Ga-pentixafor PET/CT scan. We studied the renal images in these patients for uptake patterns based on purely visual as well as semi-quantitative parameters. The visual parameters included uptake relative to the spleen and liver. Semi-quantitative analysis involved the uptake as given by SUVmax. These parameters were correlated with the patients' biochemical as well as histological parameters. Kendall's tau-b test was used to look for an association between renal uptake by visual assessment and histopathological findings. Mean SUVmax values were compared by using the Mann-Whitney U test and a p value < .05 was considered to be statistically significant. RESULTS No significant association between the mean renal SUVmax of the bilateral kidneys in pentixafor PET and histopathological class was observed. We did not observe any heterogeneity in uptake patterns that could be attributed to the disease process in our patients. CONCLUSION 68Ga-pentixafor PET is not a suitable imaging modality for assessment of disease activity in lupus nephritis patients. There is a void in non-invasive testing for patients with this chronic and often disabling condition which calls for further research in this area.
Collapse
Affiliation(s)
- Ahalya Nair
- Department of Nuclear Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Nandini Pandit
- Department of Nuclear Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
24
|
Nekolla SG, Rischpler C, Higuchi T. Preclinical Imaging of Cardiovascular Disesase. Semin Nucl Med 2023; 53:586-598. [PMID: 37268498 DOI: 10.1053/j.semnuclmed.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.
Collapse
Affiliation(s)
- Stephan G Nekolla
- Nuklearmedizinische Klinik der TU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
25
|
Wang Y, Gao F. Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging. Korean J Radiol 2023; 24:871-889. [PMID: 37634642 PMCID: PMC10462898 DOI: 10.3348/kjr.2023.0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
26
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
27
|
Yu J, Zhou X, Shen L. CXCR4-Targeted Radiopharmaceuticals for the Imaging and Therapy of Malignant Tumors. Molecules 2023; 28:4707. [PMID: 37375261 DOI: 10.3390/molecules28124707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a 7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved in various physiological processes, CXCR4 could form an interaction with its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions in the occurrence and development of refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer. Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4 have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics. In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuticals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could target CXCR4 will be described in detail according to their structure, such as pentapeptide-based structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a comprehensive and informative article, we would also like to provide the predictive prospects for the CXCR4-targeted species in future clinical development.
Collapse
Affiliation(s)
- Jingjing Yu
- HTA Co., Ltd., Beijing 102413, China
- Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Xu Zhou
- HTA Co., Ltd., Beijing 102413, China
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
28
|
Renard I, Domarkas J, Poty S, Burke BP, Roberts DP, Goze C, Denat F, Cawthorne CJ, Archibald SJ. In vivo validation of 68Ga-labeled AMD3100 conjugates for PET imaging of CXCR4. Nucl Med Biol 2023; 120-121:108335. [PMID: 37068392 DOI: 10.1016/j.nucmedbio.2023.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION The chemokine receptor CXCR4 has been shown to be over-expressed in multiple types of cancer and is usually associated with aggressive phenotypes and poor prognosis. Successfully targeting and imaging the expression level of this receptor in tumours could inform treatment selection and facilitate patient stratification. METHODS Known conjugates of AMD3100 that are specific to CXCR4 have been radiolabelled with gallium-68 and evaluated in naïve and tumour-bearing mice. Tumour uptake of the radiotracers was compared to the known CXCR4-specific PET imaging agent, [68Ga]Pentixafor. RESULTS Ex vivo biodistribution in naïve animals showed CXCR4-mediated uptake in the liver with both radiotracers, confirmed by blocking experiments with the high affinity CXCR4 antagonist Cu2CB-Bicyclam (IC50 = 3 nM). PET/CT imaging studies revealed one tracer to have a higher accumulation in the tumour (SUVMean of 0.89 ± 0.14 vs 0.32 ± 0.11). CXCR4-specificity of the best performing tracer was confirmed by administration of a blocking dose of Cu2CB-Bicyclam, showing a 3- and 6-fold decrease in tumour and liver uptake, respectively. CONCLUSION AND ADVANCES IN KNOWLEDGE This initial study offers some interesting insights on the impact of some structural features on the pharmacokinetics and metabolic stability of the radiotracer. Additionally, as Pentixafor only binds to human CXCR4, the development of CXCR4-targeted imaging agents that bind to the receptor across different species could significantly help with preclinical evaluation of new CXCR4-specific therapeutics.
Collapse
Affiliation(s)
- Isaline Renard
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Juozas Domarkas
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Sophie Poty
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Benjamin P Burke
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - David P Roberts
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Christopher J Cawthorne
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium.
| | - Stephen J Archibald
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
29
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
30
|
Watts A, Singh B, Singh H, Bal A, Kaur H, Dhanota N, Arora SK, Mittal BR, Behera D. [ 68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging 2023; 50:1216-1227. [PMID: 36482077 DOI: 10.1007/s00259-022-06059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE In vivo CXCR4 receptor quantification in different lung cancer (LC) sub-types using [68Ga]Ga-Pentixafor PET/CT and to study correlation with quantitative CXCR4 receptors' tissue density by immunochemistry analyses. METHODS [68Ga]Ga-Pentixafor PET/CT imaging was performed prospectively in 94 (77 M: 17F, mean age 60.1 ± 10.1 years) LC patients. CXCR4 receptors' expression on lung mass in all the patients was estimated by immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) analyses. SUVmax on PET, intensity score on IHC, and mean fluorescence index (MFI) on FACS analyses were measured. RESULTS A total of 75/94 (79.8%) cases had non-small cell lung cancer (NSCLC), 14 (14.9%) had small cell lung cancer (SCLC), and 5 (5.3%) had lung neuroendocrine neoplasm (NEN). All LC types showed increased CXCR4 expression on PET (SUVmax) and FACS (MFI). However, both these parameters (mean SUVmax = 10.3 ± 5.0; mean MFI = 349.0 ± 99.0) were significantly (p = 0.005) higher in SCLC as compared to those in NSCLC and lung NEN. The mean SUVmax in adenocarcinoma (n = 16) was 8.0 ± 1.9 which was significantly (p = 0.003) higher than in squamous cell carcinoma (n = 54; 6.2 ± 2.1) and in not-otherwise specified (NOS) sub-types (n = 5; 5.8 ± 1.5) of NSCLC. A significant correlation (r = 0.697; p = 001) was seen between SUVmax and MFI values in squamous cell NSCLC as well as in NSCLC adenocarcinoma (r = 0.538, p = 0.031) which supports the specific in vivo uptake of [68Ga]Ga-Pentixafor by CXCR4 receptors. However, this correlation was not significant in SCLC (r = 0.435, p = 0.121) and NEN (r = 0.747, p = 0.147) which may be due to the small sample size. [68Ga]Ga-Pentixafor PET/CT provided good sensitivity (85.7%) and specificity (78.1%) for differentiating SCLC from NSCLC (ROC cutoff SUVmax = 7.2). This technique presented similar sensitivity (87.5%) and specificity (71.4%) (ROC cutoff SUVmax = 6.7) for differentiating adenocarcinoma and squamous cell variants of NSCLC. CONCLUSION The high sensitivity and specificity of [68Ga]Ga-Pentixafor PET/CT for in vivo targeting of CXCR4 receptors in lung cancer can thus be used effectively for the response assessment and development of CXCR4-based radioligand therapies in LC.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Harneet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Ninjit Dhanota
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
31
|
Lauri C, Varani M, Bentivoglio V, Capriotti G, Signore A. Present status and future trends in molecular imaging of lymphocytes. Semin Nucl Med 2023; 53:125-134. [PMID: 36150910 PMCID: PMC9489269 DOI: 10.1053/j.semnuclmed.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Immune system is emerging as a crucial protagonist in a huge variety of oncologic and non-oncologic conditions including response to vaccines and viral infections (such as SARS-CoV-2). The increasing knowledge of molecular biology underlying these diseases allowed the identification of specific targets and the possibility to use tailored therapies against them. Immunotherapies and vaccines are, indeed, more and more used nowadays for treating infections, cancer and autoimmune diseases and, therefore, there is the need to identify, quantify and monitor immune cell trafficking before and after treatment. This approach will provide crucial information for therapy decision-making. Imaging of B and T-lymphocytes trafficking by using tailored radiopharmaceuticals proved to be a successful nuclear medicine tool. In this review, we will provide an overview of the state of art and future trends for "in vivo" imaging of lymphocyte trafficking and homing by mean of specific receptor-tailored radiopharmaceuticals.
Collapse
Affiliation(s)
- Chiara Lauri
- Nuclear Medicine Unit Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
32
|
Benčurová K, Friske J, Anderla M, Mayrhofer M, Wanek T, Nics L, Egger G, Helbich TH, Hacker M, Haug A, Mitterhauser M, Balber T. CAM-Xenograft Model Provides Preclinical Evidence for the Applicability of [ 68Ga]Ga-Pentixafor in CRC Imaging. Cancers (Basel) 2022; 14:cancers14225549. [PMID: 36428644 PMCID: PMC9688097 DOI: 10.3390/cancers14225549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Increased expression of CXCR4 has been associated with liver metastasis, disease progression, and shortened survival. Using in vitro cell binding studies and the in ovo model, we aimed to investigate the potential of [68Ga]Ga-Pentixafor, a radiotracer specifically targeting human CXCR4, for CRC imaging. Specific membrane binding and internalisation of [68Ga]Ga-Pentixafor was shown for HT29 cells, but not for HCT116 cells. Accordingly, [68Ga]Ga-Pentixafor accumulated specifically in CAM-xenografts derived from HT29 cells, but not in HCT116 xenografts, as determined by µPET/MRI. The CAM-grown xenografts were histologically characterised, demonstrating vascularisation of the graft, preserved expression of human CXCR4, and viability of the tumour cells within the grafts. In vivo viability was further confirmed by µPET/MRI measurements using 2-[18F]FDG as a surrogate for glucose metabolism. [68Ga]Ga-Pentixafor µPET/MRI scans showed distinct radiotracer accumulation in the chick embryonal heart, liver, and kidneys, whereas 2-[18F]FDG uptake was predominantly found in the kidneys and joints of the chick embryos. Our findings suggest that [68Ga]Ga-Pentixafor is an interesting novel radiotracer for CRC imaging that is worth further investigation. Moreover, this study further supports the suitability of the CAM-xenograft model for the initial preclinical evaluation of targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Katarína Benčurová
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Anderla
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Manuela Mayrhofer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
33
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
34
|
Nader M, Herrmann K, Kunkel F, Zarrad F, Pacelli A, Fendler W, Koplin S. Improved production of 68Ga-Pentixafor using cartridge mediated cation exchange purification. Appl Radiat Isot 2022; 189:110447. [DOI: 10.1016/j.apradiso.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
35
|
Lopci E, Castello A, Mansi L. FDG PET/CT for Staging and Restaging Malignant Mesothelioma. Semin Nucl Med 2022; 52:806-815. [PMID: 35965111 DOI: 10.1053/j.semnuclmed.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Malignant mesothelioma is an aggressive tumor originating from the mesothelial cells and presenting in general with a very poor prognosis. The pleural localization represents the prevailing disease site, while peritoneal involvement is commonly rare. The WHO classifies mesotheliomas into epithelioid, biphasic, and sarcomatoid histotypes, having diverse outcome with the sarcomatoid or biphasic forms showing the poorest prognosis. Given the peculiar rind-like pattern of growth, mesothelioma assessment is rather challenging for medical imagers. Conventional imaging is principally based on contrast-enhanced CT, while the role of functional and metabolic imaging is regarded as complementary. By focusing essentially on the staging and restaging role of [18F]FDG PET/CT in malignant mesotheliomas, the present review will summarize the available data present in literature and provide some hints on alternative imaging and future perspectives. Given the prevailing incidence of pleural disease, the majority of the information will be addressed on malignant pleural mesothelioma, although a summary of principal characteristics and imaging findings in patients with peritoneal mesothelioma will be also provided.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Milan, Italy.
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Luigi Mansi
- Interuniversity Research Center for the Sustainable Development (CIRPS), Rome, Italy
| |
Collapse
|
36
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Liu J, Ren WX, Shu J. Multimodal molecular imaging evaluation for early diagnosis and prognosis of cholangiocarcinoma. Insights Imaging 2022; 13:10. [PMID: 35050416 PMCID: PMC8776965 DOI: 10.1186/s13244-021-01147-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and lethal malignancy with limited therapeutic options. Despite recent advances in diagnostic imaging for CCA, the early diagnosis of CCA and evaluation of tumor invasion into the bile duct and its surrounding tissues remain challenging. Most patients with CCA are diagnosed at an advanced stage, at which treatment options are limited. Molecular imaging is a promising diagnostic method for noninvasive imaging of biological events at the cellular and molecular level in vivo. Molecular imaging plays a key role in the early diagnosis, staging, and treatment-related evaluation and management of cancer. This review will describe different methods for molecular imaging of CCA, including nuclear medicine, magnetic resonance imaging, optical imaging, and multimodal imaging. The main challenges and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wen Xiu Ren
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No 25 Taiping St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
38
|
Marcazzan S, Braz Carvalho MJ, Konrad M, Strangmann J, Tenditnaya A, Baumeister T, Schmid RM, Wester HJ, Ntziachristos V, Gorpas D, Wang TC, Schottelius M, Quante M. CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett's esophagus. EJNMMI Res 2022; 12:2. [PMID: 35006394 PMCID: PMC8748556 DOI: 10.1186/s13550-021-00875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Near-infrared (NIR) fluorescence imaging has been emerging as a promising strategy to overcome the high number of early esophageal adenocarcinomas missed by white light endoscopy and random biopsy collection. We performed a preclinical assessment of fluorescence imaging and endoscopy using a novel CXCR4-targeted fluorescent peptide ligand in the L2-IL1B mouse model of Barrett’s esophagus. Methods Six L2-IL1B mice with advanced stage of disease (12–16 months old) were injected with the CXCR4-targeted, Sulfo-Cy5-labeled peptide (MK007), and ex vivo wide-field imaging of the whole stomach was performed 4 h after injection. Before ex vivo imaging, fluorescence endoscopy was performed in three L2-IL1B mice (12–14 months old) by a novel imaging system with two L2-IL1B mice used as negative controls. Results Ex vivo imaging and endoscopy in L2-IL1B mice showed that the CXCR4-targeted MK007 accumulated mostly in the dysplastic lesions with a mean target-to-background ratio > 2. The detection of the Sulfo-Cy5 signal in dysplastic lesions and its co-localization with CXCR4 stained cells by confocal microscopy further confirmed the imaging results. Conclusions This preliminary preclinical study shows that CXCR4-targeted fluorescence endoscopy using MK007 can detect dysplastic lesions in a mouse model of Barrett’s esophagus. Further investigations are needed to assess its use in the clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00875-7.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany.,Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020, Innsbruck, Austria
| | - Marcos J Braz Carvalho
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Matthias Konrad
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany.,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | - Anna Tenditnaya
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Roland M Schmid
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany.,Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Margret Schottelius
- Institut für Pharmazeutische Radiochemie, Technische Universität München, Munich, Germany.,Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michael Quante
- II Medizinische Klinik, Klinikum rechts der isar, Technische Universität München, Munich, Germany. .,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
39
|
van Lith SAM, Raavé R. Targets in nuclear medicine imaging: Past, present and future. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Hess A, Borchert T, Ross TL, Bengel FM, Thackeray JT. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Res Cardiol 2022; 117:14. [PMID: 35275268 PMCID: PMC8917105 DOI: 10.1007/s00395-022-00922-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.
Collapse
Affiliation(s)
- Annika Hess
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias Borchert
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Present Address: Cardior Pharmaceuticals GmbH, Hannover, Germany
| | - Tobias L. Ross
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frank M. Bengel
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - James T. Thackeray
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
41
|
PET Imaging in Cardiac Sarcoidosis: A Narrative Review with Focus on Novel PET Tracers. Pharmaceuticals (Basel) 2021; 14:ph14121286. [PMID: 34959686 PMCID: PMC8704408 DOI: 10.3390/ph14121286] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Sarcoidosis is a multi-system inflammatory disease characterized by the development of inflammation and noncaseating granulomas that can involve nearly every organ system, with a predilection for the pulmonary system. Cardiac involvement of sarcoidosis (CS) occurs in up to 70% of cases, and accounts for a significant share of sarcoid-related mortality. The clinical presentation of CS can range from absence of symptoms to conduction abnormalities, heart failure, arrhythmias, valvular disease, and sudden cardiac death. Given the significant morbidity and mortality associated with CS, timely diagnosis is important. Traditional imaging modalities and histologic evaluation by endomyocardial biopsy often provide a low diagnostic yield. Cardiac positron emission tomography (PET) has emerged as a leading advanced imaging modality for the diagnosis and management of CS. This review article will summarize several aspects of the current use of PET in CS, including indications for use, patient preparation, image acquisition and interpretation, diagnostic and prognostic performance, and evaluation of treatment response. Additionally, this review will discuss novel PET radiotracers currently under study or of potential interest in CS.
Collapse
|
42
|
Zacherl MJ, Todica A, Wängler C, Schirrmacher R, Hajebrahimi MA, Pircher J, Li X, Lindner S, Brendel M, Bartenstein P, Massberg S, Brunner S, Lehner S, Hacker M, Huber BC. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer. J Nucl Cardiol 2021; 28:2965-2975. [PMID: 32676914 PMCID: PMC8709820 DOI: 10.1007/s12350-020-02262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to be a possible imaging and therapeutic target after myocardial infarction (MI). The murine-based and mouse-specific 68Ga-mCXCL12 PET tracer could be suitable for serial in vivo quantification of cardiac CXCR4 expression in a murine model of MI. METHODS AND RESULTS At days 1-6 after MI, mice were intravenously injected with 68Ga-mCXCL12. Autoradiography was performed and the infarct-to-remote ratio (I/R) was determined. In vivo PET imaging with 68Ga-mCXCL12 was conducted on days 1-6 after MI and the percentage of the injected dose (%ID/g) of the tracer uptake in the infarct area was calculated. 18F-FDG-PET was performed for anatomical landmarking. Ex vivo autoradiography identified CXCR4 upregulation in the infarct region with an increasing I/R after 12 hours (1.4 ± 0.3), showing a significant increase until day 2 (4.5 ± 0.6), followed by a plateau phase (day 4) and decrease after 10 days (1.3 ± 1.0). In vivo PET imaging identified similar CXCR4 upregulation in the infarct region which peaked around day 3 post MI (9.7 ± 5.0 %ID/g) and then subsequently decreased by day 6 (2.8 ± 1.0 %ID/g). CONCLUSION Noninvasive molecular imaging of cardiac CXCR4 expression using a novel, murine-based, and specific 68Ga-mCXCL12 tracer is feasible both ex vivo and in vivo.
Collapse
Affiliation(s)
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada
| | | | - Joachim Pircher
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Xiang Li
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Steffen Massberg
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefan Brunner
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation Therapy, Regensburg, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Bruno C Huber
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Kiran MY, Apaydin Arikan E, Sanli Y, Yegen G, Kuyumcu S. CXCR4 Expression Demonstrated by 68Ga-Pentixafor PET/CT Imaging in a Case of Systemic Mastocytosis Mimicking Lymphoma. Clin Nucl Med 2021; 46:e563-e564. [PMID: 34269725 DOI: 10.1097/rlu.0000000000003817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT 68Ga-Pentixafor is a novel radiotracer for imaging chemokine receptor subtype 4 (CXCR4) receptors, which are expressed exceptionally high in several hematologic malignancies, including various types of lymphoma. Herein we report a case of a 64-year-old man patient with suspected hematologic malignancy who underwent 18F-FDG and 68Ga-pentixafor PET/CT. Both scans demonstrated diffusely increased activity related to bone marrow involvement. 68Ga-Pentixafor PET/CT demonstrated CXCR4-expressing intra-abdominal lymph nodes that were not detected by 18F-FDG PET/CT. The patient was highly suspicious of lymphoma; however, histopathological examination of the bone marrow revealed systemic mastocytosis with associated myelofibrosis.
Collapse
Affiliation(s)
| | | | | | - Gulcin Yegen
- Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
44
|
Braga M, Leow CH, Gil JH, Teh JH, Carroll L, Long NJ, Tang MX, Aboagye EO. Investigating CXCR4 expression of tumor cells and the vascular compartment: A multimodal approach. PLoS One 2021; 16:e0260186. [PMID: 34793563 PMCID: PMC8601444 DOI: 10.1371/journal.pone.0260186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
The C-X-C chemokine receptor 4 (CXCR4) is G protein-coupled receptor that upon binding to its cognate ligand, can lead to tumor progression. Several CXCR4-targeted therapies are currently under investigation, and with it comes the need for imaging agents capable of accurate depiction of CXCR4 for therapeutic stratification and monitoring. PET agents enjoy the most success, but more cost-effective and radiation-free approaches such as ultrasound (US) imaging could represent an attractive alternative. In this work, we developed a targeted microbubble (MB) for imaging of vascular CXCR4 expression in cancer. A CXCR4-targeted MB was developed through incorporation of the T140 peptide into the MB shell. Binding properties of the T140-MB and control, non-targeted MB (NT-MB) were evaluated in MDA-MB-231 cells where CXCR4 expression was knocked-down (via shRNA) through optical imaging, and in the lymphoma tumor models U2932 and SuDHL8 (high and low CXCR4 expression, respectively) by US imaging. PET imaging of [18F]MCFB, a tumor-penetrating CXCR4-targeted small molecule, was used to provide whole-tumor CXCR4 readouts. CXCR4 expression and microvessel density were performed by immunohistochemistry analysis and western blot. T140-MB were formed with similar properties to NT-MB and accumulated sensitively and specifically in cells according to their CXCR4 expression. In NOD SCID mice, T140-MB persisted longer in tumors than NT-MB, indicative of target interaction, but showed no difference between U2932 and SuDHL8. In contrast, PET imaging with [18F]MCFB showed a marked difference in tumor uptake at 40-60 min post-injection between the two tumor models (p<0.05). Ex vivo analysis revealed that the large differences in CXCR4 expression between the two models are not reflected in the vascular compartment, where the MB are restricted; in fact, microvessel density and CXCR4 expression in the vasculature was comparable between U2932 and SuDHL8 tumors. In conclusion, we successfully developed a T140-MB that can be used for imaging CXCR4 expression in the tumor vasculature.
Collapse
Affiliation(s)
- Marta Braga
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chee Hau Leow
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Javier Hernandez Gil
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Jin H. Teh
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas J. Long
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Watts A, Chutani S, Arora D, Madivanane V, Thakur S, Kamboj M, Singh B. Automated Radiosynthesis, Quality Control, and Biodistribution of Ga-68 Pentixafor: First Indian Experience. Indian J Nucl Med 2021; 36:237-244. [PMID: 34658546 PMCID: PMC8481858 DOI: 10.4103/ijnm.ijnm_216_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/29/2021] [Indexed: 01/29/2023] Open
Abstract
Background Chemokine receptor CXCR4 is overexpressed in more than 27 different human tumors that make it a promising target in oncology. Ga-68 Pentixafor is the most promising positron emission tomography tracer for imaging CXCR4 receptors; hence, the present study was carried out to optimize the radiosynthesis of Ga-68-Pentixafor using fully automated method and the quality control (QC) checks were performed before being used as a clinical product. We also studied the normal biodistribution pattern of Ga-68-pentixafor intended for the use in variety of malignancies. Materials and Methods We optimized the automated radio-synthesis of Ga-68 Pentixafor under good manufacturing practice conditions. A total of 62 productions were carried out in a span of 4 years. Extensive QC tests were performed to check for potency, identity, efficacy, and stability of the tracer. Biodistribution of Ga-68 Pentixafor was investigated in a healthy volunteer to determine normal range of standardized uptake valuemaximum (SUVmax) values in various organs. Results The radiotracer was prepared successfully in 57/62 productions with radiochemical purity of >99%. Mean radiolabelling efficiency of 73.1% ± 7.7% (n = 57) was obtained with synthesis time approximatively of 34 min. The radiolabeled complex showed no signs of dissociation up to 4 h at the room temperature. Ga-68 Pentixafor upon incubation with human serum was found to be stable at 37°C for 4 h. The highest normal organ uptake was seen in urinary bladder (SUVmean = 146.0), spleen (SUVmean = 6.80) followed by kidneys (SUVmean = 4.99). Conclusion Using the automated radiosynthesis, Ga-68 Pentixafor exhibited good radiolabelling efficiency with excellent in vitro and in vivo stability and favorable biodistribution showing clinical applicability of the tracer.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Surbhi Chutani
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Diksha Arora
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | | | - Samiksha Thakur
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Monika Kamboj
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| | - Baljinder Singh
- Department of Nuclear Medicine and PET, PGIMER, Chandigarh, India
| |
Collapse
|
46
|
Peng T, Wang X, Li Z, Bi L, Gao J, Yang M, Wang Y, Yao X, Shan H, Jin H. Preclinical Evaluation of [ 64Cu]NOTA-CP01 as a PET Imaging Agent for Metastatic Esophageal Squamous Cell Carcinoma. Mol Pharm 2021; 18:3638-3648. [PMID: 34424706 DOI: 10.1021/acs.molpharmaceut.1c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting metastatic esophageal squamous cell carcinoma (ESCC) has been a challenge in clinical practice. Emerging evidence demonstrates that C-X-C chemokine receptor 4 (CXCR4) highly expresses in ESCC and plays a pivotal role in the process of tumor metastasis. We developed a copper-64 (t1/2 = 12.7 h, 19% beta+) labeling route of NOTA-CP01 derived from LY2510924, a cyclopeptide-based CXCR4 potent antagonist, in an attempt to noninvasively visualize CXCR4 expression in metastatic ESCC. Precursor NOTA-CP01 was designed by modifying the C-terminus of LY2510925 with bis-t-butyl NOTA via a butane-1,4-diamine linker. The radiolabeling process was finished within 15 min with high radiochemical yield (>95%), radiochemical purity (>99%), and specific activity (10.5-21 GBq/μmol) (non-decay-corrected). The in vitro solubility and stability tests revealed that [64Cu]NOTA-CP01 had a high water solubility (log P = -3.44 ± 0.12, n = 5) and high stability in saline and fetal bovine serum. [64Cu]NOTA-CP01 exhibited CXCR4-specific binding with a nanomolar affinity (IC50 = 1.61 ± 0.96 nM, Kd = 0.272 ± 0.14 nM) similar to that of the parental LY2510924. The in vitro cell uptake assay indicated that the [64Cu]NOTA-CP01-selective accumulation in EC109 cells was CXCR4-specific. Molecular docking of the CXCR4/NOTA-CP01 complex suggested that the Lys, Arg, and NOTA of this ligand have a strong polar interaction with the key residues of CXCR4, which explains the tight affinity of [64Cu]NOTA-CP01 for CXCR4. To test the target engagement in vivo, prolonged-time positron emission computed tomography (PET) imaging was performed at 0.5, 4, 6, 8, 12, 16, and 24 h postinjection of [64Cu]NOTA-CP01 to the EC109 tumor-bearing mice. The EC109 tumors were most visible with high contrast to the contralateral background at 6 h postinjection. The tracer revealed receptor-specific tumor accumulation, which was illustrated by effective blocking via coinjection with a blocking dose of LY2510924. Quantification analysis of the prolonged-time images showed that there was obvious radioactivity accumulation in the tumor (1.27 ± 0.19%ID/g) with the best tumor-to-blood ratio (4.79 ± 0.06) and tumor-to-muscle ratio (15.44 ± 2.94) at 6 h postinjection of the probe. The immunofluorescence and immunohistochemistry confirmed the positive expression of CXCR4 in the EC109 tumor and ESCC and metastatic lymph nodes of patients, respectively. We concluded that [64Cu]NOTA-CP01 possessed a very high target engagement for CXCR4-positive ESCC and could be a potential candidate in the clinical detection of metastatic ESCC.
Collapse
Affiliation(s)
- Tukang Peng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jiebing Gao
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-Xianyang New Economic Zone, Xianyang, Shaanxi Province 712046, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
47
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
48
|
Mikaeili A, Erfani M, Goudarzi M, Sabzevari O. Breast Tumor Targeting in Mice Bearing 4T1 Tumor with Labeled CXCR4 Antagonist Analogue. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10264-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Katal S, Maldonado A, Carrascoso J, Assadi M, Gholamrezanezhad A. Theranostic Agents in Musculoskeletal Disorders. PET Clin 2021; 16:441-448. [PMID: 34053587 DOI: 10.1016/j.cpet.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Theranostic-based strategies, combining therapeutic and diagnostic properties of a single agent, have gained enormous attention in the past few years. Today, various multifunctional theranostic modalities have been examined, using different bioactive targeting, for the detection, quantifying, and monitoring of therapy response in different pathologies. Herein we review the newly emerging approaches in theranostic nanomedicine for the detection and therapy for musculoskeletal disorders to provide valuable insights for developing more efficient agents for clinical use. Some potential preclinical applications of radionuclide nanotheranostic agents are described in rheumatoid arthritis, osteoarthrosis, multiple myeloma, and neoplastic diseases.
Collapse
Affiliation(s)
- Sanaz Katal
- Department of Nuclear Medicine, Kowsar Hospital, Shiraz, Iran
| | - Antonio Maldonado
- Department of Nuclear Medicine, Quironsalud Madrid University Hospital, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Javier Carrascoso
- Department of Radiology, Quironsalud Madrid University Hospital, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA.
| |
Collapse
|
50
|
|